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Abstract

We study how to sample negative examples to
automatically construct a training set for ef-
fective model learning in retrieval-based dia-
logue systems. Following an idea of dynami-
cally adapting negative examples to matching
models in learning, we consider four strategies
including minimum sampling, maximum sam-
pling, semi-hard sampling, and decay-hard
sampling. Empirical studies on two bench-
marks with three matching models indicate
that compared with the widely used random
sampling strategy, although the first two strate-
gies lead to performance drop, the latter two
ones can bring consistent improvement to the
performance of all the models on both bench-
marks.

1 Introduction

In this work, we study the problem of response se-
lection as an approach to implementing a retrieval-
based dialogue system (Ji et al., 2014; Wang et al.,
2013). A key step in response selection is measur-
ing the matching degree between a conversation
context and a response candidate. Existing studies
focus on constructing a matching model with so-
phisticated neural architectures (Lowe et al., 2015;
Zhou et al., 2016; Yan et al., 2016; Wu et al., 2017;
Zhang et al., 2018; Zhou et al., 2018; Tao et al.,
2019), but pay little attention to how to effectively
learn such architectures from data. On the one
hand, it is well known that learning of complicated
neural architectures requires large-scale high qual-
ity training data; on the other hand, since human
labeling is expensive and exhausting, most of the
existing work just adopts a simple heuristic to au-
tomatically build a training set where human re-
sponses are treated as positive examples and neg-
ative response candidates are randomly sampled.

∗Corresponding author: Rui Yan (ruiyan@pku.edu.cn).

Such a training set might contain many false neg-
atives and trivial true negatives that are very easy
to distinguish from those true positives. As a re-
sult, models with advanced architectures can only
reach sub-optimal performance after learning (Wu
et al., 2018).

In this paper, instead of configuring new archi-
tectures, we investigate how to improve the per-
formance of existing matching models with a bet-
ter learning method. A learning method usually
involves choice of loss functions and construction
of training data, and we are particularly interested
in automatic training data construction, as data are
often more crucial to the performance of mod-
els. The key problem in training data construc-
tion lies in how to properly choose negative exam-
ples, and our idea is that negative examples should
adapt to the matching models at different learning
stages. Following this idea, we consider four neg-
ative sampling strategies, namely minimum sam-
pling, maximum sampling, semi-hard sampling,
and decay-hard sampling. In the first two strate-
gies, a response candidate that corresponds to the
minimal or the maximal matching score at the cur-
rent step is picked from a pool as a negative exam-
ple for the next step; and in the latter two strate-
gies, we select negative examples by considering
how hard they are to the current matching models.
The semi-hard sampling prefers candidates with
moderate difficulty to avoid both false negatives
and trivial true negatives, and the decay-hard sam-
pling gradually increases the difficulty of negative
samples with the training process going on.

We compare different sampling strategies with
three matching models in different levels of com-
plexity on two benchmarks. Evaluation results
indicate that minimum sampling and maximum
sampling are inferior to randomly sampling, and
both semi-hard sampling and decay-hard sampling
can bring consistent improvement to the perfor-
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mance of all the three models on both data sets.
Our contributions include (1) a systematic com-

parison of different sampling strategies with two
benchmarks; and (2) proposal of semi-hard and
decay-hard negative sampling strategies that can
generally improve the performance of existing
matching models on benchmarks.

2 Learning a Matching Model for
Response Selection

Suppose that D = {(ci, {r+i,j}
n+
i

j=1, {r
−
i,k}

n−i
k=1)}

N
i=1

is a training set, where ci is a conversation con-
text, ∀j ∈ {1, . . . , n+i }, r

+
i,j is a positive re-

sponse candidate that properly replies to ci, and
∀k ∈ {1, . . . , n−i }, r

−
i,k is a negative response can-

didate that is used to indicate errors in responding
to a model, then the learning problem of response
selection is to estimate a matching model g(·, ·)
from D, which can be formulated as

argmin
Θ

N∑
i=1

[ n+
i∑

j=1

L(+1, g(ci, r
+
i,j))+

n−
i∑

k=1

L(−1, g(ci, r−i,k))
]
,

(1)

where Θ are the parameters of g(·, ·), and L(·, ·) is
a loss function.

In practice, L(·, ·) is usually set as cross en-
tropy, then the remaining problems become (1)
how to define g(·, ·); and (2) how to construct D
given that large-scale human labeling is infeasible.
Existing work has paid enough effort to solving
Problem (1), but only adopts a simple heuristic for
Problem (2) where human responses are treated as

{r+i,j}
n+
i

j=1 (a common case is n+i = 1 since only
one response is available for a specific context),
and some randomly sampled responses are utilized

as {r−i,k}
n−i
k=1. The problem with this heuristic is

that there is no guarantee on what responses will

be sampled as {r−i,k}
n−i
k=1: some of them could be

false negatives, and some could be too trivial to
recognize. The clear drawback of random sam-
pling motivates us to pursue better negative sam-
pling strategies in training data construction, as
will be elaborated in the next section.

3 Model Adaptive Negative Sampling

Our idea is to dynamically adapt negative exam-
ples to matching models in learning. The idea
is inspired by how human learn knowledge: they
adjust their learning materials according to their

learning progress. Based on this idea, we consider
four strategies to sample negative examples:

Minimum sampling: the strategy used to be ex-
ploited in answer selection (Rao et al., 2016), and
here we apply it to response selection for open
domain dialogue systems. Suppose that ĝ(·, ·) is
a matching model obtained from the t-th mini-
batch, then in the (t + 1)-th mini-bach, we try to
select the easiest negative example for a context c
according to ĝ(·, ·), which can be formulated as

argmin
r−∈R−

ĝ(c, r−), (2)

whereR− is a pool of negative examples for c.

Maximum sampling: similar to minimum sam-
pling, the strategy is also borrowed from answer
selection (Rao et al., 2016), but attempts to select
the hardest negative example by

argmax
r−∈R−

ĝ(c, r−), (3)

Semi-hard sampling: the first two strategies
might be too aggressive, as the easiest negative ex-
ample could bring no new information to ĝ(·, ·),
and the hardest one could be a false negative. To
avoid both cases, we propose a semi-hard sam-
pling strategy which selects a negative sample
with moderate difficulty. Formally, the strategy is
defined as

argmin
r−∈R−

|ĝ(c, r+)− ĝ(c, r−)− α|, (4)

where r+ is the positive response candidate of c1,
and α is a constant. In Equation (4), we exploit
α as a margin to control the distance of matching
degree between the selected r− and r+. The one
with a matching degree closest to ĝ(c, r+) − α is
picked as a negative example.

Decay-hard sampling: to imitate the behavior
that human gradually increase the difficulty of
their learning materials at different stages, we pro-
pose a decay-hard sampling strategy which decays
the margin in Equation (4) with the training pro-
cess going on. Specifically, we consider two meth-
ods, namely exponential decay and linear decay.

1We assume that only one positive example is avail-
able as a common case, otherwise ĝ(c, r+) is replaced with
minr+∈R+ ĝ(c, r+).
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In the first method, the margin shrinks in a expo-
nential speed. In the t-th mini-bach, the margin αt

is defined by

αt = ϕ× exp(ω × t), (5)

where 0 < ϕ < 1 and −1 < ω < 0 are parame-
ters. In the second method, the margin linearly be-
comes small with the training steps, which is given
by

αt = λ× t+ θ, (6)

where 0 < θ < 1 and , −1 < λ < 0 are param-
eters. We carefully choose θ and λ to make sure
that αt > 0, ∀t ∈ {1, . . . , T}, where T refers to
the maximum number of iterations.

Note that descriptions above assume that for
each context, only one negative example is se-
lected from the pool. This is for a fair comparison
with random sampling on benchmarks, as most of
the existing work (Wu et al., 2017; Zhou et al.,
2018) utilizes one negative example per context in
training. It is easy to extend the strategies to sam-
ple multiple negative examples (e.g., by picking
the top l examples with matching scores closest to
ĝ(c, r+)− α in semi-hard sampling).

4 Experiments

We compare different sampling strategies on two
benchmarks.

4.1 Experimental Setup
The first data set we use is the Ubuntu Dialogue
Corpus (Lowe et al., 2015) collected from chat
logs of the Ubuntu Forum. We use the version
provided by Xu et al. (2017). The data contains
1 million context-response pairs for training, and
0.5 million pairs for validation and test.

Following (Lowe et al., 2015), we employ recall
at position k in n candidates (Rn@k) as evaluation
metrics.

Besides the Ubuntu data, we also choose the
Douban Conversation Corpus (Wu et al., 2017)
as an experimental data set. The data consists of
multi-turn Chinese conversations collected from
Douban group2. There are 1 million context-
response pairs for training, 50 thousand pairs for
validation, and 6, 670 pairs for test.

Following (Wu et al., 2017), we employ Rn@ks,
mean average precision (MAP), mean reciprocal
rank (MRR)(Voorhees et al., 1999) and precision
at position 1 (P@1) as evaluation metrics.

2https://www.douban.com/group

4.2 Matching Models

The following matching models are selected:
Dual-LSTM (Lowe et al., 2015): the model in-

dividually encodes a context and a response candi-
date with LSTMs, and then calculates a matching
score based on the final states of the two LSTMs.

SMN (Wu et al., 2017): the model lets each ut-
terance in a context interact with a response, and
forms the interaction matrices into a matching vec-
tor with CNN. The matching vectors are finally ac-
cumulated with an RNN as a matching score.

DAM (Zhou et al., 2018): the model performs
matching in a similar manner as SMN but rep-
resents a context and a response candidate with
stacked self-attention and cross-attention.

In terms of both complexity and per-
formance under random sampling, Dual-
LSTM<SMN<DAM. Regarding to baselines,
we consider two random sampling strategies.
The first one is a static strategy where negative
examples are fixed in the entire learning proce-
dure. This is how existing work learns a matching
model with the data described in Section 4.1,
and we denote the model as Model-Base. The
second one is a dynamic strategy where in each
mini-batch, a negative example is randomly sam-
pled from R−. This is a simplification of model
adaptive sampling strategies, and we denote a
model learned with this strategy as Model-Rand.
We denote a model trained with minimum sam-
pling, maximum sampling, semi-hard sampling,
exponential decay-hard sampling, and linear
decay-hard sampling as Model-Min, Model-Max,
Model-Semi, Model-EDecay, and Model-LDecay
respectively. All models are implemented with
TensorFlow and tuned on the validation sets.
We make sure that Model-Base achieves the
performance on both data sets as that reported in
(Zhou et al., 2018).

4.3 Implementation Details

For static random sampling, we just use the pub-
lished training sets of both data. For the remain-
ing sampling strategies, we randomly sample 10
responses3 for each context from the training sets
as a pool of negative examples at each epoch.
Every time, one response is sampled from the
pool as a negative example for a context. Mod-
els trained with different sampling strategies are

3We set the size ofR− as 10 to balance efficacy and effi-
ciency.

https://www.douban.com/group
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Strategies
Metrics Ubuntu Corpus Douban Conversation Corpus

R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5
Dual-LSTM-Base 0.901 0.638 0.784 0.949 0.485 0.527 0.320 0.187 0.343 0.720
Dual-LSTM-Rand 0.909 0.691 0.818 0.952 0.541 0.581 0.395 0.236 0.396 0.742
Dual-LSTM-Min 0.832 0.561 0.640 0.883 0.446 0.495 0.298 0.164 0.312 0.664
Dual-LSTM-Max 0.839 0.579 0.672 0.898 0.477 0.510 0.300 0.178 0.323 0.689
Dual-LSTM-LDecay 0.915 0.701 0.830 0.955 0.543 0.586 0.405 0.242 0.402 0.749
Dual-LSTM-EDecay 0.916 0.703 0.833 0.957 0.544 0.588 0.406 0.245 0.403 0.752
Dual-LSTM-Semi 0.918 0.706 0.835 0.958 0.546 0.591 0.408 0.246 0.405 0.754
SMN-Base 0.926 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724
SMN-Rand 0.931 0.753 0.859 0.963 0.543 0.587 0.406 0.240 0.407 0.751
SMN-Min 0.850 0.569 0.714 0.920 0.521 0.563 0.384 0.229 0.387 0.718
SMN-Max 0.859 0.667 0.789 0.944 0.523 0.565 0.388 0.227 0.392 0.721
SMN-LDecay 0.933 0.759 0.861 0.965 0.549 0.600 0.421 0.253 0.410 0.755
SMN-EDecay 0.933 0.760 0.862 0.966 0.552 0.602 0.424 0.261 0.412 0.758
SMN-Semi 0.934 0.762 0.865 0.967 0.554 0.605 0.425 0.253 0.412 0.759
DAM-Base 0.938 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757
DAM-Rand 0.940 0.777 0.878 0.971 0.563 0.612 0.436 0.261 0.427 0.783
DAM-Min 0.923 0.721 0.841 0.958 0.539 0.585 0.408 0.247 0.407 0.744
DAM-Max 0.928 0.736 0.852 0.962 0.551 0.596 0.421 0.258 0.411 0.754
DAM-LDecay 0.942 0.784 0.880 0.973 0.573 0.617 0.442 0.270 0.437 0.789
DAM-EDecay 0.943 0.784 0.882 0.973 0.575 0.621 0.444 0.272 0.439 0.793
DAM-Semi 0.944 0.785 0.883 0.974 0.580 0.623 0.450 0.279 0.443 0.796

Table 1: Evaluation results of different sampling strategies on the two data sets. Numbers in bold indicate the best
strategies for the corresponding models on specific metrics.

tuned with the same validation sets and evalu-
ated with the same test sets (i.e., the original re-
leased sets). We vary α in semi-hard sampling
in {0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5}, and
choose 0.07. In decay-hard sampling, we set ω, ϕ,
λ, and θ as −1.5e − 5, 0.1, −8.75e − 7, and 0.1
on respectively.

4.4 Evaluation Results

Table 1 reports evaluation results on the two data
sets. We can see that both semi-hard sampling
and decay-hard sampling can generally improve
the three matching models on both data sets. Min-
imum sampling and maximum sampling are con-
sistently worse than random sampling, which ver-
ified the statement we make in Section 3 that
the two strategies are too aggressive. Decay-hard
sampling is a little worse than semi-hard sampling.
The reason might be that false negatives are in-
troduced to learning by decay-hard at late stages
of training. Dynamic random sampling is better
than static random sampling, because models can
leverage more negative examples from the pool. It
is worth noting that the proposed sampling strate-
gies does not change the elapsed time for predic-
tion, despite a little more training time. On the
other hand, we do see improvement on the two
data sets. Therefore, we believe it is worth paying
a little more training time but obtaining the im-
provement.

Besides the comparison of different sampling
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Figure 1: The effect of α to semi-hard sampling on the
Ubuntu data. Dashed lines represent performance of
the dynamic random sampling strategy.

strategies, we are also interested in how the hyper-
parameter α affects the performance of semi-hard
sampling. Figure 1 shows how the performance of
SMN and DAM changes with respect to different
margins (i.e., α). We observe a similar trend for
both models: they first increase monotonically un-
til the margin reaches 0.07, and then drop as the
margin increases. Particularly, the performance of
both models with the semi-hard sampling strategy
is worse than that with the random sampling strat-
egy when the margin reaches 0.5. The reason be-
hind the phenomenon is that when the margin is
small, semi-hard sampling is similar to maximum
sampling and will introduce false negatives into
learning, while when the margin is large, semi-
hard sampling is like minimum sampling and is
prone to provide trivial samples to learning.
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5 Related works

Negative sampling strategies have been studied
in many machine learning tasks. In the com-
puter vision fields, Faghri et al. (2017) studies
hard negatives and introduces a simple change to
common loss function on image-caption retrieval
tasks. Guo et al. (2018) proposes a fast negative
sampler which chooses negative examples that are
most likely to meet the requirements of violation
according to the latent factors of image. In nat-
ural language processing fields, Kotnis and Nas-
tase (2017) analyses the impact of negative sam-
pling strategies on the performance of link pre-
diction in knowledge graphs. Saeidi et al. (2017)
studies the affect of a tailored sample strategy on
the performance of document retrieval task. Rao
et al. (2016) uses three negative strategies to se-
lect the most informative negative samples on the
pairwise ranking model for answer selection. Xu
et al. (2015) introduces a straightforward negative
sampling strategy to improve the assignment of
subjects and objects on a convolution neural net-
work. To our best knowledge, this is the first work
to empirical study of negative sampling strate-
gies for learning of matching models in multi-turn
retrieval-based dialogue systems, which may en-
lighten future works in the learning of retrieval-
based dialogue systems.

6 Conclusions

We present minimum sampling, maximum sam-
pling, semi-hard sampling, and decay-hard sam-
pling as four model adaptive negative sampling
strategies to learn a matching model for retrieval-
based dialogue systems. Evaluation results with
three models on two benchmarks indicate that al-
though minimum sampling and maximum sam-
pling are worse than random sampling, both semi-
hard sampling and decay-hard sampling can gen-
erally improve the performance of the models on
both data sets. In the future, we would like to
extend our negative sampling strategies to other
tasks.
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