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1Language Technology Lab, TAL, University of Cambridge
2Data and Web Science Group, University of Mannheim, Germany
3Faculty of Industrial Engineering and Management, Technion, IIT

1{ep490,iv250,alk23}@cam.ac.uk
2goran@informatik.uni-mannheim.de

3roiri@ie.technion.ac.il

Abstract

Semantic specialization integrates structured
linguistic knowledge from external resources
(such as lexical relations in WordNet) into
pretrained distributional vectors in the form
of constraints. However, this technique can-
not be leveraged in many languages, because
their structured external resources are typically
incomplete or non-existent. To bridge this
gap, we propose a novel method that trans-
fers specialization from a resource-rich source
language (English) to virtually any target lan-
guage. Our specialization transfer comprises
two crucial steps: 1) Inducing noisy con-
straints in the target language through auto-
matic word translation; and 2) Filtering the
noisy constraints via a state-of-the-art relation
prediction model trained on the source lan-
guage constraints. This allows us to special-
ize any set of distributional vectors in the tar-
get language with the refined constraints. We
prove the effectiveness of our method through
intrinsic word similarity evaluation in 8 lan-
guages, and with 3 downstream tasks in 5
languages: lexical simplification, dialog state
tracking, and semantic textual similarity. The
gains over the previous state-of-art specializa-
tion methods are substantial and consistent
across languages. Our results also suggest
that the transfer method is effective even for
lexically distant source-target language pairs.
Finally, as a by-product, our method pro-
duces lists of WordNet-style lexical relations
in resource-poor languages.

1 Introduction

Due to their dependence on the distributional hy-
pothesis (Harris, 1954), that is, word co-occurrence
information in large corpora, distributional word
embeddings (Mikolov et al., 2013; Levy and Gold-
berg, 2014; Pennington et al., 2014; Melamud
et al., 2016; Bojanowski et al., 2017; Peters et al.,
2018, inter alia) conflate paradigmatic relations

(e.g., synonymy, antonymy, lexical entailment, co-
hyponymy, meronymy) and the broader topical (i.e.,
syntagmatic) relatedness (Schwartz et al., 2015;
Mrkšić et al., 2017). This property can propagate
undesired effects to language understanding appli-
cations such as statistical dialog modeling or text
simplification (Faruqui, 2016; Chiu et al., 2016;
Mrkšić et al., 2017): for instance, the inability to
distinguish between synonymy and antonymy (e.g.,
between cheap pubs and expensive restaurants) can
break task-oriented dialog or a recommendation
system (Mrkšić et al., 2016; Kim et al., 2016b).

Semantic specialization techniques are therefore
leveraged to stress a relation of interest such as
semantic similarity (Wieting et al., 2015; Mrkšić
et al., 2017; Ponti et al., 2018) or lexical entailment
(Nguyen et al., 2017; Vulić and Mrkšić, 2018) over
other types of semantic association in the word
vector space. The best-performing specialization
models (cf. Mrkšić et al. 2017; Ponti et al. 2018)
are executed as vector space post-processors. In
short, these techniques force the distributional vec-
tors to conform to external linguistic constraints
(e.g., synonymy, meronymy, lexical entailment)
extracted from structured external resources (e.g.,
WordNet, BabelNet) to emphasize the particular
relation. As post-processors they are applicable to
any input distributional space.

A critical requirement for all specialization tech-
niques is the set of linguistic constraints drawn
from the curated external semantic resource. Such
resources contain incomplete information even in
resource-rich languages (e.g., English WordNet),
while the resources are scarcer or even non-existent
for many other languages. A solution was proposed
recently to deal with incomplete information in a
resource-rich language: the specialization function
learned on the subset of words observed in the
external resource gets propagated to the entire vo-
cabulary in a step called post-specialization (Vulić
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et al., 2018). Yet, another fundamental question
concerning specialization techniques is still unre-
solved: how to enable specialization in virtually
any language, even when the language completely
lacks external lexical resources?

In this work, we therefore propose a novel
approach for cross-lingual specialization trans-
fer based on Lexical Relation Induction (CLSRI).
CLSRI leverages lexical information from a
resource-rich language to enable specialization in
any target language, without observing a single lex-
ical constraint in the target language. The transfer
method consists of two main steps: 1) We induce
a noisy set of constraints in the target language
through automatic word translation via a shared
cross-lingual word vector space (Ruder et al., 2019;
Joulin et al., 2018). 2) To mitigate the noise from
the translation process, the initial set of noisy con-
straints is then refined in a relation prediction
phase: we adjust a state-of-the-art neural method
for lexical relation classification (Glavaš and Vulić,
2018a) and use it to predict the validity of each
noisy constraint obtained in the first step. Finally,
a standard specialization technique (including the
post-specialization step) can then be used monolin-
gually in the target language, starting from the set
of refined target language constraints.

We verify the usefulness of our specialization
transfer method in the intrinsic word similarity
task for 8 target languages, followed by 3 down-
stream tasks in 5 languages: lexical simplifica-
tion, dialog state tracking, and semantic textual
similarity. We observe large improvements over
purely distributional word vectors for all target
languages and in all tasks. Moreover, we show
that the proposed specialization transfer method
consistently outperforms the direct specialization
transfer based on the composition of the cross-
lingual projection and the post-specialization func-
tion (Ponti et al., 2018), with substantial gains
across all experimental setups. In order to boost
the integration of external lexical knowledge into
distributional models beyond English, we will re-
lease our code and lists of WordNet-style lexical
relations generated by our transfer method for all
target languages at: https://github.com/
cambridgeltl/xling-postspec.

2 Related Work

Conflating distinct (both paradigmatic and syntag-
matic) lexico-semantic relations is a well-known

property of distributional word vectors; semantic
specialization of such spaces for a particular lexico-
semantic relation (e.g., semantic similarity or lex-
ical entailment) benefits a number of tasks, e.g.,
dialog state tracking (Mrkšić et al., 2017; Ponti
et al., 2018), spoken language understanding (Kim
et al., 2016b,a), text simplification (Glavaš and
Vulić, 2018b; Ponti et al., 2018), and cross-lingual
transfer of resources (Vulić et al., 2017a).

Specialization methods inject external lexical
knowledge into a distributional space, tailoring
vectors for a particular relation of interest. Joint
specialization models (Yu and Dredze, 2014; Xu
et al., 2014; Bian et al., 2014; Kiela et al., 2015;
Liu et al., 2015; Ono et al., 2015; Osborne et al.,
2016; Nguyen et al., 2017, inter alia) use external
constraints to modify the training objective of word
embedding models (Mikolov et al., 2013; Dhillon
et al., 2015; Liu et al., 2018b,a) and train special-
ized vectors from scratch.

In contrast, retrofitting (also known as post-
processing) methods tune the pre-trained distribu-
tional vectors post-hoc based on the provided exter-
nal constraints. Despite the fact that joint models
specialize the entire space, whereas the first gen-
eration of retrofitting models specializes only the
vectors of words seen in lexical constraints, the lat-
ter yield better downstream performance (Mrkšić
et al., 2016). Moreover, while the joint models are
tightly coupled to a concrete word embedding ob-
jective, retrofitting models can be applied on top of
any distributional vector space.

Post-specialization (Vulić et al., 2018; Ponti
et al., 2018; Kamath et al., 2019) is a generaliza-
tion of retrofitting that specializes the entire distri-
butional space: 1) it learns a global specialization
function using before- and after-retrofitting vectors
of words from lexical constraints as training ex-
amples and 2) it applies the global specialization
functions to vectors of words unseen in lexical con-
straints. Similar to retrofitting, post-specialization
can be applied to any vector space, but also (like
joint specialization models) specializes the full dis-
tributional space.

Since it learns a global and explicit specializa-
tion function, post-specialization can be used for
cross-lingual specialization transfer. Assuming a
shared cross-lingual embedding space (Ruder et al.,
2019; Glavaš et al., 2019), a post-specialization
function induced on the source language subspace
can be directly applied to the target language sub-

https://github.com/cambridgeltl/xling-postspec
https://github.com/cambridgeltl/xling-postspec
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Figure 1: High-level illustration of our CLSRI framework for semantic specialization. Step 1: a network of lexical
relations in a source language (red dots, left) is translated into a target language (blue dots, right) through a shared
vector space (center). Step 2: a lexical relation classifier (center) trained on vector pairs sampled from the source
language (left) prunes the constraints in the noisy target network (right). Step 3: the refined constraints are used to
attract or repel the corresponding vectors (golden edges, left); this transformation is learned by a deep feed-forward
network (center) and applied to the full target vector space.

space (Glavaš and Vulić, 2018b; Ponti et al., 2018).
In this work, we propose a different approach: we
use a shared cross-lingual space to (noisily) trans-
late lexical constraints from source to target lan-
guage, and then use a relation-prediction model
(trained on the source language constraints) to filter
out the invalid target language constraints. This
allows for monolingual application of retrofitting
or post-specialization in the target language. Our
experiments show that the proposed specialization
transfer via lexical relation induction (CLSRI) out-
performs the previous state-of-the-art specializa-
tion transfer method of Ponti et al. (2018).

3 Methodology

CLSRI in a Nutshell. In cross-lingual semantic
specialization our goal is to fine-tune the distribu-
tional vectors of a target language Lt leveraging
structured knowledge in the form of lexical con-
straints, available only for a resource-rich source
language Ls. To this end, we propose a two-step

translate-and-refine procedure for the induction of
target language constraints, described in § 3.1. We
first translate words in each Ls constraint by re-
trieving their nearest neighbour in Lt from a shared
cross-lingual Ls–Lt embedding space (Ruder et al.,
2019). Such a translation procedure will gener-
ate noisy constraints in the target language due to
(1) imperfect word translation via the cross-lingual
embedding space and (2) polysemy in Ls and trans-
lation of incorrect senses of Ls words. We thus
subsequently refine the noisy set of target con-
straints by having a state-of-the-art neural model
for lexico-semantic relation prediction (Glavaš and
Vulić, 2018a), trained on theLs constraints, discern
valid from invalid Lt constraints.

Following that, we perform monolingual
retrofitting and post-specialization in the target lan-
guage Lt, as outlined in § 3.2. The Lt distribu-
tional vectors can be specialized with the cleaned
Lt constraints using any off-the-shelf retrofitting
model (Faruqui et al., 2015; Mrkšić et al., 2016;
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Lengerich et al., 2018, inter alia). In this work
we opt for the best-performing retrofitting model
ATTRACT-REPEL (AR) (Mrkšić et al., 2017; Vulić
et al., 2017b). AR specializes only the words seen
in the cleaned Lt constraints. As the final step,
we generalize AR’s specialization to the entire tar-
get vocabulary with a post-specialization model
(Ponti et al., 2018) that learns the global specializa-
tion function from pairs of distributional and AR-
specialized vectors of words from Lt constraints. A
visual summary of our transfer model is presented
in Figure 1.

Our proposed CLSRI specialization conceptually
differs from an existing cross-lingual specialization
transfer methodology (Ponti et al., 2018; Glavaš
and Vulić, 2018b), in which the global specializa-
tion function is learned in the source language Ls
and then transferred directly to the target language
Ls via a shared cross-lingual embedding space.

3.1 Induction and Refinement of Constraints

Step 1: Constraint Translation. Following the
established methodology of Mrkšić et al. (2017),
constraints drawn from external resources are usu-
ally split into two broad sets: 1) ATTRACT con-
straints couple words that should have similar rep-
resentations (e.g., synonyms like complicated and
complex or direct hyponym-hypernym pairs like
parrot and bird); and 2) REPEL constraints indicate
which word pairs should appear far-flung in the
space (e.g., antonyms like ancient and recent).

Given a set As of ATTRACT word pairs and a set
Rs of REPEL word pairs, each word pair (wls, w

r
s)

from the vocabulary of the source language Vs is
automatically translated into the target language
with vocabulary Vt using a shared cross-lingual
Ls-Lt word embedding space. We create the cross-
lingual space XCL by learning a linear map WCL

that projects the distributional space of the tar-
get language Xt to the distributional space Xs of
the source language, i.e., XCL = Xs ∪XtWCL.
We translate each word ws from each linguistic
constraint in Ls by looking for the nearest neigh-
bour of its vector xs in the projected target space
XtWCL. We employ recently proposed Relaxed
Cross-domain Similarity Local Scaling (RCSLS)
model of Joulin et al. (2018) to learn the projection
matrix WCL and induce the bilingual space XCL.1

1RCSLS substantially outperforms competing models on
the task of bilingual lexicon induction as shown in a recent
comparative study (Glavaš et al., 2019), and has been designed
to optimize performance exactly on the word translation task.

Step 2: Cleaning Noisy Constraints. The Lt con-
straints we obtain by translating Ls constraints
via a cross-lingual L1-L2 embedding space are ex-
pected to be noisy (as validated later in § 5), i.e., a
shared cross-lingual space obtained via a linear pro-
jection matrix is far from ideal. The translations are
going to be particularly noisy for pairs of distant
languages for which the projection-based methods
for inducing cross-lingual embedding spaces (in-
cluding RCSLS) generally yield lower bilingual lex-
icon induction (BLI) performance (Søgaard et al.,
2018; Joulin et al., 2018; Glavaš et al., 2019).

In the next step, we therefore clean the noisy Lt
constraints obtained via this imperfect translation
procedure. To this end, we leverage the state-of-
the-art model for lexical relation prediction: the
Specialization Tensor Model (STM) (Glavaš and
Vulić, 2018a). STM is a neural model that predicts
lexical relations for pairs of input distributional vec-
tors based on multi-view projections of those vec-
tors. Each slice of the STM’s central specialization
tensor specifies a different projection. We modify
the original N -ary STM classifier to now model
binary classification, and train two instances of the
model: one that predicts whether a pair of words
represents a valid ATTRACT constraint (A-STM),
and another that predicts valid REPEL constraints
(R-STM). We train both models with the training
instances created from the clean Ls constraints.

Given a pair of vectors (xl, xr) that corresponds
to a clean linguistic constraint (wls, w

r
s) from As

(or Rs), each vector is transformed with k feed-
forward networks (FFNs) of the STM model. The
paired projections of the two vectors resulting from
each FFN are scored with a parameterized biaffine
product, producing k latent scores describing the
nature of the relation between the input vectors.
The k-dimensional latent feature vector is finally
passed to a FFN, which performs binary classifica-
tion.2 The complete objective is summarized in
Equation (1):

FFNσ
k⊕
i=1

{
FFNτi (xl)

>Wi FFNτi (xr) + bi
}

(1)

where ⊕ stands for concatenation, and the output
layer activations are denoted as σ for sigmoid and
τ for tanh.

2For further technical details regarding the STM, we refer
the reader to the original paper (Glavaš and Vulić, 2018a).
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The pairs (xl, xr) created from As and Rs con-
stitute positive training instances for A-STM and
R-STM, respectively. For each classifier we couple
each positive training instance with two types of
negative training instances: (1) we create a nega-
tive instance by substituting a member of the pair
(xl or xr) with a randomly sampled vector from one
of the other pairs in the same training batch; (2) we
create a negative instance by randomly sampling
a constraint from the opposing set of constraints,
that is, we turn a constraint from As into a negative
example for R-STM, and, conversely, a constraint
from Rs into a negative training instance for A-
STM. We train the A-STM and R-STM models with
training instances created from Ls constraints and
then use the trained model to predict the validity
of the translated Lt constraints. We retain only the
subsets of Lt constraints At and Rt deemed valid
by A-STM and R-STM, respectively. Vectors of Ls
words (during training) and vectors of Lt words
(at inference) are taken from the induced bilingual
Ls-Lt space XCL = Xs ∪XtWCL.

3.2 Semantic Specialization

We can now directly feed At and Rt to any
retrofitting model and (monolingually) specialize
any distributional space in the target language.
We first run the state-of-the-art retrofitting model
ATTRACT-REPEL (AR) (Mrkšić et al., 2017) with
At and Rt constraints. AR however, specializes
only the words present in At and Rt. In the
next step, we generalize AR’s specialization to the
full vocabulary Vt with the state-of-the-art post-
specialization model (Ponti et al., 2019). For com-
pleteness, we briefly summarize AR and the post-
specialization model of Ponti et al. (2019).

Retrofitting with ATTRACT-REPEL. Each con-
straint from At and Rt is used to fine-tune the dis-
tance between their corresponding vectors (xl, xr)
in the target Lt distributional space. Let BA be a
batch of vector pairs created from ATTRACT con-
straints At and BR the batch of vector pairs created
from REPEL constraints Rt. For each batch BA and
each batch BR, we construct batches of correspond-
ing negative pairs TA(BA) and TR(BR), containing
new pairs of words sampled among those present in
the batch of positive pairs. In particular, half of the
negative examples tl and tr for ATTRACT (or RE-
PEL) pairs are chosen by retrieving the nearest (or
farthest) neighbours to xl and xr, respectively, in
terms of cosine similarity. Another half are random

negative examples.
AR minimizes an objective based on max-margin

loss between positive pairs and their correspond-
ing negative pairs. More precisely, its objective
has three loss components: LAR = Att(BA, TA) +
Rep(BR, TR) + Pre(BA,BR). The first compo-
nent ensures that word pairs from each BA are
drawn closer together than those in the correspond-
ing TA up to a certain “attract” margin δA:

Att(BA, TA) =
|BA|∑
i=1

[
τ
(
δAx

i
lt
i
l − xilx

i
r

)
+ τ
(
δA + xirt

i
r − xilx

i
r

)]
(2)

where τ(z) = max(0, z) is ramp function. Analo-
gously,Rep(BR, TR) forces the vectors of words in
BR pairs to be further away than the vectors of their
corresponding TR pairs by a margin δR. Finally,
Pre(BA,BR) is the regularization objective that
preserves the useful semantic information from the
distributional space by minimizing the Euclidean
distance between original and changed vectors.3

Post-Specialization. By virtue of AR retrofitting,
only the subset of vectors of Lt words observed
in the refined Lt constraints are specialized. The
specialized subspace, however, contains useful in-
formation for propagating the specialization to the
rest of the vocabulary Vt (i.e., to the vectors of Lt
words unseen in At and Rt). Post-specialization
aims to learn a global specialization function G :
Xt ∈ Rd → X′t ∈ Rd that approximates the per-
turbation patterns of AR as captured by changes
in vectors of seen words from At and Rt. G is
learned as a non-linear mapping between pairs (xi,
yi), where xi ∈ Xt is a distributional vectors of
some constraint word (from At or Rt) and yi is its
corresponding AR-specialized vector. In line with
Vulić et al. (2018) and Ponti et al. (2018), we im-
plement this function as a deep feed-forward neural
network with l hidden layers of size h and a final
linear layer with weight W ∈ Rh×d. We optimize
model parameters θG by minimizing a contrastive
margin ranking loss with random confounders (We-
ston et al., 2011, inter alia). The cosine similarity
between a distributional vector transformed with
G and the corresponding “gold” vector (i.e., AR-
specialized vector) is forced to be larger than that

3For more details about the AR objectives, we refer the
interested reader to the original work (Mrkšić et al., 2017).
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between the former and randomly sampled con-
founders (k of them) by a margin δMM :

||Vs||∑
i=1

k∑
j=1|j 6=i

τ [δMM − cos(G(xi; θG),yi)+

+ cos(G(xi; θG),yj)] = LMM (3)

Once the global specialization transformation G
is learned, it is applied to the whole distributional
space of our target language: Yt = GθG(Xt).

Note that with our proposed specialization ap-
proach CLSRI, we execute the retrofitting and post-
specialization completely monolingually in the tar-
get language Lt on the automatically induced con-
straints in the target language. In contrast, existing
work (Vulić et al., 2018; Glavaš and Vulić, 2018b;
Ponti et al., 2018) transfers the post-specialization
function learned for the source language Ls to the
target language Lt via a cross-lingual vector space.
This fundamental design difference is illustrated in
Figure 1 and empirically validated in §5.

4 Experimental Setup

Lexical Constraints. The assortment of English
constraints for specialization is the same as in
prior work (Zhang et al., 2014; Ono et al., 2015;
Vulić et al., 2018; Ponti et al., 2018). These
constraints concern the lexical relations docu-
mented in WordNet (Fellbaum, 1998) and Ro-
get’s Thesaurus (Kipfer, 2009). Initially, they
amount to 1,023,082 synonymy/ATTRACT word
pairs and 380,873 antonymy/REPEL pairs, which
cover 14.6% of the 200K most frequent English
words, as found in the vocabulary of FASTTEXT

vectors (Bojanowski et al., 2017). The number of
constraints is substantially reduced in the target
languages4 after the induction process from § 3.1,
both after the rough translation and after the refine-
ment via relation prediction. The actual numbers
are reported in Figure 2.

Distributional Word Vectors. In order to scale
up our evaluation to a representative sample of
languages and language types (O’Horan et al.,
2016; Ponti et al., 2019), we use 300-dim distri-
butional vectors from the FASTTEXT5 collection

4These include Croatian (HR), Finnish (FI), German (DE),
Hebrew (HE), Italian (IT), Polish (PL), Russian (RU), and
Turkish (TR). We also use Portuguese (PT), Spanish (ES), and
Arabic (AR) in some evaluations. The languages were selected
according to the data availability in our evaluation tasks.

5FASTTEXT is trained on Wikipedia through an adaptation
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Figure 2: Number of constraints in the target languages
after the initial coarse translation (Coarse) and after re-
lation prediction (Refined).

(Bojanowski et al., 2017) trained on Wikipedia,
which offers off-the-shelf comparable models for
hundreds of languages. The vectors of each lan-
guage are aligned to English using RCSLS (Joulin
et al., 2018) (see § 3.1),6 with the suggested hyper-
parameters: 10 nearest neighbours in the RC-
SLS loss function, 10 iterations, and a language
pair-dependent learning rate tuned from the set
{1, 10, 25, 50}.

Relation Prediction. The STM model is trained
with the Adam optimizer (Kingma and Ba, 2015),
a learning rate of 0.0001, and a batch size of 48
(including negative examples) for a maximum of 10
iterations. Early stopping was implemented based
on the F1 score on a development set comprising
5% of the source language constraints. The hidden
layer dimensionality is 300, and we use k = 5
specialization sub-tensors. Regarding the quality
of the STM predictions, the best models achieve an
F1 score of 81.4 on ATTRACT constraints, and an
F1 score of 66.9 on REPEL constraints.7

AR and Post-Specialization. We retain the ex-
act hyper-parameter configuration for ATTRACT-
REPEL from the original work (Mrkšić et al., 2017):
δA = 0.6, δR = 0.0, λP = 10−9. Adagrad (Duchi
et al., 2011) is employed to optimize the model
parameters for 5 epochs, feeding batches of size
|BA| = |BR| = 50, again as in prior work.

of Skip-Gram with Negative Sampling (SGNS) that builds
representations for each word’s constituent character n-grams
and sums them up to obtain the entire word’s representation.

6https://github.com/facebookresearch/
fastText/tree/master/alignment

7Although the predicted REPEL constraints are quite in-
accurate, we verified empirically that excluding them would
harm the overall performance.

https://github.com/facebookresearch/fastText/tree/master/alignment
https://github.com/facebookresearch/fastText/tree/master/alignment
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Owing to the difference in the amount of su-
pervision, the post-specialization model has par-
tially non-overlapping configurations for the base-
line model of Ponti et al. (2018) and our CLSRI

model. For both models each of the l = 3 hidden
layers of the feed-forward network is composed of
h = 2, 048 hidden units, and is non-linearly acti-
vated by LeakyReLU (Maas et al., 2013). We apply
a dropout of 0.2 both in input and between hidden
layers. In Eq. (3), the margin δMM = 1, and the
negative examples amount to k = 25. We use
SGD with the learning rate lr = 0.1. For the base-
line, post-specialization is trained for 10 epochs,
each consisting of 1 million mini-batches of 32 ran-
domly sampled pairs. For our CLSRI model, it is
limited to 2 epochs of 200K iterations each.8

Models in Comparison. Finally, we summarize
the main models benchmarked in §5. First, we
evaluate the original Distributional vectors. X-PS
refers to the baseline model of Ponti et al. (2018)
based on direct cross-lingual post-specialization.
CLSRI-AR denotes the variant of our model based
on constraint induction in Lt after running the
initial AR retrofitting without post-specialization;
CLSRI-PS refers to our full model with the post-
specialization step.

5 Results and Discussion

We evaluate different specialization models across
several target languages on the intrinsic word simi-
larity task and three downstream language under-
standing tasks where distinguishing between true
semantic similarity and conceptual relatedness is
crucial: dialog state tracking, lexical simplifica-
tion, and semantic textual similarity. The choice
of tasks has also been driven by the availability of
standardized evaluation data in different languages.

5.1 Word Similarity

Evaluation Setup. The intrinsic evaluation is
based on a set of (true) word similarity benchmarks
manually translated from (subsets of) the English
SimLex (Hill et al., 2015) and re-scored in the
target languages.9 In particular, the benchmarks

8For both models, the hyper-parameters are chosen
with a grid search over the intervals h={1024, 2048, 4096},
l={2, 3}, lr={0.1, 0.01, 0.001}, and optimizers in {Adam,
SGD}, using a held-out dev set (10% of the constraints).

9In contrast to other datasets like WordSim-353 (Finkel-
stein et al., 2002) or MEN (Bruni et al., 2014), SimLex encour-
ages scores to distinguish between pure semantic similarity
(actual synonyms) and broad topical relatedness.

are collected from the work of Leviant and Re-
ichart (2015) for German, Italian, and Russian (999
pairs),10 from Mrkšić et al. (2017) for Hebrew and
Croatian (999 pairs),11 from Venekoski and Vankka
(2017) for Finnish (300),12 from Mykowiecka et al.
(2018) for Polish (999),13 and from Ercan and
Yıldız (2018) for Turkish (500).14 We measure the
Spearman’s ρ rank correlation between the gold
human-elicited word pair similarity scores and the
cosine similarity of the corresponding word vectors
retrieved from each vector space.

Results and Analysis. We summarize the results
for word similarity in Table 1. The full CLSRI-PS
model outperforms both the distributional vectors
and the baseline method for cross-lingual special-
ization (Ponti et al., 2018). In all languages but
two (DE and RU) even the CLSRI-AR model with-
out post-specialization is superior to both baselines,
and the post-specialization step additionally im-
proves the results, supporting the findings from
prior work (Vulić et al., 2018). Crucially, the per-
formance of CLSRI-PS remains strong even for
distant language pairs (e.g., for EN–HE, EN–TR or
EN–FI), whereas the X-PS baseline shows a drop
in performance for such cases. We suspect that it is
because the success of our CLSRI-PS method de-
pends less on the quality of the underlying shared
cross-lingual vector space, which is known to de-
teriorate for more distant language pairs (Søgaard
et al., 2018; Glavaš et al., 2019).

5.2 Dialog State Tracking
A standard language understanding evaluation task
used in prior work on semantic specialization
(Mrkšić et al., 2017; Ponti et al., 2018, inter alia) is
dialog state tracking (DST) (Henderson et al., 2014;
Mrkšić et al., 2017). A DST model is a fundamen-
tal building block of statistical modular dialogue
systems (Young, 2010). Its task is to maintain the
information of the user’s goals during a multi-turn
conversation by updating the dialog belief state at
each turn. Distinguishing true similarity as cap-
tured in specialized word vectors from broader re-
latedness is crucial for DST to succeed: e.g., a
dialog system for restaurant bookings should not
confuse the western and the eastern part of town,
or Thai and Japanese cuisine.

10http://leviants.com/ira.leviant/MultilingualVSMdata.html
11https://github.com/nmrksic/attract-repel
12https://github.com/venekoski/FinSemEvl
13http://zil.ipipan.waw.pl/CoDeS
14http://www.gokhanercan.com/resources/anlamver.aspx
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Model DE IT HE FI HR TR PL RU

Distributional .426 .304 .368 .240 .344 .535 .395 .270
X-PS .503 .392 .380 .314 .376 .464 .344 .402
CLSRI-AR .500 .525 .454 .394 .425 .554 .433 .331
CLSRI-PS .565 .512 .522 .490 .505 .613 .534 .507

Table 1: Spearman’s ρ correlation scores for 8 languages on datasets for intrinsic evaluation of true semantic
similarity. The models in comparison are briefly summarized in § 4 and in Figure 1.

Model DE IT

Distributional 0.640 0.729
X-Postspec 0.647 0.737
CI-AR 0.652 0.745
CI-Postspec 0.687 0.782

Table 2: Joint goal accuracy scores in the DST task.

Evaluation Setup. To be directly comparable to
prior work when evaluating the effects of special-
ized word embeddings on DST, we rely on the
Neural Belief Tracker (NBT) v2 (Mrkšić and Vulić,
2018): it is a fully statistical DST model that op-
erates solely on the basis of pretrained word vec-
tors (Mrkšić et al., 2017), and they are pivotal to
its performance.15 Again following prior work,
our evaluation data come from the multilingual
Wizard-of-Oz (WOZ) dataset (Wen et al., 2017),
which is available in two target languages: Ger-
man and Italian (Mrkšić et al., 2017). It contains
1,200 dialogues split into training (600 dialogues),
development (200), and test data (400). We report
the standard DST metric of joint goal accuracy: it
refers to the proportion of dialog turns where all
the users goals were correctly identified.

Results and Analysis. The results on the German
and Italian DST task are summarized in Table 2.
Several findings emerge from the results. First, as
already confirmed in prior work (Vulić et al., 2018;
Ponti et al., 2018), vectors specialized for seman-
tic similarity are indeed important for DST: we
observe improvements with all specialized vectors.
The highest gains are observed with the full CSLRI-
PS model. This confirms two main intuitions: 1)
our proposed specialization transfer via lexical in-
duction in the target language is more robust than

15Note that the original NBT framework in the English
DST task has been recently surpassed by more intricate task-
specific architectures (Zhong et al., 2018; Ren et al., 2018),
but its lightweight design coupled with its strong dependence
on input word vectors still makes it a convenient means to
evaluate the effects of different specialization methods.

the previous X-PS method of Ponti et al. (2018),
and 2) the full-vocabulary post-specialization step
is again useful as the initial CSLRI-AR model can-
not match the performance of CSLRI-PS.

5.3 Lexical Simplification

Lexical simplification (LS) aims to automatically
replace complex words (i.e., specialized terms,
words used less frequently and known to fewer
speakers) with their simpler in-context synonyms:
the simplified text must be grammatical and retain
the meaning of the original text. Lexical simpli-
fication critically depends on discerning semantic
similarity from other types of semantic relatedness,
as the meaning of the original text might not be
preserved otherwise (e.g., “The orange automobile
crashed.” vs. “The orange wheel crashed.”).

Evaluation Setup. To evaluate the effects of
similarity-based specialization on LS, we employ
Light-LS (Glavaš and Štajner, 2015), a language-
agnostic LS tool that makes simplifications based
on word similarities in a given vector space. The
quality of similarity-based information encoded in
the vector space encode is thus expected to directly
correlate with the performance of Light-LS. We use
LS datasets for Italian (IT) (Tonelli et al., 2016),
Spanish (ES) (Saggion et al., 2015; Saggion, 2017),
and Portuguese (PT) (Hartmann et al., 2018) to eval-
uate the specialized spaces in those languages. We
rely on the standard LS evaluation metric of Accu-
racy (Horn et al., 2014; Glavaš and Štajner, 2015):
it quantifies both the quality and frequency of re-
placements as a number of correct simplifications
divided by the total number of complex words.

Results and Analysis. The results are reported in
Table 3. As shown in previous work (Vulić et al.,
2018; Ponti et al., 2018), retrofitting (CLSRI-AR)
and the cross-lingual post-specialization transfer
(X-PS) are substantially better in the LS task than
the original distributional space. However, our full
CLSRI-PS model results in substantial boosts in the
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LS STS

Model IT ES PT AR

Distributional 0.28 0.27 0.27 0.67
X-PS 0.38 0.57 0.55 0.66
CLSRI-AR 0.35 0.51 0.33 0.66

CLSRI-PS 0.51 0.74 0.72 0.70

Table 3: Lexical Simplification (LS) performance for
Italian, Spanish, and Portuguese; Semantic Textual
Similarity (STS) performance for Arabic.

LS task (13-17%) over the previous best reported
scores of X-PS as well as over CLSRI-AR.

5.4 Semantic Text Similarity

Evaluation Setup. Finally, we also carry down-
stream evaluation in the semantic textual similarity
(STS) task. The Arabic dataset constructed for Se-
mEval 2017 track 116 (Cer et al., 2017) consists
of sentence pairs scored from 0 (semantic indepen-
dence) to 5 (semantic equivalence). We augment
the training set with all the data for English (trans-
lated with Google Translate) from previous editions
of the shared task. To classify sentence pairs, we
employ the CNN-HTCI model (Shao, 2017). Each
sentence is encoded with a convolutional network
into a hidden representation. Then, the interaction
between the pair of representations is evaluated
as their element-wise multiplication and absolute
difference. A fully connected network takes this
interaction as input, and infers the similarity score.

Results and Analysis. We report the accuracy
scores for the Arabic STS in Table 3. Interestingly,
for STS both X-PS and CLSRI-AR damage the per-
formance of the distributional baseline. However,
the full CLSRI-PS model still shows a substantial
improvement over all baselines. This again sug-
gests its wide stability and effectiveness.

To empirically validate the importance of noisy
constraints refinement (see § 3.1), we have also
evaluated an ablated variant of CLSRI-PS with-
out the refinement step: this model variant relies
only on noisy translations of Ls lexical constraints.
While this variant leads to improvements over the
X-PS baseline across the board, it is consistently
outperformed by the full CSLRI-PS model in down-
stream tasks: e.g., the gains with the full model are
2-3% in the LS task, and 2% in the Arabic STS task.
Since the full CSLRI-PS model does not require

16http://alt.qcri.org/semeval2017/task1/

any additional input for the lexical prediction step
(i.e., it operates with the same set of Ls constraints
as the translation step), these results suggest that
both steps should be applied for improved special-
ization in the target languages.

6 Future Work

As a supplemental benefit of CLSRI, the constraints
induced by translation and pruning hold promise to
create WordNet-style resources for languages that
lack structured linguistic knowledge. While the
relations extracted in this proof-of-concept paper
do not cover the rich and expressive set of Word-
Net relations in its entirety, they are nonetheless
sufficient to create parts of the core WordNet struc-
ture with synsets (synonyms) and lexical relations
across synsets (antonyms) from scratch.

Furthermore, our method is amenable be ex-
tended to contextualized embeddings (Lauscher
et al., 2019) and/or other WordNet lexical rela-
tions such as hypernyms and hyponyms. In recent
works, procedures of retrofitting (Vulić and Mrkšić,
2018) and post-specialization (Kamath et al., 2019)
have been developed for lexical entailment. These
procedures can be easily adapted to the seman-
tic specialization step presented in § 3.2, whereas
constraint translation and refinement (§ 3.1) are
relation-agnostic. We will exploit these directions
in future work.

7 Conclusion

We have proposed a new method for cross-lingual
transfer of semantic specialization via induction
of lexical constraints in a resource-poor target lan-
guage. We have verified its usefulness in intrin-
sic and extrinsic language understanding tasks and
across a spectrum of target languages. We report
consistent improvements over previous state-of-the-
art specialization methods. Crucially, our method
is robust to target languages that are distant from
source languages, as its performance is consistent
across all considered language pairs.
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Goran Glavaš, Robert Litschko, Sebastian Ruder, and
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izing distributional vectors of all words for lexical
entailment. In Proceedings of the 4th Workshop on
Representation Learning for NLP, pages 72–83.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of EMNLP, pages 2044–
2048.

Joo-Kyung Kim, Marie-Catherine de Marneffe, and
Eric Fosler-Lussier. 2016a. Adjusting word embed-
dings with semantic intensity orders. In Proceedings
of the 1st Workshop on Representation Learning for
NLP, pages 62–69.

Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin
Cao, and Ye-Yi Wang. 2016b. Intent detection us-
ing semantically enriched word embeddings. In Pro-
ceedings of SLT.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR (Conference Track).

https://doi.org/10.1007/978-3-662-44848-9_9
https://doi.org/10.1007/978-3-662-44848-9_9
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://doi.org/10.1613/jair.4135
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/W16-2501
https://www.aclweb.org/anthology/W16-2501
http://dl.acm.org/citation.cfm?id=2912097
http://dl.acm.org/citation.cfm?id=2021068
http://dl.acm.org/citation.cfm?id=2021068
https://www.aclweb.org/anthology/C18-1323
https://www.aclweb.org/anthology/C18-1323
https://www.aclweb.org/anthology/C18-1323
http://www.manaalfaruqui.com/papers/thesis.pdf
http://www.manaalfaruqui.com/papers/thesis.pdf
http://www.aclweb.org/anthology/N15-1184
https://mitpress.mit.edu/books/wordnet
https://doi.org/10.1145/503104.503110
https://doi.org/10.1145/503104.503110
https://www.aclweb.org/anthology/N18-2029
https://www.aclweb.org/anthology/N18-2029
https://www.aclweb.org/anthology/N18-2029
https://www.aclweb.org/anthology/P18-1004
https://www.aclweb.org/anthology/P18-1004
https://www.aclweb.org/anthology/P19-1070
https://www.aclweb.org/anthology/P19-1070
https://www.aclweb.org/anthology/P19-1070
http://www.aclweb.org/anthology/P15-2011
http://www.aclweb.org/anthology/P15-2011
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
https://www.springerprofessional.de/simplex-pb-a-lexical-simplification-database-and-benchmark-for-p/16122930
https://www.springerprofessional.de/simplex-pb-a-lexical-simplification-database-and-benchmark-for-p/16122930
http://svr-ftp.eng.cam.ac.uk/~sjy/papers/htyo14.pdf
http://svr-ftp.eng.cam.ac.uk/~sjy/papers/htyo14.pdf
http://svr-ftp.eng.cam.ac.uk/~sjy/papers/htyo14.pdf
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1162/COLI_a_00237
http://www.aclweb.org/anthology/P14-2075
https://www.aclweb.org/anthology/D18-1330
https://www.aclweb.org/anthology/D18-1330
https://www.aclweb.org/anthology/D18-1330
https://www.aclweb.org/anthology/W19-4310
https://www.aclweb.org/anthology/W19-4310
https://www.aclweb.org/anthology/W19-4310
http://aclweb.org/anthology/D15-1242
http://aclweb.org/anthology/D15-1242
https://www.aclweb.org/anthology/W16-1607
https://www.aclweb.org/anthology/W16-1607
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/09/intent-detection-semantically.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/09/intent-detection-semantically.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


2216

Barbara Ann Kipfer. 2009. Roget’s 21st Century The-
saurus (3rd Edition). Philip Lief Group.

Anne Lauscher, Ivan Vulić, Edoardo Maria Ponti,
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ichart, and Anna Korhonen. 2016. Survey on the use
of typological information in natural language pro-
cessing. In Proceedings of COLING, pages 1297–
1308.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.
2015. Word embedding-based antonym detection
using thesauri and distributional information. In
Proceedings of NAACL-HLT, pages 984–989.

Dominique Osborne, Shashi Narayan, and Shay Cohen.
2016. Encoding prior knowledge with eigenword
embeddings. Transactions of the ACL, 4:417–430.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532–
1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak,
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Ó Séaghdha, Steve Young, and Anna Korhonen.
2017b. Morph-fitting: Fine-tuning word vector
spaces with simple language-specific rules. In Pro-
ceedings of ACL, pages 56–68.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
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