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Abstract

The review and selection process for scientific
paper publication is essential for the quality
of scholarly publications in a scientific field.
The double-blind review system, which en-
forces author anonymity during the review pe-
riod, is widely used by prestigious conferences
and journals to ensure the integrity of this pro-
cess. Although the notion of anonymity in the
double-blind review has been questioned be-
fore, the availability of full text paper collec-
tions brings new opportunities for exploring
the question: Is the double-blind review pro-
cess really double-blind? We study this ques-
tion on the ACL and EMNLP paper collec-
tions and present an analysis on how well deep
learning techniques can infer the authors of a
paper. Specifically, we explore Convolutional
Neural Networks trained on various aspects of
a paper, e.g., content, style features, and ref-
erences, to understand the extent to which we
can infer the authors of a paper and what as-
pects contribute the most. Our results show
that the authors of a paper can be inferred with
accuracy as high as 87% on ACL and 78% on
EMNLP for the top 100 most prolific authors.

1 Introduction

The scientific peer-review process is indispens-
able for the dissemination of high-quality in-
formation (Hojat et al., 2003). However, one
of the major problems with this process is bias
(Williamson, 2003; Tomkins et al., 2017). For ex-
ample, Tomkins et al. (2017) performed an exper-
iment during the ACM Web Search and Data Min-
ing conference 2017 to understand the potential
bias in favoring authors from prestigious institu-
tions and found that, indeed, when reviewers have
access to the authors identities, they more often
tend to favor well known authors from prestigious
institutions. The double-blind review process is
generally employed by top scientific journals and

conferences in order to guarantee fairness of the
paper selection, and thus, plays an essential role
in how scientific quality is eventually measured
(Meadows, 1998). It is designed to reduce the risk
of bias in paper reviews, ensuring that all papers
are judged solely based on their content and intrin-
sic quality and that any author has a fair chance of
having a paper accepted, regardless of their pres-
tige or previous work. The double-blind review
process implies that the submitted papers have to
be anonymized, i.e., the authors’ names are not ex-
plicitly available with the papers, and any direct
or indirect indications of who the authors might
be (for example, referring to self-citations in the
first person) are forbidden. Reviewers have ac-
cess only to the papers’ content, and the authors
in turn do not know who their assigned reviewers
are. Despite these strict considerations, the notion
of anonymity in the double-blind review has still
been questioned. Notably, Hill and Provost (2003)
showed that the authors of a scientific paper can be
inferred with fairly high accuracy using only the
papers it references. Specifically, using the vector-
space representations of the list of references (or
citations) in a paper and measuring similarity be-
tween these representations and the pattern of ci-
tations of an author, they are able to infer the au-
thors of a paper with accuracy up to 60% for the
top-10% most prolific authors, and show that self-
citations are an important predictive factor.

We are interested in further understanding how
predictable the authorship of a paper is, and specif-
ically what part of the paper gives it away. For this
purpose, we include in our analysis additional text
features to reflect various aspects of the text, as
well as references, and make use of a more com-
plex machine learning model, based on deep learn-
ing, for predicting authors based on these features.
We focus on ACL and EMNLP, the top confer-
ences in computational linguistics, which use the
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double-blind review system to decide whether to
accept papers for publication.

Our contributions are as follows: we train deep
learning models on papers published in the ACL
and EMNLP conferences, using features extracted
from each paper’s body of text as well as its refer-
ences, and show that these models are able to pre-
dict authors with accuracy of about 87% on ACL
and about 78% on EMNLP. We additionally per-
form an ablation study, for an in-depth analysis of
the predictive value of each feature. We finally
also show how the number of authors considered
for analysis can affect performance.

The rest of the paper is organized as follows:
In the next section we present related work. Then
in Section 3, we describe our datasets. Section 4
deals with the methodology of our experiments,
including our baseline algorithm and the details of
the model we propose. In Subsections 4.2 and 4.3
we also discuss the features we used in our model
and the details of their extraction and preprocess-
ing steps. Section 5 describes the setup of our deep
learning experiments, including the metrics we use
for measuring performance. Finally, in Subsection
5.3 we report and discuss our results, and in Sec-
tion 6 we present our conclusions.

2 Related Work

There have been several studies approaching the
question of the integrity of the double-blind review
process. An early study on blind review published
in a journal of psychology (Ceci and Peters, 1984)
shows that authors of anonymous papers could be
identified by surveyed reviewers using the combi-
nation of the paper’s references and the referee’s
personal background knowledge.

Statistical studies on the difference between
single-blind and double-blind peer review have
more recently demonstrated that unveiling the
identity of the authors to the reviewers leads to
biased reviews, favoring more prestigious authors
and institutions. Tomkins et al. (2017) performed
a controlled experiment on scientific articles sub-
mitted to the 10th ACM Conference on Web
Search and Data Mining, where for every article
half of the reviewers had access to author informa-
tion, while the other half did not. They found that
single-blind reviewers are more likely to recom-
mend famous authors for acceptance by a factor of
1.58. A few studies have previously proposed au-
tomatic approaches for author prediction for scien-

tific articles. For example, Hill and Provost (2003)
successfully predicted the authors of scientific ar-
ticles published as part of the KDD Cup 2003
competition, using only information from the ar-
ticles’ references lists.

In a related task to ours, several studies have
looked at authorship attribution on scientific ar-
ticles, or predicting authors of scientific articles
from an exclusively stylistic point of view. Althoff
et al. (2013) studied authorship attribution on sci-
entific articles specifically in the multi-author set-
ting, using various text-based features (including
word n-grams and various stylistic features) and
models based on logistic regression and expecta-
tion maximization. Hitschler et al. (2017) per-
formed experiments for predicting authors of ACL
articles, restricting their data to only single-author
articles. Their study focused on the style level, us-
ing only POS tag sequences, and showed that lim-
iting the number of words considered as features
can have a beneficial effect on the predictor’s per-
formance. Seroussi et al. (2012) proposed the use
of an author-topic model (Rosen-Zvi et al., 2004)
for the task of authorship attribution and showed
promising results in a scenario with many authors.
Rexha et al. (2015) analyzed the style of medical
scientific articles and how the stylistic uniformity
of an article varies with the number of co-authors.

Outside the world of scientific articles, a few
previous studies showed the promise of using neu-
ral networks for authorship attribution. Bagnall
(2015) successfully used a multi-headed Recur-
rent Neural Network for an author identification
task at PAN 2015. The use of Convolutional Neu-
ral Networks (CNNs) for learning from text data
was proposed by Kim (2014), where CNNs are
successfully applied to several sentence classifica-
tion tasks. Rhodes (2015) trained a Convolutional
Neural Network on word embeddings for predict-
ing authors of medium-sized texts, and Shrestha
et al. (2017) used CNNs in an authorship attri-
bution task on tweets. Luyckx and Daelemans
(2008) studied the effects of having many authors
as classes and of limited training data on author
attribution - which are realistic, but difficult sce-
narios, common to our problem as well.

As far as we are aware, no other study has
dealt with analyzing the authorship of articles pub-
lished at ACL or EMNLP (or a comparably presti-
gious conference) without restricting the scenario
to only a subtask (for example, focusing only on a
subset of the data), or limiting the analysis to one



2319

aspect of the text (for example, focusing on the
stylistic level). While previous studies support the
hypothesis that authors of a scientific article are
possible to predict from an anonymized paper, we
attempt to provide a fuller picture regarding what
exactly it is about an anonymous article that can
give away its authors.

3 Datasets

For evaluation, we used two datasets of arti-
cles from the computational linguistics confer-
ences ACL and EMNLP, published on or before
2014 (Bird et al., 2008; Anderson et al., 2012).
The ACL dataset contains 4, 412 articles authored
by a total of 6, 565 unique authors, whereas the
EMNLP dataset is comprised of 1, 027 articles
written by 1, 861 unique authors in total.1 Note
that the size of the EMNLP dataset is much
smaller than the size of the ACL dataset since
EMNLP is a much newer conference compared to
ACL. From each dataset, we normalized the au-
thor names to consist of the initial of the first name
and the full last name and removed the authors
with less than three articles (to ensure enough data
for training and evaluation), leaving us with 922
authors for the ACL dataset and 262 authors for
the EMNLP dataset (which represent our classes).

As illustrated in Figure 1, which plots the class
distribution in each dataset (i.e., the number of ar-
ticles per author in decreasing order), we can see
that the distribution is very skewed, with the more
prolific authors being responsible for many of the
articles in each dataset and with many authors con-
tributing only a few articles.

Figure 1: Class (author) distribution.

A similar, if not more pronounced, imbalance
can be observed at the level of cited authors. For
the purpose of our experiments, we also extracted
and analyzed the references (or citation) lists of
each article in our datasets, and looked at the dis-

1Code and data available upon request.

Figure 2: Number of citations per author.

Author #Papers Author #Citations
D Klein 41 C Manning 656
M Zhou 39 D Klein 562
M Johnson 32 F Pereira 561
I Dagan 30 M Collins 539
C Manning 29 D Marcu 459
K Knight 28 P Coehn 441
M Zhang 27 S Roukos 414
Y Liu 27 E Charniak 400
Q Liu 27 A McCallum 393
R Barzilay 26 K Knight 388
N Smith 25 F Och 387
E Hovy 24 M Marcus 377
G Satta 23 M Johnson 355
H Li 23 D Jurafsky 349
Y Matsumoto 21 H Ney 348

Table 1: Top 15 most prolific authors and most cited
authors in our ACL dataset.

Author #Papers Author #Citations
D Klein 22 C Manning 333
N Smith 16 D Klein 308
H Ng 16 M Collins 246
C Manning 16 F Pereira 238
G Zhou 15 A McCallum 222
M Lapata 14 P Koehn 204
J Eisner 13 D Marcu 191
D Roth 13 F Och 188
Q Liu 12 R McDonald 179
M Collins 12 S Roukos 174
K Torisawa 11 D Jurafsky 173
M Zhang 11 K Knight 167
Y Liu 11 M Marcus 155
M Zhou 9 M Johnson 154
S Petrov 9 A Ng 143

Table 2: Top 15 most prolific authors and most cited
authors in our EMNLP dataset.

tribution of citations across all cited authors. This
distribution is illustrated in Figure 2, which plots
the number of times each author is cited (in de-
creasing order). The values on the y axis in this
figure are plotted using a logarithmic scale, since
the distribution is very skewed.

Tables 1 and 2 show the top-15 most prolific
authors as well as the top-15 most cited authors
found in the citations lists in our datasets, for both
ACL and EMNLP, respectively.
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Author Name Normalization. It is worth men-
tioning that our method for normalizing author
names can produce collisions, and hence, ambigu-
ities. However, we chose to normalize the names
because the noise resulting from not doing so (i.e.,
having the same author encoded with multiple
different ways of writing their name, especially
prevalent in references) might be even more detri-
mental to learning than the possible ambiguities.

In order to understand the level of collisions in
our classes (i.e., the author names in the headers),
we show in Figure 3 the number of author names
that result in three collisions, two collisions, or
no collisions at all after normalization, for both
ACL and EMNLP. As can be seen from the fig-
ure, the number of author names with collisions in
each dataset is small. Among the names with col-
lisions, 13 occur within the top most prolific 100
authors in ACL, and only 3 occur in the top 100 for
EMNLP. Note that a similar analysis for the author
names in the references lists is difficult since many
names appear already in the normalized form (first
name initial last name). For this reason, normaliz-
ing author names is also necessary for computing
our baseline, which matches the names of article
authors with names of cited authors.

Figure 3: Collision analysis for author name normal-
ization (shown on a log2 scale).

Author name normalization is in some cases
useful, e.g., in the case of authors with mid-
dle names, which are sometimes explicit and
other times omitted (there are 12 cases in the
ACL dataset of authors with middle names whose
names occur differently in different articles), or in
the case of authors whose first names can have dif-
ferent spellings such as Dan/Daniel Jurafsky.

4 Methodology

4.1 Baseline
For our baseline we chose to focus solely on the ci-
tations of each article. As Hill and Provost (2003)
have shown before, citations alone can be a strong
indicator of the authors of an article, with self-

Figure 4: Network architecture

citations being especially telling. Specifically, our
baseline algorithm consists of simply ranking the
authors cited in an article in reverse order of how
frequently they were cited overall in the article’s
references list, and outputs as predicted authors
the top (10) most cited authors in this ranking.

4.2 Proposed Model

For the purpose of our machine learning experi-
ments, we formulate the problem as a supervised
classification task, where each article is labelled
with one or multiple authors, and a machine learn-
ing model learns to predict the set of correct labels
(authors) for each data point (article). The order
of the authors is not taken into consideration.

As our model, we choose a neural network with
several subcomponents corresponding to various
types of features, as detailed below.

4.2.1 Features
In order to capture as many of the aspects of a
scientific article as possible in our model, we ex-
tract and use various features, corresponding to
different levels at which characteristics of the au-
thor could manifest. We categorize these into three
main types of features:

• Content level: word sequences (consisting of
100-word sequences in the article’s title, ab-
stract and body).

• Style level: stopwords bag-of-words, part-of-
speech sequences.

• Citation level: bag-of-words of cited authors.

Figure 4 shows a high-level view of the network
architecture and its various components.
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The network is designed to learn from each
separate feature using dedicated subcomponents.
At the content level, we use convolutional layers
to learn from word sequences. CNNs have been
shown to be successful in text classification tasks
by Kim (2014). We use similar settings to the ones
reccommended in this study - passing the word se-
quences through a single convolutional layer with
300 filters, and a kernel size of 9, followed by a
max pooling layer. Before going through the con-
volutions, the word sequences are passed through
a word embedding layer of 300 dimensions, ini-
tialized with the pre-trained word2vec embed-
dings available from Google, trained using the
skip-gram objective (Mikolov et al., 2013). Using
embeddings that are already pre-trained on a large
dataset should benefit our task (our dataset being
itself not very large), but since we use general-
purpose pre-trained embeddings, we choose not
to fix the embedding weights, but rather let the
network further update them by learning from our
data to tune them to our task and domain.

A separate convolutional layer is dedicated to
learning from part-of-speech sequences. As in the
case of word sequences, we consider the order of
parts of speech in a text segment to be relevant, as-
suming certain types of syntactical constructs can
be specific to certain authors. Thus, after tagging
a text segment with parts of speech, we encode the
result as part-of-speech sequences and pass them
through a convolutional layer of 50 filters and ker-
nel size 4, followed by a max pooling layer. The
POS tags are given as one-hot vectors. Stopwords
are extracted from each article segment and en-
coded as bag-of-words, keeping their frequencies,
but not their order in the text. We used the stop-
word list available from the NLTK package. Stop-
words frequencies are traditionally used in stylom-
etry, being one of the most indicative features of an
author’s style (Koppel et al., 2009).

To extract knowledge from citations, we focus
on cited authors, encoding for each article the au-
thors cited in its references section, along with
the citation frequencies for each author. The to-
tal number of cited authors in each of our datasets
is much larger than the number of authors that
contribute directly to one of the articles, e.g.,
over 22, 000 unique authors are cited in our ACL
dataset. This makes the one-hot encoding that we
use for cited authors to be very high-dimensional,
so we pass the extracted feature through an addi-
tional lower-dimensional fully connected layer.

In the final layers of our network, we collect
all of the output from each subcomponent dealing
with the various features, and pass them through a
dense component consisting of a fully connected
layer and a Softmax layer that produces the net-
work’s predicted probabilities for each class.

4.3 Preprocessing and Feature Extraction

We extracted the text from PDFs using Grobid.2

Several preprocessing steps were necessary before
using the articles’ text as features in our model.

For our text-related features we consider the ti-
tle, abstract and body of the articles, and exclude
references from the article’s text, by removing
them both from the references section and from
the citations within the article text (so as to isolate
text features from citation features). After normal-
izing and tokenizing the resulted text according to
usual practice in natural language processing ap-
plications (including lowercasing every word, dis-
carding numbers and punctuation, resolving end-
of-line hyphenation), we construct a list of vo-
cabulary words consisting of the most frequent
50,000 words in all texts. Our choice of vocab-
ulary size was informed by a previous study look-
ing at authorship on ACL data (Hitschler et al.,
2017), which showed that 50,000 words is an op-
timal vocabulary size for authorship tasks on this
dataset. For EMNLP, which is a smaller dataset,
we restrict the minimum word frequency to 5 oc-
currences, leaving us with a vocabulary of approx-
imately 23,000 words. Considering only the words
in each vocabulary (and replacing all other words
with an ”unknown” token), we encode the text
as word sequences of 100 words, padding the se-
quences with zeros if they are shorter. Further, our
training examples consist of these word segments,
rather than full articles. Before extracting content
features, we discard outliers, ignoring articles con-
sisting of either zero or more than 20, 000 words.

In addition, we also extract the context around
citation mentions within the content of articles, by
selecting a window of 100 characters around the
citation (and excluding the citation itself), then ap-
plying the same text preprocessing steps as above
only on this window. This is used as a separate
feature, as described in Section 5.2.

The extraction of the part-of-speech features
is done by applying the Stanford POS tagger
(Toutanova et al., 2003) to the word sequences, re-

2https://github.com/kermitt2/grobid
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sulting in part-of-speech sequences corresponding
to each article segment. Stopwords are encoded as
bag-of-words for each article segment.

Citations extracted from the ”References” sec-
tion of each article are encoded as bag-of-authors -
unordered sets of citation frequencies correspond-
ing to each cited author. Recall that author names
(when they occur either as authors of the target ar-
ticle, or as authors of a cited paper in a references
list) are normalized to consist of the initial of the
first name and the full last name (see Section 3).

5 Experimental Setup and Results

The nature of our dataset requires special atten-
tion to the setup of the training experiments, one of
the main particularities of the data being the skew-
ness of the label distribution. We split the dataset
in three subsets: one for actual training, one for
validation (used for tuning hyperparameters), and
the third for testing performance. At this stage,
we ensure that each of the three sets contains at
least one article from each author in our labeled
set. This also implies that we exclude any authors
with less than three articles, obtaining 922 authors
for the ACL dataset and 262 for EMNLP (which
are the different classes in our supervised learning
problem). Given our datapoints, as explained in
the previous section, consisting of article segments
(word sequences of 100 words) rather than full ar-
ticles, we also ensure that all segments extracted
from one given scientific article are appointed to
the same set, and not split between training, val-
idation and test. We take this precaution to make
sure that anything our network learns is not an arti-
fact of the particular article, but rather of its author.

Lastly, to reduce the impact of the label skew-
ness on our trained model, we use weighted sam-
pling for generating the training examples, making
sure the probability of generating a training ex-
ample from any class is approximately the same
across classes. For this to be possible, a final ad-
justment had to be made to our training exam-
ples. Our datasets, comprising of scientific arti-
cles, with each article having been written either
by a single author or in co-authorship between
several authors, essentially consists of multi-label
examples. For training, we transform the train-
ing examples from multi-label examples to single-
label examples, by generating several copies of the
same datapoint, each labelled with only one of its
authors, whenever a text was written by more than

Dataset Nr authors Training Valid Test
ACL Top 100 73,261 12,260 12,348
ACL Top 200 124,460 18,756 19,967
ACL Mid 200 25,746 12,476 13,618
ACL Bottom 200 13,673 12,378 12,074
ACL Top 500 185,451 29,498 30,232
ACL All 922 157,427 41,978 44,427
EMNLP Top 100 39,852 8,432 7,971
EMNLP Mid 100 13,486 7,557 7,950
EMNLP Bottom 100 8,403 6,801 7,769
EMNLP All 262 49,743 17,518 17,671

Table 3: Data size (in number of article segments).

Dataset Nr authors Training Valid Test
ACL Top 100 350 185 197
ACL Top 200 1,315 258 263
ACL Mid 200 343 190 199
ACL Bottom 200 180 181 176
ACL Top 500 1,758 413 428
ACL All 922 1,604 697 710
EMNLP Top 100 325 90 89
EMNLP Mid 100 130 83 88
EMNLP Bottom 100 86 78 86
EMNLP All 262 345 191 86

Table 4: Data size (in number of articles).

one author. This allows us to perform weighted
sampling, as well as use a simple softmax layer
as the final layer in the network, which gener-
ates one predicted label for any training exam-
ple, and cross-entropy loss as our loss function.
At the evaluation stage, we use the original multi-
labeled examples, to be able to correctly measure
the model’s performance using our metrics.

Tables 3 and 4 show the number of article seg-
ments and the number of articles we end up with
after extracting the features and splitting the ACL
and EMNLP datasets, respectively, into the train-
ing, validation, and test sets, in each of the experi-
mental settings.

5.1 Metrics

Depending on whether we see the list of authors
that contributed to an article as a sorted or unsorted
list, a machine learning model that can predict this
set of authors can be designed either as a multi-
label classifier or as a ranking model. We use the
former, and disregard the order of the authors of
an article, assuming it is not always relevant to the
quantity of each author’s contribution to the article
text, thus representing the authors for an article as
an unordered set of labels.

We do, however, consider the order of the pre-
dicted classes in the model’s output. For eval-
uating our model, we use both the performance
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metrics that are suited for multi-class classifica-
tion (where we treat the model’s predictions as un-
ordered sets) and metrics suited to ranking prob-
lems, which are generally used in information re-
trieval (where we see the list of model predictions
as a sorted list, ranked according to the Softmax
probabilities in the model’s output). These perfor-
mance metrics are as follows:

• Accuracy@k - computed as the number of ar-
ticles for which at least one true author was in
the top k predicted authors. We use k = 10
as this number was shown to perform well
in other search and retrieval tasks (Spink and
Jansen, 2004).

• Mean Average Precision (MAP)

MAP =
1

|A|
∑
a∈A

1

r

r∑
k=1

P@k

whereA is the set of articles, and precision at
rank k P@k is the number of correct authors
within the first k predicted authors relative to
the number of predictions (k). Here too we
use a maximum rank of r = 10.

• Mean Average Recall (MAR)

MAR =
1

|A|
∑
a∈A

1

r

r∑
k=1

R@k

where recall at rank k R@k is defined as the
number of correct authors within the first k
predicted authors relative to the total number
of true authors (r = 10 as before).

• Mean Reciprocal Rank (MRR)
MRR =

1

|A|
∑
a∈A

1

ra
where ra is the rank at which the first correct
predicted author was found for article a ∈ A.

Since our datapoints are article segments rather
than full articles, the measured performance on the
model’s output will be with respect to these seg-
ments: for example, an accuracy of 10% denotes
that 10% of the segments were correctly classified.

We additionally adapt these metrics to be able
to also output the performance at article-level,
which allows us to properly compare it to our
baseline’s performance (which is measured on full
articles). We accomplish this by grouping the ar-
ticle segments in our test set according to the arti-
cle they were extracted from, and for each article,
order all probabilites in the network’s output for
the given article, and consider the top predicted
classes across this global ranking as the model’s
predictions for the target article.

5.2 Experiment Settings

In order to understand the contribution of each fea-
ture for predicting the authors of a paper, we per-
form an ablation study - isolating and using in turn
only certain features and combinations of features
and deliberately not using others.

In a first experiment, we compare our model’s
performance on both the entire set of authors in
each dataset, and only a subset of the authors, e.g.,
selecting only the top most prolific ones (top-100,
top-200, and so on) and ignoring the rest. In this
experiment, we only consider articles authored by
these selected authors, both for training and test.
We expect performance should be higher on this
subset where rare authors are discarded, since the
pronounced skewedness of the data makes so that
for many authors in the tail of the distribution there
are very few data points to train on.

In a second experiment, we group our features
according to the level of the text that they repre-
sent: content level (word sequences), style level
(stopwords and POS sequences) or citation level
(cited authors). We run our model using the fea-
tures in each of the groups in turn, and ignoring the
rest. The measured performance in each separate
setting should be an indicator of the importance of
the specific feature (or feature combination) and
of the aspect of the article that it captures.

Finally, we also experiment separately with our
text features, in order to understand which part of
the scientific text is more specific to its author,
and how much of the text is really useful in pre-
dicting the author. We look separately first at the
entire body of the article, secondly at only the ti-
tle and abstract, and thirdly only at the context
of the citations that occur in the text - assuming
these might be useful by giving away something
about the author’s citation pattern that cannot be
inferred from the references list alone. Citation
contexts have been shown to capture useful infor-
mation in previous studies focusing on text sum-
marization (Qazvinian et al., 2010; Abu-Jbara and
Radev, 2011; Qazvinian and Radev, 2008), doc-
ument indexing (Ritchie et al., 2008), keyphrase
extraction (Gollapalli and Caragea, 2014; Caragea
et al., 2014), and author influence in digital li-
braries (Kataria et al., 2011).

These last experiments aiming to analyze fea-
ture importance are performed in the small-scale
setting, where only the top 100 authors are con-
sidered. We report all results both at segment level
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Features Acc MAP MAR MRR
All features (top100cls) 84.65 9.87 46.22 25.28
All features (top200cls) 70.00 18.07 54.41 48.96
All features (top500cls) 63.77 16.82 43.34 41.60
All features (mid200cls) 62.38 14.02 49.44 40.78
All features (last200cls) 54.18 11.38 43.22 35.21
All features (922cls) 52.41 13.78 31.29 33.52
Content + Ref (100cls) 75.38 16.74 58.42 49.46
Content (100cls) 49.87 8.87 33.23 25.34
Style ft. 25.21 3.22 13.81 9.20
Content (100cls) 49.87 8.87 33.23 25.34
Title+abstr. 16.19 2.71 9.52 6.22
Ref. contexts 35.53 5.07 21.27 13.54

Table 5: Results on ACL dataset (segment level).

Features Acc MAP MAR MRR
All features (top100cls) 87.88 24.71 78.37 72.33
All features (top200cls) 66.78 16.93 51.10 46.20
All features (top500cls) 60.74 15.36 39.71 38.68
All features (mid200cls) 54.82 11.14 40.38 32.99
All features (last200cls) 50.00 8.61 36.24 25.53
All features (922cls) 47.59 11.74 27.04 28.77
Content + Ref (100cls) 76.13 16.37 57.50 48.73
Content (100cls) 48.29 10.51 37.16 31.44
Style ft. 26.70 3.18 14.25 9.26
References 86.67 24.35 78.31 71.37
Content (100cls) 48.29 10.51 37.16 31.44
Title+abstr. 18.08 2.56 10.23 6.34
Ref. contexts 30.95 4.15 11.20 18.16
Baseline (100cls) 54.86 11.57 42.76 34.37
Baseline (200cls) 55.70 12.08 40.82 34.48
Baseline (500cls) 56.17 12.73 38.01 34.65
Baseline (922cls) 57.25 14.79 28.25 35.67

Table 6: Results on ACL dataset (article level).

and at article level, with the exception of the exper-
iment where the only features used are references,
which are article-level features.

5.3 Results

Table 5 shows the classification results measured
on our data points consisting of article segments
on ACL, whereas Table 6 contains the values of
the metrics aggregated at article-level on the same
ACL dataset. Tables 7 and 8 show similar results
on the EMNLP dataset. Underlined scores are best
within each group and bold scores are best over-
all. Figure 5 shows the accuracy of our best deep
learning model on ACL and EMNLP as we in-
crease the number of authors (classes), compared
with the baseline model that considers only refer-
ences and with a random model.

As can be seen from the tables and figure, re-
sults show that references are still the features that
by far contribute the most to predicting the au-
thor(s) of an article. The importance of the ref-
erences list also contributes to the strong perfor-
mance of the baseline, which is able to correctly
predict authors for as much as 54.86% of the ar-

Features Acc MAP MAR MRR
All features (top100cls) 79.97 19.98 60.14 55.33
All features (mid100cls) 57.10 12.02 43.70 35.52
All features (last100cls) 62.96 12.02 46.10 36.08
All features (262cls) 59.47 15.65 37.42 37.90
Content + Ref (100cls) 80.27 19.93 59.88 55.89
Content (100cls) 48.59 8.28 28.66 22.15
Style ft. 25.98 3.96 12.95 10.29
Content (100cls) 48.59 8.28 28.66 22.15
Title+abstr. 15.48 2.14 7.38 6.15
Ref. contexts 21.47 2.73 9.20 7.39

Table 7: Results on EMNLP dataset (segment level).

Features Acc MAP MAR MRR
All features (top100cls) 78.49 17.70 56.09 48.74
All features (mid100cls) 51.68 11.09 39.49 33.91
All features (last100cls) 51.16 9.28 37.96 27.11
All features (262cls) 57.86 13.84 34.65 33.81
Content + Ref (100cls) 77.41 18.19 56.88 50.60
Content (100cls) 56.98 11.27 37.81 31.08
Style ft. 31.82 4.93 16.21 13.23
References 78.49 18.79 58.04 52.26
Content (100cls) 56.98 11.27 37.81 31.08
Title+abstr. 10.75 0.82 3.47 2.32
Ref. contexts 15.90 16.83 6.21 4.25
Baseline (100 cls) 57.80 12.59 42.31 36.01
Baseline (262 cls) 58.90 15.06 24.71 36.92

Table 8: Results on EMNLP dataset (article level).

ticles on ACL and 57.80% on EMNLP, for the
top 100 classes. Interestingly, the baseline’s per-
formance is comparable to the results reported by
(Hill and Provost, 2003) who use a similar method,
even on a different dataset. Feeding the extracted
references into the deep network further boosts the
predictive power of the references feature, reach-
ing on its own an accuracy of 86.67% on ACL and
78.49% on EMNLP in an experiment looking at
the top 100 most prolific authors in each dataset.

The more general text features (content level)
are the second best predictor, whereas the style-
level features come last. Even if much less predic-
tive than references, these text-based features are
still far better than chance at predicting the true
authors. For example, on ACL, in the setting with
100 possible classes, the expected accuracy of a
random predictor (according to our definition of
accuracy), would be around 10%, whereas when
using all 922 classes, the chance accuracy is 1%.

With regard to the parts of the article text that
seem to be most predictive, reference contexts
seem to play a more important role than the ti-
tle and abstract, even though using the full article
content still gives the best results on both datasets.

Moreover, as we go from the top 100 most pro-
lific authors to the last (rare) authors, the perfor-
mance keeps decreasing. For example, the ac-
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Figure 5: Accuracy with number of authors considered.

curacy on ACL at article level decreases from
87.88% (achieved for top 100 most prolific au-
thors) to 50% (achieved for last 200 rare authors).

5.4 Error Analysis

In order to achieve a better understanding of the
model’s weaknesses and more generally of the dif-
ficulties of predicting authors of scientific papers,
we examine the set of misclassified articles in the
ACL test set, and compute the misclassification
rate for an author as the number of their articles for
which the model did not assign to them, divided by
the total number of articles authored by them. An
interesting finding is that the correlation between
the rank of the author (in order of their number
of written articles) and the misclassification rate is
0.35, showing that more prolific authors tend to be
more accurately classified. One of the most mis-
classified authors in the top 5 most prolific authors
is Christopher Manning (40% of articles are mis-
classifed, among which there are Accurate Unlexi-
calized Parsing and Deep Learning for NLP (with-
out Magic). For the first paper, some of the pre-
dicted authors are: Eugene Charniak, Mark John-
son, Lenhart K Schubert, Dan Klein, and Daniel
Jurafsky, with Dan Klein being indeed one of the
authors. Other 45 articles not authored by Christo-
pher Manning were predicted as being written by
this author, possibly due to a large number of his
citations in the articles’ references list and/or sim-
ilar keywords with those of Christopher Manning.

6 Conclusions and Discussion

We showed that the top most prolific authors of
anonymized scientific articles can be predicted
with high accuracy, with characteristics of the au-
thors being apparent at all levels of the text: from
content to style. Still, the most direct indicator of
who the author of a paper might be comes from
the papers that are referenced - both from the ref-
erences themselves and from the citation context

they occur in within the content of an article. Our
work contributes to the debate about the double-
blind reviewing process and aims at contributing
toward the rapidly emerging field of Fairness in
AI. Although we found that the most prolific au-
thors can be inferred with accuracy as high as
87.88% on ACL and 78.49% on EMNLP, the au-
thors with less papers are more and more difficult
to infer, which enforces the benefits of the double-
blind review in offering any author a fair chance
of having their papers accepted in top venues.

The finding that authors of anonymized papers
can be predicted with such high accuracy bears
important consequences for the way scientific arti-
cles are reviewed and published. De-anonymizing
articles means compromising the integrity of the
review and selection process. The insights into
how the authors of an article can be inferred are
not only interesting, but could help guide a recon-
sidered approach of the way we write papers for
submission to various venues. Still, the findings
and conclusions of this paper should not be seen
as a premise that the portions of an article which
help a neural network identify authorship are the
same as those which help a human reviewer iden-
tify authorship, and are not necessarily expected to
inform how humans perform peer review.

In future experiments, more attention to the
contribution of each author of the article might
lead to further improvements in the prediction per-
formance. In this article, we construct our training
datasets as if all parts of an article were written
by all authors, which is not accurate, and could
even put an upper bound on the network’s perfor-
mance, by providing it with contradictory infor-
mation during training. Techniques for segment-
ing the text according to their probable authorship
could help improve the method.
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