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Abstract

User simulators are essential for training rein-
forcement learning (RL) based dialog models.
The performance of the simulator directly im-
pacts the RL policy. However, building a good
user simulator that models real user behaviors
is challenging. We propose a method of stan-
dardizing user simulator building that can be
used by the community to compare dialog sys-
tem quality using the same set of user simu-
lators fairly. We present implementations of
six user simulators trained with different dia-
log planning and generation methods. We then
calculate a set of automatic metrics to eval-
uate the quality of these simulators both di-
rectly and indirectly. We also ask human users
to assess the simulators directly and indirectly
by rating the simulated dialogs and interacting
with the trained systems. This paper presents a
comprehensive evaluation framework for user
simulator study and provides a better under-
standing of the pros and cons of different user
simulators, as well as their impacts on the
trained systems. 1

1 Introduction

Reinforcement Learning has gained more and
more attention in dialog system training because
it treats the dialog planning as a sequential deci-
sion problem and focuses on long-term rewards
(Su et al., 2017). However, RL requires inter-
action with the environment, and obtaining real
human users to interact with the system is both
time-consuming and labor-intensive. Therefore,
building user simulators to interact with the sys-
tem before deployment to real users becomes an
economical choice (Williams et al., 2017; Li et al.,
2016). But the performance of the user simula-
tor has a direct impact on the trained RL policy.

* Equal contribution.
1The code and data are released at https://github.

com/wyshi/user-simulator.

Such an intertwined relation between user simula-
tor and dialog system makes the whole process a
“chicken and egg” problem. This naturally leads
to the question of how different user simulators
impact the system performance, and how to build
appropriate user simulators for different tasks.

In previous RL-based dialog system literature,
people reported their system’s performance, such
as success rate, on their specific user simulators
(Liu and Lane, 2017; Shi and Yu, 2018), but the
details of the user simulators are not sufficient to
reproduce the results. User simulators’ quality can
vary in multiple aspects, which could lead to un-
fair comparison between different trained systems.
For instance, RL systems built with more compli-
cated user simulators will have lower scores on the
automatic metrics, compared to those built using
simpler user simulators. However, the good per-
formance may not necessarily transfer when the
system is tested by real users. In fact, models that
have a low score but are trained on better simula-
tors may actually perform better in real situations
because they have experienced more complex sce-
narios. In order to obtain a fairer comparison be-
tween systems, we propose a set of standardized
user simulators. We pick the popular restaurant
search task from Multiwoz (Budzianowski et al.,
2018) and analyze the pros and cons of different
user simulator building methods.

The potential gap between automatic metrics
and real human evaluation also makes user sim-
ulator hard to build. The ideal evaluator of a
dialog system should be its end-users. But as
stated before, to obtain real user evaluation is
time-consuming. Therefore, many automatic met-
rics have been studied to evaluate a user simula-
tor (Pietquin and Hastie, 2013; Kobsa, 1994) from
different perspectives. However, we do not know
how these automatic metrics correlate with human
satisfaction. In this paper, we ask human users to

https://github.com/wyshi/user-simulator
https://github.com/wyshi/user-simulator
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both rate the dialogs generated by the user simu-
lators, and interact with the dialog systems trained
with them, in order to quantify the gap between
the automatic metrics and human evaluation.

This paper presents three contributions: first,
we annotate the user dialog acts in the restau-
rant domain in Multiwoz 2.0; second, we build
multiple user simulators in the standard restaurant
search domain and publish the code to facilitate
further development of RL-based dialog system
training algorithms; third, we perform comprehen-
sive evaluations on the user simulators and trained
RL systems, including automatic evaluation, hu-
man rating simulated dialogs, human interacting
with trained systems and cross study between sim-
ulators and systems, to measure the gap between
automatic dialog completion metrics with real hu-
man satisfaction, and provide meaningful insights
on how to develop better user simulators.

2 Related work

One line of prior user simulator research focuses
on agenda-based user simulator (ABUS) (Schatz-
mann et al., 2006, 2007; Schatzmann and Young,
2009; Li et al., 2016) and it is most commonly
used in task-oriented dialog systems. An agenda-
based user simulator is built on hand-crafted rules
according to an agenda provided at the beginning
of a dialog. This mechanism of ABUS makes it
easier to explicitly integrate context and agenda
into the dialog planning. Schatzmann and Young
(2009) presented a statistical hidden agenda user
simulator, tested it against real users and showed
that a superior result in automatic metrics does not
guarantee a better result in the real situation. Li
et al. (2016) proposed an agenda-based user simu-
lator in the movie domain and published a generic
user simulator building framework. In this work,
we build a similar agenda-based user simulator in
the restaurant domain, and focus more on analyz-
ing the effects of using different user simulators.

However, it’s not feasible to build agenda-based
user simulators for more complex tasks without an
explicit agenda. Therefore, people have also stud-
ied how to build user simulators in a data-driven
fashion. He et al. (2018) fit a supervised-learning-
based user simulator to perform RL training on a
negotiation task. Asri et al. (2016) developed a
seq2seq model for user simulation in the restau-
rant search domain, which took the dialog con-
text into consideration without the help of external

data structure. Kreyssig et al. (2018) introduced
the Neural User Simulator (NUS) which learned
user behaviour from a corpus and generates nat-
ural language directly instead of semantic output
such as dialog acts. However, unlike in ABUS,
how to infuse the agenda into the dialog planning
and assure consistency in data-driven user simula-
tors has been an enduring challenge. In this paper,
we present a supervised-learning-based user simu-
lator and integrate the agenda into the policy learn-
ing. Furthermore, we compare such a data-driven
method with its agenda-based counterpart.

Another line of user simulator work treats the
user simulator itself as a dialog system, and train
the simulator together with the RL system itera-
tively (Liu and Lane, 2017; Shah et al., 2018).
Shah et al. (2018) proposed the Machines Talk-
ing To Machines (M2M) framework to bootstrap
both user and system agents with dialog self-play.
Liu and Lane (2017) presented a method for iter-
ative dialog policy training and address the prob-
lem of building reliable simulators by optimizing
the system and the user jointly. But such itera-
tive approach requires extra effort in setting up RL
and designing reward for the user simulator, which
may result in the two agents exploiting the task,
and leads to numerical instability.

Another challenging research question is how
user simulator performance can be evaluated
(Schatztnann et al., 2005; Ai and Litman, 2011a,b;
Engelbrecht et al., 2009; Hashimoto et al., 2019).
Pietquin and Hastie (2013) conducted a compre-
hensive survey over metrics that have been used
to assess user simulators, such as perplexity and
BLEU score (Papineni et al., 2002). However,
some of the metrics are designed specifically for
language generation evaluation, and as Liu et al.
(2016) pointed out, these automatic metrics barely
correlate with human evaluation. Therefore, Ai
and Litman (2011a) involved human judges to di-
rectly rate the simulated dialog. Schatzmann and
Young (2009) asked humans to interact with the
trained systems to perform indirect human eval-
uation. Schatztnann et al. (2005) proposed cross-
model evaluation to compare user simulators since
human involvement is expensive. We combine the
existing evaluation methods and conduct compre-
hensive assessments to measure the gap between
automatic metrics and human satisfaction.



1992

3 Dataset

We choose the restaurant domain in Multiwoz 2.0
(Budzianowski et al., 2018) as our dataset, because
it’s the most classic domain in task-oriented dia-
log systems. The system’s task is to help users
find restaurants, provide restaurant information
and make reservations. There are a total of 1,310
dialogs annotated with informable slots (e.g. food,
area) that narrow downs the restaurant choice,
and requestable slots (e.g. address, phone) that
track users’ detailed requests about the restaurant.
But because the original task in Multiwoz was to
model the system response, it only contains dia-
log act annotation on the system-side but not on
the user-side. To build user simulators, we need
to model user behaviors, and therefore, we anno-
tate the user intent in Multiwoz. In order to build
user simulators, we need to model user behavior
and therefore, we annotate the user-side dialog act
in the restaurant domain of Multiwoz. Two hu-
man expert annotators analyze the data and agree
on a set of seven user dialog acts (UserActs):
“inform restaurant type”, “inform restaurant type
change”, “anything else”, “request restaurant
info”, “make reservation”, “make reservation
change time”, and “goodbye”. Because the data is
relatively clean and constrained in domain, the an-
notation is performed by designing regular expres-
sion first and cleaned by human annotators later.
We manually checked 10% of the data (around 500
utterances) and the accuracy for automatic annota-
tions is 94%. These annotated user dialog acts will
serve as the foundation of the user simulator action
space UserActs. The annotated data is released to
facilitate user simulator study.

4 User Simulator Design

According to Li et al. (2016), user simulator
building eventually boils down to two important
tasks: building 1) a dialog manager (DM) (Hen-
derson et al., 2014; Cuayáhuitl et al., 2015; Young
et al., 2013) that governs the simulator’s next
move; and 2) a natural language generation mod-
ule (NLG) (Tran and Nguyen, 2017; Dušek and
Jurčı́ček, 2016) that translates the semantic out-
put from dialog manager into natural language.
The user simulator can adopt either agenda-based
approach or model-based approach for the dia-
log manager. While for NLG, the user simula-
tor can use the dialog act to select pre-defined
templates, retrieve user utterances from previously

collected dialogs, or generate the surface form ut-
terance directly with pre-trained language model
(Jung et al., 2009).

The dialog manager module ensures the intrin-
sic logical consistency of the user simulator, while
the NLG module controls the extrinsic language
fluency. DM and NLG play an equally important
role in the user simulator design and must go hand-
in-hand to imitate user behaviours. Therefore, we
propose to test different combinations of DM and
NLG methods to answer the question of how to
build the best user simulator.

In task-oriented dialog systems, the user simu-
lator’s task is to complete a pre-defined goal by
interacting with the system. Multiwoz provides
detailed goals for each dialog, which serves as
the goal database. These goals consist of sub-
tasks, such as request information or make reser-
vation. An example goal is, “You’re looking for
an Italian restaurant in the moderate price range
in the east. Once you find the restaurant, you
want to book a table for 5 people at 12:15 on
Monday. Make sure you get the reference num-
ber.” During initial RL experiments, we find that
similar to supervised learning, the data imbalance
in goals will impact the reinforce learning in the
simulated tasked-oriented dialog setting. We find
that 2/3 of the goals contain the sub-task “ask
info” and the rest 1/3 are about “make reserva-
tion”. Because the user simulators are all goal-
driven, the RL policy is only able to experience
the “reservation” scenario 1/3 of the time on av-
erage, which will result in the model favoring the
“ask info” scenario more, especially in the early
training stage. This further misleads the policy (Su
et al., 2017). Therefore, we augment the goal set
with more “make reservation” sub-task from Mul-
tiWoz to make the sub-tasks of “make reservation”
and “ask info” even. This augmented goal set with
more even distribution serves as our goal database.
We randomly sample a goal from the goal database
during training. A user goal defines the agenda the
user simulator needs to follow, so we’ll use “goal”
and “agenda” interchangeably in this paper.

4.1 Dialog Manager

Agenda-based We employ the traditional agenda-
based stack-like user simulator (Schatzmann and
Young, 2009; Li et al., 2016), where the dialog
manager chooses a dialog act among the user dia-
log act set UserActs mentioned in Section 3. The
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dialog act transition is governed by hand-set rules
and probabilities based on the initial goal. For
example, after the system makes a recommenda-
tion, the user can go on to the next sub-task, or
ask if there is another option. Fig. 1 shows a typ-
ical agenda. Because the restaurant task is a user-
initiated task, agenda-based simulator’s first dia-
log act is always “inform restaurant type”. The di-

Figure 1: An example user agenda for the restaurant
task

alog history is managed with the user dialog state
by pushing and popping important slots to ensure
consistency. Although the restaurant search task
is simple, designing an agenda-based system for
the task is non-trivial, because there are many cor-
ner cases to be handled. However, the advantage
of building agenda-based system is that it does not
require thousands of annotated dialogs.
Model-based It requires specific human expertise
to design rules for agenda-based user simulators
(compared to more easily accessible annotation),
and the process is both labor-intensive and error-
prone. Moreover, for complicated tasks such as
negotiation, it is not practical to design rules in
the policy (He et al., 2018). Therefore, we ex-
plore the possibility of building dialog manager
with supervised learning methods. Compared to
agenda-based simulators which require special ex-
pert knowledge, supervised learning methods re-
quire less expert involvement. We utilize Sequic-
ity (Lei et al., 2018) to construct model-based
user simulator. Sequicity is a simple seq2seq di-
alog system model with copy and attention mech-
anism. It also used belief span to track the dia-
log states. For example, inform:{Name:“Caffee
Uno”; Phone:“01223448620”} records the in-
formation that the system offers and this would
be kept in belief span throughout the dialog,
while request:{“food”, “price range”} means
the system is asking for more information from

Figure 2: The end-to-end simulator and user dialog act
predictor share the most part of their model, colored in
black, except the decoder. All the parameters colored
in red are related to the dialog act predictor and the
parameters in blue color are for sentence decoder.

user to locate a restaurant, which would be re-
moved from belief span once the request is ful-
filled. There are 13 types of system dialog
acts. To focus on the valuable information to
fit the model, we combine these dialog acts
into 5 categories: {“inform”,“request”,“book
inform”,“select”, “recommend”}. Similarly,
we define three types of user goals “in-
form”,“request” and “book”, and record them in
belief span, denoted as G. So, at time t, we first
update belief span with a seq2seq model, based on
current system response Rt, previous belief state
Bt�1 and previous user utterance Ut�1:

Bt = seq2seq(Bt�1, Ut�1, Rt)

Then we incorporate user goal and the context
above to generate current user utterance:

Ut = seq2seq(Bt�1, Ut�1, Rt|Bt, G)

As illustrated in Fig. 2, we build a GRU-based
encoder for all the Bt�1, Ut�1, Rt and the goal
G. Then we decode the current belief span and
user utterance separately. Both decoders are a one-
layer GRU with copy and attention mechanism. To
evaluate the dialog manager alone, we also modify
the Sequicity’s second decoder to generate system
dialog act (At) instead of system utterances.

At = seq2seq(Bt�1, Ut�1, Rt|Bt, G)

4.2 Natural Language Generation
Dialog act-based NLG is formalized as Ut =
M(At), where At is the selected dialog act by the
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dialog manager, Ut is the generated user utterance.
We describe three different dialog-act-based NLG
methods.
Template Template method requires human ex-
perts to write a variety of delexicalized templates
for each dialog act. By searching in the templates,
it translates At into human-readable utterances.
The quality of the templates have direct impact on
the NLG quality.
Retrieval Template method suffers from limited
vocabulary size and language diversity. An alter-
native method is Retrieval-based NLG (Wu et al.,
2016; Hu et al., 2014). The model retrieves user
utterances with At as their dialog act in the train-
ing dataset. Following He et al. (2018), we rep-
resent the context by a TF-IDF weighted bag-of-
words vector and compute the similarity score be-
tween the candidate’s context vector and the cur-
rent context vector to retrieval Ut.
Generation Generation method (Wen et al.,
2015a,b) does not need expert involvement to
rewrite templates, but requires dialog act annota-
tion similar to retrieval method. We build a vanilla
seq2seq (Sutskever et al., 2014) model using the
annotated data adding At in the input.

5 Dialog System Training Setting

Traditionally, hand-crafted dialog acts plus slot
values are used as the discrete action space in RL
training (Raux et al., 2005). Dialog action space
can also be on the word-level. However, previ-
ous study shows degenerate behavior when using
word-level action space (Zhao et al., 2019), as it
is difficult to design a reward. We choose the
first approach and use the discrete action space
with six system dialog acts: “ask restaurant type”,
“present restaurant search result”, “provide restau-
rant info”, “ask reservation info”, “inform reserva-
tion result”, “goodbye”. Simple action masks are
applied to avoid impossible actions such as mak-
ing reservation before presenting a restaurant.

We use a 2-layer bidirectional-GRU with 200
hidden units to train a NLU module. For sim-
plicity, we use the template-based method in the
system’s NLG module. We used policy gradient
method to train dialog systems (Williams, 1992).
During RL training, a discounted factor of 0.9 is
applied to all the experiences with the maximum
number of turns to be 10. We also apply the ✏-
greedy exploration strategy (Tokic, 2010). All the
RL systems use the same RL state representation,

which consists of traditional dialog state and word
count vector of the current utterance. The same
reward function is used, which is +1 for task suc-
cess, �1 for task failure and �0.1 for each addi-
tional turn to encourage the RL policy to finish the
task faster rather than slower. We fix the RL model
every 1,000 episodes and test for 100 dialogs to
calculate the average success rate, shown in Fig. 3.

Besides RL systems, we also build a rule-based
system Rule-System, which serves as the third-
party system to interact with each user simulator
and generate simulated dialogs for human evalu-
ation. The only difference between Rule-System
and the RL-based systems is their policy selec-
tion module, where Rule-System uses hand-crafted
rules while RL-based systems use RL policy.

6 User Simulator Evaluation

Evaluating the quality of a user simulator is an en-
during challenge. Traditionally, we report direct
automatic metrics of the user simulator, such as
perplexity (Ai and Litman, 2011b; Pietquin and
Hastie, 2013). Besides, the performance of the RL
system trained with a specific simulator gives us
an indirect assessment of the user simulator’s abil-
ity to imitate user behaviours.

The ultimate goal of the user simulator is to
build a task-oriented RL system to serve real users.
Therefore, the most ideal evaluation should be
conducted by human. Therefore, we first asked
human to read the simulated dialogs and rate the
user simulator’s performance directly. We then
hired Amazon Mechanic Turkers (AMT) to inter-
act with the RL systems trained with different sim-
ulators and rate their performance. Besides, we
also performed cross study between user simula-
tors and systems trained with different simulators
to see if the systems’ performance can be trans-
ferred to a different simulated setting. Finally, we
measure the gap between the automatic metrics
and human evaluation scores, and share insights
on how to evaluate user simulator effectively.

6.1 Automatic Evaluation

Perplexity (Direct) Perplexity measures the lan-
guage generation quality of the user simulator.
The results are shown in Table 1. For each simula-
tor model, we generate 200 dialogs with the third-
party Rule-System and train a trigram language
model with the data. Then we test the model and
compute the perplexity with 5000 user utterances
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Simulators NLU DM NLG PPL Vocab Utt Hu.Fl Hu.Co Hu.Go Hu.Div Hu.All
Agenda-Template (AgenT) SL Agenda Template 10.32 180 9.65 4.07 4.56 4.88 2.4 4.50
Agenda-Retrieval (AgenR) SL Agenda Retrieval 33.90 383 11.61 3.50 4.22 4.58 3.9 3.74

Agenda-Generation (AgenG) SL Agenda Generation 7.49 159 8.07 3.32 3.92 4.64 2.5 3.36
SL-Template (SLT) SL Template 9.32 192 9.83 4.80 4.80 4.98 2.6 4.74
SL-Retrieval (SLR) SL Retrieval 29.36 346 11.06 4.40 3.99 4.88 4.3 4.01
SL-End2End (SLE) End-to-End 13.47 205 10.95 3.32 2.62 3.18 2.7 2.64

Table 1: Automatic metrics and human evaluation scores of different user simulators. Automatic metrics include,
perplexity per word (PPL), vocabulary size (Vocab), average utterance length (Utt). Human evaluation metrics
include, sentence fluency (Hu.Fl), coherent (Hu.Co), goal adherence (Hu.Go), language diversity (Hu.Div) and
overall score (Hu.All).

sampled from MultiWoz. Although the perplexity
for retrieval models is the highest in both agenda-
based and SL-based simulators, it also possesses
the biggest vocabulary set and the longest av-
erage utterance length. Another common auto-
matic metrics used to assess the language model
is BLEU, but since this is a user simulator study
and we don’t have ground truth, BLEU score is
not available.
Vocabulary Size (Direct) Vocabulary size is a
simple and straightforward metric that measures
the language diversity. As expected, retrieval-
based models have the biggest vocabulary set.
However, Agenda-Generation has the smallest vo-
cabulary set. The possible reason behind is that we
adopt a vanilla greedy seq2seq that suffers from
generating the most frequent words. SL-End2End
in Table 1 trains the NLU, DM and NLG jointly,
and therefore, the vocabulary size is slightly larger
than the template-based methods.
Average utterance length (Direct) Average utter-
ance length is another simple metric to assess the
language model and language diversity. As ex-
pected, retrieval-based methods are doing the best,
but SL-End2End is also doing a good job in gen-
erating long sentences.
Success Rate (Indirect) The success rate is the
most commonly used metric in reporting RL di-
alog system performance. Also, it can reflect
the user simulator’s certain behaviour. The suc-
cess rate of various user simulators are shown in
Fig. 3. SL-based user simulators converge faster
than rule-based simulators. It can be explained by
the observation that SL tries to capture the ma-
jor paths in the original data, and counts those
as success, instead of exploring all the possible
paths like in the agenda-based simulators. In gen-
eral, retrieval-based simulators converge slower
than other NLG methods because retrieval-based
approach has a bigger vocabulary size.

Figure 3: Average success rate during RL training.

6.2 Human Direct Evaluation
The direct evaluation of the user simulator is con-
ducted by asking 10 volunteers to read the sim-
ulated dialogs between different simulators and
the third-party Rule-System. Each of the 10 vol-
unteers would rate five randomly-selected dialogs
generated from each model, and the average of
the total 50 ratings is reported as the final human-
evaluation score. The Rule-System is built solely
based on hand-crafted rules with no knowledge
about any of the simulators, and therefore is fair to
all of them. We design four metrics to assess the
user simulator’s behaviour from multiple aspects.
The results are shown in Table 1.
Fluency focuses on the language quality, such as
grammar, within each utterance unit. Agenda-
Template (AgenT) and SL-Template (SLT) re-
ceived the two highest fluency scores because the
templates are all written by human.
Coherence focuses on the relation quality be-
tween different turns within one dialog. SL-
Template (SLT) simulator performs the best in co-
herence, but agenda-based simulators in general
are a bit more coherence than SL-based ones.
Goal Adherence focuses on the relation between
the goal and the simulator-generated utterances.
Both agenda-based and SL-based simulators in
general stick to the goal with the exception of
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RL System Solved Ratio Satisfaction Efficiency Naturalness Rule-likeness Dialog Length Auto Success
Sys-AgenT 0.814 ±0.06 4.29 ±0.20 4.35 ±0.21 3.96 ±0.23 4.49 ±0.15 8.95 ±0.38 0.983 ±0.01
Sys-AgenR 0.906 ±0.05 4.52 ±0.15 4.45 ±0.16 4.23 ±0.19 4.59 ±0.14 8.73 ±0.31 0.925 ±0.02
Sys-AgenG 0.904 ±0.05 4.38 ±0.18 4.46 ±0.19 4.33 ±0.17 4.51 ±0.16 9.48 ±0.45 0.980 ±0.01
Sys-SLT 0.781 ±0.07 3.87 ±0.22 3.81 ±0.22 3.63 ±0.22 4.08 ±0.21 9.61 ±0.76 0.978 ±0.01
Sys-SLR 0.823 ±0.05 4.23 ±0.20 4.20 ±0.10 3.99 ±0.20 4.42 ±0.17 8.92 ±0.70 0.965 ±0.01
Sys-SLE 0.607 ±0.06 3.42 ±0.22 3.41 ±0.23 3.59 ±0.20 4.22 ±0.20 9.44 ±0.69 0.798 ±0.03

Table 2: Human evaluation of RL systems trained with different simulators on AMT with 95% confidence intervals.
Each row represents one RL system, e.g. Sys-AgenT means the RL system trained with the AgenT simulator.

SL-End2End (SLE). This may be because SLE
is training all the modules together and thus has
more difficulty infusing the goal.
Diversity focuses on the language diversity be-
tween simulated dialogs of the same simulator.
Each simulator will be given one diversity score.
Retrieval-based methods surpass other methods in
diversity, but it is not as good in fluency, while
template-based methods outperform in fluency but
suffer on diversity as expected. Generative meth-
ods suffer from generating generic sentences as
mentioned before.
Overall We ask the human to rate the overall sim-
ulator quality. Except for SL-End2End, SL-based
methods are favoured by human over agenda-
based methods. Agenda-Template is comparable
to SL-based simulators because of its fluent re-
sponses and carefully-designed policy.

6.3 Human Indirect Evaluation on AMT

The ultimate goal of user simulator building is
to train better system policies. Automatic met-
rics such as success rate can give us a sense on
the system’s performance, but the ultimate evalua-
tion should be conducted on human so that we can
know the real performance of the system policy
when deployed.

Motivated by this, we tested the RL systems
trained with various user simulators on Amazon
Mechanical Turk (AMT) (Miller et al., 2017), and
asked Turkers to interact with the system and ob-
tained their opinions. Each system is tested on 100
Turkers. The results are shown in Table 2. The
AMT interface is in the Appendix.

We also listed two common automatic metrics
in Table 2 to compare. The “Dialog Length”
column shows the average dialog length of the
Turker-Machine dialogs, which reflects the sys-
tem’s efficiency to some extent. The “Auto
Success” column represents the automatic suc-
cess rate. It’s the convergent success rate from
Fig. 3, measured by freezing the policy and test-

ing against the user simulator for 100 episodes.
Previous approaches have utilized these two auto-
matic metrics to evaluate the system’s efficiency
and success (Williams et al., 2017; Shi et al.,
2019), but we find that due to user individual dif-
ference, such automatic metrics have relatively
big variances and don’t always correlate with ef-
ficiency perceived by human. For example, some
users tend to provide all slots in one turn, while
others provide slots only when necessary; some
users would even go off-the-script and ask about
restaurants not mentioned in the goal. Therefore,
we should caution against relying solely on the
automatic metrics to represent user opinion and
the best way is to ask the users directly for their
thoughts on the system’s performance from multi-
ple aspects as follows.

Solved Ratio. Each Turker is given a goal at
the beginning, the same as in the simulated set-
ting. At the end of the dialog, we ask the Turker
if the system has solved his/her problem. There
are three types of answers to this question, “Yes”
is coded as 1, “Partially solved” is coded as 0.5,
and “No” is coded as 0. Sys-AgenR is the sys-
tem trained with the Agenda-Retrieval (AgenR)
simulator and it received the highest score, bet-
ter than the Sys-AgenT trained with the AgenT
simulator, which is reasonable because through
retrieval, Agenda-Retrieval (AgenR) simulators
present more language diversity to the system dur-
ing training. When interacting with a real user,
the systems that can handle more language vari-
ations will do better.The SL-based simulators re-
ceived relatively low scores. Further investigation
on this cause is presented in the discussion section.

“Auto-Success” has been used to reflect the
solved ratio previously. However, it’s not neces-
sarily correlated with the user-rated solved ratio.
For example, Sys-AgenG’s Auto-Success rate is
much higher than Sys-AgenR’s Auto Success rate,
but the users think that these two systems perform
the same in terms of Solved Ratio.
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Usr\Sys Sys-AgenT Sys-AgenR Sys-AgenG Sys-SLT Sys-SLR Sys-SLE
AgenT 0.975 0.960 0.790 0.305 0.300 0.200
AgenR 0.540 0.900 0.785 0.230 0.230 0.235
AgenG 0.725 0.975 0.950 0.355 0.300 0.20

SLT 0.985 0.985 0.985 0.990 0.965 0.730
SLR 0.925 0.975 0.965 0.975 0.935 0.630
SLE 0.770 0.820 0.815 0.840 0.705 0.770

Average 0.820 0.935 0.882 0.616 0.573 0.461

Table 3: Cross study results. Each row represents one user simulator, each column represents one RL system
trained with a specific simulator. Each entry shows the average success rate obtained by having the user simulator
interacting with the RL system for 200 times.

Satisfaction. Solving the user’s problem doesn’t
necessarily lead to user satisfaction sometimes. It
also depends on the system’s efficiency and la-
tency. Therefore, besides Solved Ratio, we also
directly ask Turkers how satisfied they are with the
system. The result shows that among all systems,
Sys-AgenR model received the highest score. The
positive correlation between the “Solved Ratio”
and “Satisfaction” in Table 1 also indicates auto-
matic task completion rate is a good estimator for
user satisfaction.
Efficiency. We directly ask Turkers how efficient
the system is in solving their problems since dia-
log length doesn’t always correlate with the sys-
tem efficiency. For example, although the dialog
length of Sys-AgenG and Sys-SLE are similar to
each other, users rated Sys-AgenG to be the most
efficient one and Sys-SLE to be the most ineffi-
cient one. Again we suspect this is caused by
different user communication pattern where some
users prefer providing slots across multiple turns
while others prefer providing all slots in one turn.
Naturalness. We ask the Turkers to rate the nat-
uralness of the system responses. All the systems
share the same template-based NLG module de-
signed by human experts, thus there shouldn’t be
a significant difference in the naturalness score.
However, according to Table 2, we find that the
naturalness score seems to correlate with the over-
all system performance. A possible reason is that
the end-user is rating the system’s naturalness by
the overall performance instead of the system re-
sponses alone. When the dialog policy is bad, even
if the NLG module can generate natural system re-
sponses, the users would still think the system is
unnatural. This suggests that when designing di-
alog systems, NLG and policy selection modules
should go hand-in-hand in evaluation.
Rule-likeness We also ask the users to what ex-

tend they think the system is designed by hand-
crafted rules on a scale from 1 to 5, five means
it is heavily handcrafted. Among all the models,
Sys-SLT that is trained with the SL-Template sim-
ulator receives the lowest score, meaning it’s the
least rigid system. This is because SL-Template’s
dialog manager is learned with supervised learn-
ing, less rigid than the agenda-based dialog policy,
which further leads to a less rigid behaviour of the
trained dialog system.

6.4 Cross Study of Simulators and Systems
From the last column in Table 2, we find that al-
though the automatic success rates claimed by the
user simulator used to train the system are all rela-
tively high, the high automatic success rate doesn’t
transfer to real human satisfaction. In our setting,
each simulator can be viewed as a new user with
different communicating habits; therefore, we are
curious to see if the performance can transfer to
a different simulator when we test the RL system
trained with simulator A against simulator B. Ta-
ble 3 shows a cross study between the six user
simulators and the six systems trained with dif-
ferent simulators, where we fix the systems, have
each simulator interact with each system for 200
episodes, and calculate the average success rate.
The diagonal should reflect the “Auto Success”
column in Table 2, but since the 200 episodes are
random and the “Auto Success” is the convergent
success rate, the exact number won’t be the same.

The last row in Table 3 shows the average
success rate of each system across user simula-
tors. There are some interesting findings. 1) Sys-
AgenR that is trained with the Agenda-Retrieval
simulator has the best average success rate, which
agrees with the human evaluation on MTurk. 2)
A common practice to compare RL systems S1, ...
Sn is to fix one user simulator U and then com-
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Figure 4: Correlation between sentence fluency and
perplexity, and correlation between sentence diversity
and perplexity. Green circles represent the human rated
score, while the blue squares are the average score over
different raters.

pare the success rate of S1, ..., Sn on U . However,
by looking at the fifth row for the SL-Retrieval
simulator, it will prefer Sys-SLT (0.975) over Sys-
AgenG (0.965), but actually the average perfor-
mance of Sys-AgenG (0.882) is better than Sys-
SLT (0.616) from the last row. This suggests that
when we want to compare two systems but don’t
have the resource to do human evaluation on the
system performance, instead of solely comparing
their success rates tested on one simulator, we
should build different types of user simulators and
test the systems against multiple simulators to get
a more holistic view of the systems. 3) The diago-
nal in the table is usually the highest, meaning that
RL policy does a good job optimizing for its own
simulator but may not generalize to other user sim-
ulators. For example, the upper right corner per-
forms the worst because the systems trained with
SL-based simulators are worse in general, whose
reason we will discuss later.

6.5 Human Correlation Study

To test if the automatic metrics can reflect hu-
man evaluation, we compute the correlation be-
tween perplexity (PPL) and human evaluated flu-
ency (Hu.Fl) and the correlation between perplex-
ity and human evaluated diversity score (Hu.Div),
which are �0.21 with p > 0.05 and 0.95 with
p = 0.003 respectively. We also visualize these
metrics in Fig. 4. It shows that as an automatic
metric, perplexity is a good estimator for language
diversity but not for language fluency.

7 Discussion and Future Work

SL-based simulators perform relatively worse than
Agenda-based simulators when interacting with
real users. We investigate the data and find it’s
caused by SL-based simulators not exploring all
possible paths. We draw the different dialog act

Figure 5: Dialog act distribution comparison. Act1 to
Act7 corresponds to the seven user dialog acts, “inform
restaurant type”, “inform restaurant type change”,
“ask info”, “make reservation”, “make reservation
change time”, “anything else”, and “goodbye”

distributions on simulated conversations in Fig. 5.
For example, in agenda-based simulators, we ex-
plicitly have a rule for the dialog act “anything
else” (Act6 in Fig. 5) but no such rules exist in SL-
based simulators. Therefore, the RL model will
experience the “anything else” scenario more in
Agenda-based simulators than in SL-based simu-
lators. When real users ask about “anything else”,
RL systems trained with Agenda-based simula-
tors will have more experiences in handling such a
case, compared to systems trained with SL-based
simulators.

In this paper, we perform in-depth studies on the
restaurant domain as it’s the most well-studied do-
main in task-oriented dialog systems, yet there’s
still no standard user simulator available. In the
future we plan to include more domain using vari-
ous domain-adaptive methods (Qian and Yu, 2019;
Tran and Nguyen, 2018; Gašić et al., 2017) to sup-
port multi-domain dialog system research, and in-
corporate our work into more and more standard-
ized dialog system platforms (Lee et al., 2019).

8 Conclusions

User simulators are essential components in train-
ing RL-based dialog systems. However, building
user simulators is not a trivial task. In this pa-
per, we surveyed through different ways to build
user simulators at the levels of dialog manager
and NLG, and analyzed the pros and cons of each
method. Further, we evaluated each simulator with
automatic metrics and human evaluations both di-
rectly and indirectly, and shared insights on better
user simulator building based on comprehensive
analysis.
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