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Abstract

Goal-oriented dialogue systems are now be-
ing widely adopted in industry where it is of
key importance to maintain a rapid prototyp-
ing cycle for new products and domains. Data-
driven dialogue system development has to be
adapted to meet this requirement — therefore,
reducing the amount of data and annotations
necessary for training such systems is a cen-
tral research problem.

In this paper, we present the Dialogue Knowl-
edge Transfer Network (DiKTNet), a state-
of-the-art approach to goal-oriented dialogue
generation which only uses a few example
dialogues (i.e. few-shot learning), none of
which has to be annotated. We achieve this
by performing a 2-stage training. Firstly, we
perform unsupervised dialogue representation
pre-training on a large source of goal-oriented
dialogues in multiple domains, the MetaLWOz
corpus. Secondly, at the transfer stage, we
train DiKTNet using this representation to-
gether with 2 other textual knowledge sources
with different levels of generality: ELMo en-
coder and the main dataset’s source domains.

Our main dataset is the Stanford Multi-
Domain dialogue corpus. We evaluate our
model on it in terms of BLEU and Entity F1
scores, and show that our approach signifi-
cantly and consistently improves upon a se-
ries of baseline models as well as over the
previous state-of-the-art dialogue generation
model, ZSDG. The improvement upon the lat-
ter — up to 10% in Entity F1 and the average
of 3% in BLEU score — is achieved using
only 10% equivalent of ZSDG’s in-domain
training data.

1 Introduction

Machine learning-based dialogue systems, while
still being a relatively new research direction, are
experiencing increasingly wide adoption in indus-
try. Large-scale dialogue assistant platforms such

as Google Assistant, Amazon Alexa, and Apple
Siri provide a unified conversational user inter-
face (CUI) for third-party applications and ser-
vices. Furthermore, products like Google Di-
alogflow, Wit.ai, Microsoft LUIS, and Rasa offer
means for rapid development of a dialogue sys-
tem’s core modules. In addition, with the re-
cently adopted technique of training dialogue sys-
tems end-to-end data-efficiency of such systems
becomes the key question in their adoption in
practical applications. Currently, while being ex-
tremely flexible and requiring little to no program-
ming of in-domain business logic (see e.g. Ultes
et al. (2018); Wen et al. (2017); Rojas-Barahona
et al. (2017)), such systems have too high data
consumption — including both collection and an-
notation effort — in order for them to be used
in rapidly paced industrial product cycles. There-
fore, approaches to training such systems with ex-
tremely limited data (i.e. zero-, one- and few-shot
training) are a priority research direction in the di-
alogue systems area.

In this paper, we present the Dialogue Knowl-
edge Transfer Network (or DiKTNet), a generative
goal-oriented dialogue model designed for few-
shot learning, i.e. training only using a small num-
ber of complete in-domain dialogues. The key un-
derlying concept of this model is transfer learn-
ing: DiKTNet makes use of the latent text rep-
resentation learned from several sources ranging
from large-scale general-purpose textual corpora
to similar dialogues in the domains different to the
target one. We use the evaluation framework of
Zhao and Eskénazi (2018) and the same dataset,
and mainly compare our approach to theirs. While
their method doesn’t require complete in-domain
dialogues and uses annotated utterances instead
(and is therefore described as “zero-shot”), we
show that our model achieves superior perfor-
mance with roughly the same amount of data (with
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respect to in-domain utterances) while requiring
no annotations whatsoever.

Figure 1: DI-VAE and DI-VST (DiKTNet Stage 1)

2 Related Work

The problem of data efficiency of dialogue sys-
tems has been extensively researched in the past.
Starting with domain adaptation of a dialogue state
tracker (Henderson et al., 2014) approached using
Bayesian Processes (Gasic et al., 2017) and Recur-
rent Neural Networks (Mrksic et al., 2015), there
has been significant work on training different di-
alogue system components using as little data as
possible. As such, Williams et al. (2017) intro-
duced a dialogue management model designed for
bootstrapping from limited training data and fur-
ther fine-tuning. A recent paper by Vlasov et al.
(2018) introduced a dialogue management model
which uses a unified embedding space for user
and system turns allowing efficient cross-domain
knowledge transfer.

There also exist approaches to end-to-end dia-
logue generation. Eshghi et al. (2017) proposed a
linguistically informed model based on an incre-
mental semantic parser (Eshghi et al., 2011) com-
bined with a reinforcement learning-based agent.
The parser was used for both maintaining the
agent’s state and pruning the agent’s incremen-
tal, word-level generation actions (only the actions
leading to syntactically correct word sequences
were allowed for the agent to take). While outper-
forming end-to-end dialogue models on bAbI Di-
alog Tasks in a zero-shot setup (Shalyminov et al.,
2017) due to its prior linguistic knowledge in the

form of a dialogue grammar, this method inher-
ited the limitations of it as well. Specifically, it’s
limited to a single domain until a wide-coverage
grammar is available.

Meta-learning has also gained a lot of attention
as a way to train models for maximally efficient
adaptation to new data. As such, Qian and Yu
(2019) presented such approach for fast adapta-
tion of a dialogue model to a new domain. While
highly promising, its main result was achieved on
a synthetic dataset and would ideally need more
testing on real data.

Finally, the method we directly compare our
approach to is that of Zhao and Eskénazi (2018)
who introduced the Zero-Shot Dialogue Genera-
tion (ZSDG) task and the corresponding model. In
their work, they use a unified latent space for user
utterances, system turns, and domain descriptions
in the form of utterance-annotation pairs. Since
they only used such utterances and no full dia-
logues for the target domain, they presented this
approach as “zero-shot” learning. In our approach,
we do use complete in-domain dialogues, but with
significantly less data with respect to the number
of in-domain utterances. Moreover, our method
requires no annotation whatsoever.

Recent research in Natural Language Process-
ing has shown that the transfer of text representa-
tion learned on larger data sources benefits target
models’ performance, just as was the case with
ImageNet-based computer vision models (Deng
et al., 2009).

For text, the main means for transfer was
Word2Vec and GloVe embeddings (Mikolov et al.,
2013; Pennington et al., 2014) recently extended
with context-aware models like ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2018).
Trained on large and diverse textual corpora, they
were shown to improve target models’ perfor-
mance on a number of Natural Language Process-
ing tasks. Although highly beneficial, those mod-
els’ use may not be sufficient for the case of dia-
logue as response generation for goal-oriented di-
alogue from extremely limited data requires spe-
cialized tools. General-purpose embeddings lack
specificity for close dialogue domains since they
have been learned from very heterogeneously dis-
tributed data: in dialogue, the distribution of word
sequences is highly specific to a given domain or
task, i.e. word sequences in dialogue can take on
an astonishingly wide variety of meanings in dif-
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ferent contexts.
In this paper, we will work with autoencoders,

a class of unsupervised text representation mod-
els working via reconstructing the input — specif-
ically, a Variational Autoencoder (VAE) was con-
sidered the main means to learn robust text rep-
resentations (Bowman et al., 2016). Although
the model itself was challenging to train and was
mainly used with plenty of workarounds, and re-
cently there started to appear variants of this model
with improved stability. One such model we will
use in this paper is that of Zhao et al. (2018) (see
Section 4.1 for more detail).

3 Few-Shot Dialogue Generation

We first describe the task we are addressing in this
paper, and the corresponding base model. Specifi-
cally, we have a set of dialogues in source domains
and just a few seed dialogues in the target domain.
And the model’s task is, having been trained on all
the available source data, to fine-tune on the tar-
get data to be further evaluated on the full set of
target-domain dialogues.

We are basing our model for this task on a Hi-
erarchical Encoder-Decoder (HRED) architecture
with attention-based copying (Merity et al., 2017).
The base optimization objective is as follows:

LHRED = log pFd(xsys | Fe(c,xusr)) (1)

where xusr is user’s query, xsys is the system’s
response, c is the dialogue context, and Fe and Fd

are respectively hierarchical encoder and decoder.
We work with goal-oriented dialogues, so it’s

natural in our setting to take into account an under-
lying Knowledge Base (or API) providing results
on the user’s queries. Given that such KB informa-
tion may contain unseen token sequences for the
most part, especially in the target domain, we use
a copy mechanism in order to be able to use this in-
formation in the system’s responses. More specif-
ically, we represent KB info as token sequences
and concatenate it to the dialogue context simi-
larly to CopyNet setup of Eric et al. (2017). Our
copy mechanism’s implementation is the Pointer-
Sentinel Mixture Model (Merity et al., 2017; Zhao
and Eskénazi, 2018):

p(wt | st) = gpvocab(wt | st) + (1− g)pptr(wt | st)
(2)

In the formula above, wt and st are respectively
the output word and the decoder state at step t; pptr
is the probability of attention-based copying of the
word wt, and g is the mixture weight:

pptr(wt | st) =
�

kj∈I(w,x)

αkj ,t (3)

g = Softmax(uT tanh (Wαsi)) (4)

where αkj ,t is the attention weight for kth token
in flattened dialogue context at the decoding step t
and u is the sentinel vector — for more detail, see
(Zhao and Eskénazi, 2018).

4 Dialogue Knowledge Transfer Network

Transfer learning is considered the key means
for efficient training with minimal data, and
our DiKTNet model essentially introduces sev-
eral knowledge-transfer augmentations to the base
HRED model described above. DiKTNet training
is performed in two stages described below.

4.1 Stage 1. Dialogue representation
pre-training

Dialogue structure — e.g. word sequences —
is highly specific to a given domain or task, and
the meaning of conversational utterances is highly
contextual, i.e. similar utterances may have dif-
ferent meanings depending on the context. Nev-
ertheless, there is a lot of similarity in dialogue
structure — i.e. sequences of dialogue actions —
across domains, e.g. a conversation normally
starts with a mutual greeting and a question is very
often followed by an answer. Here, we propose to
exploit this phenomenon in the form of learning
a latent dialogue action representation in order to
better capture the dialogue structure by abstracting
away from surface forms. Crucially, we learn such
representation from MetaLWOz (Lee et al., 2019),
a dataset specifically created for the purposes of
meta-learning and transfer learning and consisting
of human-human conversations in 51 unique do-
mains (for more detail, see Section 6).

For this stage of training we use unsupervised,
variational autoencoder-based (VAE) representa-
tion learning following the Latent Action Encoder-
Decoder (LAED) approach of Zhao et al. (2018).
LAED’s underlying model is called Discrete In-
formation VAE (DI-VAE), a variant of a VAE with
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Figure 2: DiKTNet Stage 2 (tokens in brackets are KB data)

two modifications. Firstly, its optimization ob-
jective accounts for the mutual information I be-
tween the input and the latent variable which is
implicitly discouraged in the original VAE objec-
tive (see Eqs. 5 and 6).

LV AE = Ex[EqR(z|x)[log pG(x | z)]
−KL(q(z)�p(z))] =
Eq(z|x)p(x)[log pG(x | z)]
− I(Z,X)−KL(q(z)�p(z)),

(5)

LDI-V AE = LV AE + I(Z,X)

= EqR(z|x)p(x)[log pG(x | z)]
−KL(q(z)�p(z))

(6)

where x is the input utterance, z is the latent
variable (X and Z corresponding to their batch-
wise vectors), R and G are the recognition and
generation models (implemented as RNNs) re-
spectively, and q(z) = Ex[qR(z | x)].

Secondly, the latent variable z in DI-VAE is dis-
crete as opposed to the continuous one in a vanilla
VAE. The discrete latent code lends itself well to
interpretation and can be viewed as a form of un-
supervised dialogue act tagging. The discrete na-
ture also makes the calculation of the KL-term
more tractable via the Batch Prior Regularization
technique (Zhao et al., 2018):

KL(q�(z)�p(z)) =
K�

k=1

q�(z = k) log
q�(z = k)

p(z = k)

(7)

where K is the number of z’s possible values
and q�(z) is the approximation to q(z) over N data
points:

q�(z) =
1

N

N�

n=1

qR(z | xn) (8)

In addition, we employ DI-VST, DI-VAE’s
counterpart working in a Variational Skip-Thought
manner (Hill et al., 2016) and reconstructing the
input x’s previous (xp) and next (xn) context ut-
terances instead:

LDI-V ST =

EqR(z|x)p(x)[log p
n
G(xn | z)ppG(xp | z)]

−KL(q(z)�p(z))
(9)

DI-VAE and DI-VST models are visualized in
Figure 1.

In the downstream DiKTNet model, we use DI-
VAE autoencoder in order to obtain the represen-
tation of the user’s query: zusr = DI-VAE(xusr).

In turn, DI-VST is used to obtain a prediction
of the system’s action zsys in the discretized la-
tent form given the user’s input xusr as well as
the full dialogue context c. For that, DI-VST au-
toencoder is used as part of a hierarchical, context-
aware encoder-decoder response generation model
(we refer to it as LAED itself). Its optimization
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objective is as follows:

LLAED(θF , θπ) = EqR(zsys|xsys)p(xsys,c)[

log pπ(zsys | c) + log pF (xsys | zsys, c)]
(10)

where θF is the set of parameters of the context-
aware encoder and decoder, θπ is the set of param-
eters of the policy θπ. θπ is the component trained
to directly predict zsys from the context c.

We use different models for different aspects
of the dialogue: DI-VAE for user’s utterance rep-
resentation, and DI-VST-based LAED — for the
system’s action prediction. In that, we follow the
intuition of Zhao and Eskénazi (2018) who said
that DI-VAE is better at capturing specific words
of an utterance, while DI-VST represents the over-
all dialogue action better.

We train these two models on MetaLWOz in an
unsupervised way with the objectives as described
above, and use their discretized latent codes zusr
and zsys respectively in the downstream model at
the next stage of training.

4.2 Stage 2. Transfer

At this stage, we train directly for our target
task, few-shot dialogue generation, and thus go
back to the model described in Section 3. While
the training procedure of this model naturally as-
sumes domain transfer, we will provide it with
more sources of textual and dialogue knowledge
of varying generality described below.

As opposed to direct domain transfer, we in-
corporate domain-general dialogue understanding
from the LAED representation trained on Met-
aLWOz at the previous stage. LAED captures
the background top-down dialogue structure: se-
quences of dialogue acts in a cooperative conver-
sation, latent dialog act-induced clustering of ut-
terances, and the overall phrase structure of spo-
ken utterances. We incorporate this information
into the model by conditioning HRED’s decoder
on the combined latent codes from Stage 1 and re-
fer to this model as HRED+LAED.

LHRED+LAED =

Ep(xusr,c)p(zusr|xusr)pπ(zsys|xusr,c)[

log pFd(xsys |
�
Fe(xusr, c), zusr, zsys

�
)].

(11)

where zusr and zsys are respectively samples ob-
tained from the DI-VAE user utterance model and

LAED/DI-VST system action model, and {} is the
concatenation operator.

The last, most general source of knowledge we
use is a pre-trained ELMo model (Peters et al.,
2018). Apart from using an underlying bidirec-
tional RNN encoder, ELMo captures both token-
level and character-level information which is es-
pecially crucial in understanding unseen tokens
and KB items in the underrepsesented target do-
main. HRED model with ELMo as the utterance-
level encoder is referred to as HRED+ELMo.

Finally, DiKTNet is HRED augmented with
both ELMo encoder and LAED representation.

DiKTNet is visualized in Figure 2. The model
(as well as its variants listed above) is imple-
mented in PyTorch (Paszke et al., 2017), and the
code is openly available1.

5 Baselines

We perform an exhaustive ablation study of
DiKTNet by comparing it to all its variations
mentioned above: HRED, HRED+ELMo, and
HRED+LAED. In addition to that, we have the
HRED+VAE —a version of HRED+LAED for
which we use a regular, continuous VAE behind
DI-VAE and DI-VST in order to see the impact
of discretized latent codes (see Eq 5 for the corre-
sponding objective function).

Furthermore, we compare DiKTNet to the pre-
vious state-of-the-art approach, Zero-Shot Dia-
logue Generation (Zhao and Eskénazi, 2018). This
model didn’t use any complete in-domain dia-
logues but instead it relied on annotated utterances
in all of the domains. We use it as-is (ZSDG) as
well its variation as follows.

We make use of its central idea of ‘domain de-
scriptions’ bridging dialogue understanding across
domains, but instead of using manually annotated
utterances, we employ automatic Natural Lan-
guage Understanding markup. Our NLU annota-
tions include:

• Named Entity Recognition — Stanford NER
model ensemble of case-sensitive and case-
less models (Finkel et al., 2005),

• date/time markup — Stanford SUTime
(Chang and Manning, 2012),

• Wikidata entity linking — Yahoo FEL
(Blanco et al., 2015; Pappu et al., 2017).

1https://bit.ly/fsdg_emnlp2019
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Model
Domain Navigation Weather Schedule

BLEU, % Entity F1, % BLEU, % Entity F1, % BLEU, % Entity F1, %
ZSDG 5.9 14.0 8.1 31 7.9 36.9
NLU ZSDG 6.1± 2.2 12.7± 3.3 5.0± 1.6 16.8± 6.7 6.0± 1.7 26.5± 5.4
NLU ZSDG+LAED 7.9± 1 12.3± 2.9 8.7± 0.6 21.5± 6.2 8.3± 1 20.7± 4.8
HRED@1% 6.0± 1.8 9.8± 4.8 6.9± 1.1 22.2± 10.7 5.5± 0.8 25.6± 8.2
HRED@3% 7.9± 0.7 11.8± 4.4 9.6± 1.8 39.8± 7 8.2± 1.1 34.8± 4.4
HRED@5% 8.3± 1.3 15.3± 6.3 11.5± 1.6 38.0± 10.5 9.7± 1.4 37.6± 8.0
HRED@10% 9.8± 0.8 19.2± 3.2 12.9± 2.4 40.4± 11.0 12.0± 1.0 38.2± 4.2
HRED+VAE@1% 3.6± 2.6 9.3± 4.1 6.8± 1.3 23.2± 10.1 4.6± 1.6 28.9± 7.3
HRED+VAE@3% 6.9± 1.9 15.6± 5.8 9.5± 2.6 32.2± 11.8 6.6± 1.7 34.8± 7.7
HRED+VAE@5% 7.8± 1.9 12.7± 4.2 10.1± 2.1 40.3± 10.4 8.2± 1.7 34.2± 8.7
HRED+VAE@10% 9.0± 2.0 18.0± 5.8 12.9± 2.2 40.1± 7.6 11.6± 1.5 39.9± 6.9
HRED+LAED@1% 7.1± 0.8 10.1± 4.5 10.6± 2.1 31.4± 8.1 7.4± 1.2 29.1± 6.6
HRED+LAED@3% 9.2± 0.8 14.5± 4.8 13.1± 1.7 40.8± 6.1 9.2± 1.2 32.7± 6.1
HRED+LAED@5% 10.3± 1.2 15.6± 4.5 14.5± 2.2 40.9± 8.6 11.8± 1.9 37.6± 6.1
HRED+LAED@10% 12.3± 0.9 17.3± 4.5 17.6± 1.9 47.5± 6.0 15.2± 1.6 38.7± 8.4
HRED+ELMo@1% 5.8± 1.9 18.2± 3.8� 7.3± 2.6 38.5± 11.1 6.3± 2.6 36.3± 9.2
HRED+ELMo@3% 8.0± 1.3 17.2± 4.2 10.6± 1.1 42.0± 11.0 9.5± 2.0 39.6± 9.2
HRED+ELMo@5% 9.4± 0.8 21.5± 7.3 12.1± 2.0 39.0± 12.8 11.3± 2.1 40.0± 5.6
HRED+ELMo@10% 9.9± 1.1 24.3± 5.7 14.9± 2.7 41.4± 12.0 14.5± 1.4 43.4± 3.9
DiKTNet@1% 8.4± 0.7∗ 15.2± 4.0 11.5± 1.7∗ 43.0± 10.5∗ 8.1± 0.8∗ 40.5± 6.3∗

DiKTNet@3% 10.4± 1.2 19.2± 4.8 15.7± 2.1 44.0± 11.7 11.1± 1.3 38.2± 5.8
DiKTNet@5% 11.5± 1.1 23.9± 2.9 15.5± 2.1 39.5± 14.8 13.7± 2.0 41.1± 3.8
DiKTNet@10% 12.9± 1.0 26.8± 4.2 20.4± 1.2 48.0± 5.6 17.5± 1.3 42.8± 2.6

Table 1: Evaluation results. Marked with asterisks are individual results higher than ZSDG’s performance which
are achieved with the minimum amount of training data. In bold is the model consistently outperforming ZSDG in
all domains and metrics with minimum data.

We serialize annotations from these sources into
token sequences and make domain description tu-
ples out of all the utterances in the source and tar-
get domains. This way, most of our domain de-
scriptions share the structure and content of the
original ones.

For example, for the phrase ‘Will it be
cloudy in Los Angeles on Thursday?’, the
original ZSDG annotation is of the form
"request #goal cloudy #location
Los Angeles #date Thursday". Our
NLU annotation for this phrase is "LOCATION
Los Angeles DATE Thursday".

We have two models in this setup, with
(NLU ZSDG+LAED) and without the use of
LAED representation (NLU ZSDG) respectively.

6 Datasets

Number of Domains: 51
Number of Dialogues: 40,388
Mean dialogue length: 11.91

Table 2: MetaLWOz dataset statistics

We use the Stanford Multi-Domain (SMD)
dialogue dataset (Eric et al., 2017) containing
human-human goal-oriented dialogues in three do-

Statistic
Domain Navigation Weather Schedule

Dialogues 800 797 828
Utterances 5248 4314 3170
Avg. dialogue length 6.56 5.41 3.83

Table 3: Stanford multi-domain dataset statistics (train-
set)

mains: appointment scheduling, city navigation,
and weather information. Each dialogue has to
do with a single task queried by the user and
thus comes with additional knowledge base infor-
mation coming from implicit querying of the un-
derlying domain-specific API. Although sharing
some common features (the setting of an intelli-
gent in-car assistant and the use of the underly-
ing KB), the dialogues differs significantly across
domains which makes doamin transfer sufficiently
challenging.

For the latent representation learning, we use
MetaLWOz, a goal-oriented dialogue dataset con-
taining human-human dialogues in diverse do-
mains and several tasks in each of those. The di-
alogues are collected in a Wizard-of-Oz method
where human participants were given a problem
domain and a specific task in it, and were asked
to complete the task via dialogue. No domain-
specific APIs or knowledge bases were available



1747

for the participants, and in the actual dialogues
they were free to use fictional names and entities in
a consistent way. The dataset’s statistics are shown
in Table 2. All the domains available in the Met-
aLWOz dataset are listed in the Table 6 of the Ap-
pendix A.

7 Experimental setup and evaluation

Our few-shot setup is as follows. Given the tar-
get domain, we first train LAED model(s) on the
MetaLWOz data — here we exclude from train-
ing every domain that might overlap with the tar-
get one. Specifically, for the Navigation domain in
SMD, it’s Store Details, for Weather it’s Weather
Check, and for Schedule it’s Update Calendar and
Appointment Reminder.

In our final setup, at Stage 1 we used a DI-VST-
based LAED and a DI-VAE, both of the size 10×
5.

Next, having trained and frozen Stage 1 mod-
els, we train DiKTNet on all the source domains
from the SMD dataset. We use a random sample
of the target domain utterances together with their
contexts and KB info, varying the amount of those
from 1% to 10% of all available target data.

For the NLU ZSDG setup, we annotated all
available SMD data and randomly selected a sub-
set of 1000 utterances from each source domain,
and 200 utterances from the target domain. For
source domains, this number amounts to roughly
a quarter of all available training data — we chose
it in order to make use of as much annotated data
as possible while keeping the domain description
task secondary. For the target domain, we made
sure to keep under roughly the same in-domain
data requirements as the ZSDG baseline.

For evaluation, we follow the approach of Zhao
and Eskénazi (2018) and report BLEU and Entity
F1 scores. Given the non-deterministic nature of
our training setup, we report means and variances
of our results over 10 runs with different random
seeds.

We also perform an additional evaluation of
DiKTNet’s performance with extended amounts
of target data and compare it to the original Key-
Value Retrieval Network (KVRet) by Eric et al.
(2017) which was originally trained with all the
available data. In this case we average BLEU
scores across all 3 SMD domains in order to be
consistent with the form the corresponding results
are presented in the original paper.

We train our models with the Adam optimizer
(Kingma and Ba, 2014) with learning rate 0.001.
Our hierarchical models’ utterance encoder is an
LSTM cell (Hochreiter and Schmidhuber, 1997)
of size 256, and the dialog-level encoder is a GRU
(Cho et al., 2014) of size 512.

8 Results and discussion

Our results are shown in Table 1 — our objective
here is maximum accuracy with minimum training
data required.

8.1 Results for the few-shot setup

It can be seen that few-shot models with LAED
representation are the best performing models for
this objective. While improvements upon ZSDG
can already be seen with simple HRED in a few-
shot setup, the use of the LAED representation
and domain-general ELMo encoding helps signif-
icantly reduce the amount of in-domain training
data needed: at 1% of in-domain dialogues, we
see that DiKTNet consistently and significantly
improves upon ZSDG in every domain. In SMD,
with its average dialogue length of 5.25 turns, 1%
of training dialogues amounts to approximately
40 in-domain training utterances. In contrast,
the ZSDG setup used approximately 150 train-
ing utterance-annotation pairs for each domain, in-
cluding the target one, totalling about 450 anno-
tated utterances.

Although in our few-shot approach we use full
in-domain dialogues, we end up having signifi-
cantly less in-domain training data, with the cru-
cial difference that none of those has to be anno-
tated for our approach. Therefore, the method we
introduced attains state-of-the-art in both accuracy
and data-efficiency.

In turn, the results of the ZSDG NLU setup
demonstrate that single utterance annotations, if
not domain-specific and produced by human ex-
perts, don’t provide as much signal as full dia-
logues, even without annotations at all. Even the
significant number of such annotated utterances
per domain didn’t make a difference in this case.

We would also like to point out that, as can be
seen in the table, our results have quite high vari-
ance — the main source of it is the nature of our
training/evaluation setup where we average over
10 runs with 10 different sets of seed dialogues.
However, in the majority of cases with compa-
rable means, DiKTNet has a lower variance than
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Domain Context Gold response Predicted response
schedule <usr> Remind me to take my pills Ok setting your medicine Okay, setting a reminder to take

<sys> What time do you need appointment for 7pm your pills at 7 pm.
to take your pills?

<usr> I need to take my pills at 7 pm.
navigate <usr> Find the address to a hospital Have a good day No problem.

<sys> Stanford Express Care is
at 214 El Camino Real.

<usr> Thank you.
weather <usr> What is the weather forecast For what city would you For what city would you like

for the weekend? like to know that? the weekend forecast for?

Table 4: DiKTNet’s selected responses

Where can I go shopping?
Where does my friend live?
Where can I get Chinese food?
Where can I go to eat?
Can you please take me to a coffee house?
I’d like to set a reminder for my meeting at 2pm later this month please.
What is the time and agenda for my meeting, and who is attending?
Schedule a lab appointment with my aunt for the 7th at 1pm.
Schedule a calendar reminder for yoga with Jeff at 6pm on the 5th.
Car I’m desiring to do some shopping: which one is it the nearest shopping ...
... center? Anything within 4 miles?
Get the address to my friend’s house that i could get to the fastest
Car I need to get to my friends house, it should be within 4 miles from here

Table 5: Selected clusters of utterances sharing the same LAED codes

the alternative models at the same percentage of
seed data. And in the extreme case with 1% target
data, DiKTNet improves on all the other models
in terms of both means and variances.

8.2 Discussion of the latent representations

The comparison of the setups with different latent
representations also gives us some insight: while
the VAE-powered HRED model improves on the
baseline in multiple cases, it lacks generalization
potential compared to the LAED setup. The rea-
son for that might be inherently more stable train-
ing of LAED due to its modified objective func-
tion which in turn results in a more informative
representation providing better generalization. In
order to have a glimpse into the LAED-produced
clustering, in Table 5 we present a snippet of the
utterance clusters sharing the same, most frequent
latent codes throughout the dataset (the clustering
is obtained with LAED model trained on every do-
main but ‘Store details’, i.e. the one for the evalua-
tion on ‘Navigate’ SMD domain). From this snip-
pet, it can be seen that those clusters work well for
domain separation, as well as capturing dialogue
intents.

8.3 Results with extended data

We performed an additional experiment with ex-
tended target data (see Figure 3 of Appendix A).
It showed that DiKTNet, when trained with as lit-
tle as 5% of target data, can outperform a KVRet
trained using the entire dataset. Furthermore, with
50% of the target data, DiKTNet becomes more
than twice as good as KVRet in terms of overall
language generation.

However, goal-oriented metrics such as En-
tity F1 are more challenging to bootstrap. As
such, DiKTNet outperforms KVRet on ‘Weather’
domain starting at 10% of the target data, but
only has a trend on narrowing down the perfor-
mance gap with KVRet on ‘Navigate’, and cer-
tainly needs more training data in ‘Schedule’ do-
main.

The explanation to that might be that most of
the dialogue entities come from the KB snippets
which are the least represented resource in our
setup. They aren’t available in MetaLWOz, and in
SMD, KB snippets share little in common across
domains. Therefore, in order to increase Entity
F1, KB information should be directly copied to
the output more efficiently — and increasing the
robustness of the copy-augmented decoder is one
of our future research directions.
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8.4 Discussion of the evaluation metrics

We use BLEU as one of the main evaluation met-
rics in this paper — we do it in order to fully
conform with the setup of Zhao and Eskénazi
(2018) which we base our work on. But while be-
ing widely adopted as a general-purpose language
generation metric, BLEU might not be sufficient
in the dialogue settings (see Novikova et al. (2017)
for a review). Specifically, we have observed
several cases where the model would produce an
overall grammatical response with the correct di-
alogue intent (e.g. “You are welcome! Anything
else?”), but BLEU would output a lower score for
it due to word mismatch (e.g. “You’re welcome!”;
see more examples in Table 4). This is a general
issue in dialogue model evaluation since the vari-
ability of possible responses equivalent in mean-
ing is very high in dialogue. In future work, we
will put more emphasis on the meaning of utter-
ances, for example by incorporating external dia-
logue act tagging resources in the evaluation setup
which, together with general language generation
metrics like perplexity, can make for more robust
evaluation criteria than word overlap.

9 Conclusion and future work

In this paper, we have introduced DiKTNet, a
model achieving state-of-the-art dialogue genera-
tion performance in a few-shot setup, without us-
ing any annotated data. By transferring latent dia-
logue knowledge from multiple sources of varying
generality, we obtained a model with superior gen-
eralization to an underrepresented domain.

Specifically, we showed that our few-shot ap-
proach achieves state-of-the art results on the Stan-
ford Multi-Domain dataset while being more data-
efficient than the previous best model, by requiring
significantly less data none of which has to be an-
notated.

While being state-of-the-art, the accuracy
scores themselves still suggest that our technique
is not ready for immediate adoption for real-world
production purposes, and the task of few-shot gen-
eralization to a completely new dialogue domain
remains an area of active research. In our own fu-
ture work, we will try and find ways to improve
the unsupervised representation (Shi et al., 2019)
in order to increase the transfer potential. We will
also explore ways to enable more efficient copy-
ing from the input which is crucial for correctly
handling entities and therefore attaining high goal-

oriented performance of the system.
Apart from that, we will consider alternative

evaluation criteria to account for rich surface vari-
ability of natural speech.
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