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Abstract

Natural Language Understanding (NLU) is a
core component of dialog systems. It typi-
cally involves two tasks - intent classification
(IC) and slot labeling (SL), which are then fol-
lowed by a dialogue management (DM) com-
ponent. Such NLU systems cater to utterances
in isolation, thus pushing the problem of con-
text management to DM. However, contextual
information is critical to the correct prediction
of intents and slots in a conversation. Prior
work on contextual NLU has been limited in
terms of the types of contextual signals used
and the understanding of their impact on the
model. In this work, we propose a context-
aware self-attentive NLU (CASA-NLU) model
that uses multiple signals, such as previous
intents, slots, dialog acts and utterances over
a variable context window, in addition to the
current user utterance. CASA-NLU outper-
forms a recurrent contextual NLU baseline on
two conversational datasets, yielding a gain of
up to 7% on the IC task for one of the datasets.
Moreover, a non-contextual variant of CASA-
NLU achieves state-of-the-art performance for
IC task on standard public datasets - SNIPS
and ATIS.

1 Introduction

With the advent of smart conversational agents
such as Amazon Alexa, Google Assistant, etc., di-
alogue systems are becoming ubiquitous. In the
context of enterprises, the majority of these sys-
tems target task oriented dialogues with the user
trying to achieve a goal, e.g. booking flight tick-
ets or ordering food. Natural Language Under-
standing (NLU) captures the semantic meaning of
a user’s utterance within each dialogue turn, by
identifying intents and slots. An intent specifies
the goal underlying the expressed utterance while
slots are additional parameters for these intents.
These tasks are typically articulated as intent clas-

Hello! What can I do for you today? 

uh, help!  Help

Sure! You can signup for or modify an existing service. 
You can also query for your data usage or bills. 
increase my data plan please

O    O 

UpgradeServiceO            O      O     O     O    

What new plan would you like? 

unlimited UpgradeService
[DataPlanType]

Sure! Your data plan has now been changed to 
unlimited. Is there anything else you would like to do?
sign me up for cable StartService
 O     O   O   O   [ServiceType] 

(1)

(2)

(3)

(4)

Figure 1: Snippet of a sample Cable data conversation with
intents shown in boxes and slots aligned with user request

sification (IC) coupled with sequence tagging task
of slot labeling (SL).

Over time, human-machine interactions have
become more complex with greater reliance on
contextual cues for utterance understanding (Fig-
ure 1). With traditional NLU frameworks, the res-
olution of contextual utterances is typically ad-
dressed in the DM component of the system using
rule-based dialogue state trackers (DST). How-
ever, this pushes the problem of context resolution
further down the dialogue pipeline, and despite the
appeal of modularity in design, it opens the door
for significant cascade of errors. To avoid this,
end-to-end dialogue systems have been proposed
(Wen et al., 2017; Bordes and Weston, 2016), but,
to date, such systems are not scalable in industrial
settings, and tend to be opaque where a level of
transparency is needed, for instance, to understand
various dialogue policies.

To address the propagation of error while main-
taining a modular framework, Shi et al. (2015)
proposed adding contextual signals to the joint
IC-SL task. However, the contributions of their
work were limited in terms of number of sig-
nals and how they were used, rendering the con-
textualization process still less interpretable. In
this work, we present a multi-dimensional self-
attention based contextual NLU model that over-
comes prior work’s shortcomings by supporting
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variable number of contextual signals (previous
utterances, dialogue acts1, intents and slot labels)
that can be used concurrently over variable length
of conversation context. In addition, our model al-
lows for easy visualization and debugging of con-
textual signals which are essential, especially in
production dialogue systems, where interpretabil-
ity is a desirable feature. Our contributions are:
• Context-Aware Self-Attentive NLU (CASA-

NLU) model that uses various contextual sig-
nals to perform joint IC-SL task, outperform-
ing contextual and non-contextual NLU base-
lines by significant margins on two in-house
conversational IC-SL datasets
• Propose a novel non-contextual variant of

CASA-NLU that achieves SOTA performance
on IC task for both SNIPS and ATIS datasets
• Analysis of the various contextual signals’

contributions to model performance

2 Related Work

There have been numerous advancements in NLU
systems for dialogues over the past two decades.
While the traditional approaches used handcrafted
features and word n-gram based features fed to
SVM, logistic regression, etc. for IC task and con-
ditional random fields (CRF) for SL task (Jeong
and Lee, 2008; Wang1 et al., 2002; Raymond and
Riccardi, 2007), more recent approaches rely on
deep neural networks to jointly model IC and SL
tasks (Yao et al., 2014a,b; Guo et al., 2014; Zhang
and Wang, 2016; Liu and Lane, 2016c; Goo et al.,
2018). Attention as introduced by Bahdanau et al.
(2014) has played a major role in many of these
systems (Liu and Lane, 2016a; Ma et al., 2017; Li
et al., 2018a; Goo et al., 2018), for instance, for
modeling interaction between intents and slots in
(Goo et al., 2018).

Dahlbäck and Jönsson (1989) and Bertomeu
et al. (2006) studied contextual phenomena and
thematic relations in natural language, thereby
highlighting the importance of using context. Few
previous works focused on modeling turn-level
predictions as DST task (Williams et al., 2013).
However, these systems predict the possible slot-
value pairs at utterance level (Zhong et al., 2018),
making it necessary to maintain ontology of all
possible slot values, which is infeasible for cer-
tain slot types (e.g., restaurant names). In industry

1Dialog Act signifies the actions taken by the agent such
as Close (when an intent is fulfilled), ElicitSlot, etc

settings, where IC-SL task is predominant, there is
also an additional effort involved to invest in rules
for converting utterance level dialog state annota-
tions to token level annotations required for SL.
Hence, our work mainly focuses on the IC-SL task
which eliminates the need for maintaining any on-
tology or such handcrafted rules.

Bhargava et al. (2013) used previous intents and
slots for IC and SL models. They were followed
by Shi et al. (2015) who exploited previous in-
tents and domain predictions to train a joint IC-
SL model. However, both these studies lacked
comprehensive context modeling framework that
allows multiple contextual signals to be used to-
gether over a variable context window. Also, an
intuitive interpretation of the impact of contextual
signals on IC-SL task was missing.

3 CASA-NLU: Context-Aware
Self-Attentive NLU

Our model architecture is composed of three sub
sections - signal encoding, context fusion and IC-
SL predictions (Figure 2).

Figure 2: CASA-NLU model architecture for joint IC-SL

3.1 Signal Encoding

Utterance (Utt): For the utterance encoding, we
adopt the directional self-attention (Shen et al.,
2017) based encoder (DISAN), adding absolute
position embedding (Gehring et al., 2017) to fur-
ther improve the encoding performance.2 DISAN
unit consists of two types of multi-dimensional at-
tention - word level token2token (t2t) attention fol-

2Details provided in Appendix A
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lowed by sentence level source2token (s2t) atten-
tion. For turn i, the output of this unit is given by
h(Utti) ∈ R2dh×1, where dh is hidden layer size
of the DISAN unit (Figure 2).
Intent / Dialog Act (DA) / Slot Label His-
tory: We pass the one-hot representation of intent
ground truth labels through an embedding layer to
get intent history representation h(Ii) ∈ RdI×1

for any previous turn i with dI being the intent
embedding dimension. Similarly, for DA history,
h(DAi) ∈ RdDA×1. We use a special dummy
symbol for the intent and DA of the current turn.
For slot label history, for turn i, we take the aver-
age of all slot embeddings that were observed in
previous turns giving h(SL histi) ∈ RdSL×1.

3.2 Context Fusion

We combine the vectorized signals together in
both spacial and temporal dimensions. For the
former, we simply concatenate the contextual sig-
nals to get current turn feature vector, i.e. Ti =
[h(Utti);h(Ii);h(DAi)]. However, for the latter,
concatenation becomes intractable if context win-
dow is large. To address this issue and automat-
ically learn more relevant components of context
for each turn, we add a source2token (Shen et al.,
2017) multi-dimensional self-attention layer over
the turn vectors. This is essentially a per dimen-
sion learned weighted average (cf i) over all the
turn vectors within a context window (Equation
1). As shown later in Section 5, this enhances the
model’s robustness by learning different attention
weights for different contextual signals.

cfi =
i∑

t=i−K
P(Tt)� Tt (1)

where, K (= 3 in our experiments) is the context
window, and Tt and P(Tt) are the turn vector and
attention weights for tth time step respectively.
We use padding tokens for i−K < 0.

One of the shortcomings with such attention
mechanism is that it is position invariant. To ad-
dress this problem, we add learned absolute posi-
tion embedding pc to the turn matrix T that learns
temporal information across the turns.

3.3 IC-SL Predictions

Following (Liu and Lane, 2016b; Li et al., 2018b),
we train a joint IC-SL model. To improve IC per-
formance for our deep network, we also add a sec-
ondary IC loss function, LSec IC at the utterance

level (Figure 2). The new aggregated loss is:

L = LIC + α× LSL + β × LSec IC (2)

IC: At turn i, we take the output of context
fusion layer cf i, pass it through a fully connected
layer and concatenate the output with the current
utterance encoding h(Utti). This is then further
projected down using a fully connected layer
(FCi) and finally fed into softmax layer to predict
the intent.

SL: For turn i, the t2t attention output is first fused
with the utterance embedding using a fusion gate
(Hochreiter and Schmidhuber, 1997) to generate
hij where j represents token index in the utter-
ance. Then, for each token position in the ut-
terance, we apply a sliding window, w (=3) over
neighboring words that transforms each token’s
embedding space from hij to w × hij (not shown
in the Figure 2). To add contextual information to
SL task, each token’s dimension is augmented us-
ing slot history (SL histi) as well as penultimate
fully connected layer for IC task (FCi), yielding a
final dimension ofw×hij+h(SL histi)+h(FCi).
Finally, a Gated Recurrent Unit (GRU) renders the
labels auto-regressive followed by softmax layer.

4 Experiments

Datasets: Since there are no existing public
datasets for contextual IC and SL task, we use
two in-house datasets for evaluation - Booking
dataset,3 which is a variation of DSTC-2 dataset
(Williams et al., 2014) with intent, slot and dia-
log act annotations, and Cable dataset, a syntheti-
cally created conversational dataset. The Booking
dataset contains 9,351 training utterances (2,200
conversations) and 6,727 test utterances, with 19
intents and 5 slot types. Cable dataset comprises
1856 training utterances, 1,814 validation utter-
ances and 1,836 test utterances, with 21 intents
and 26 slot types.4 In addition, we also eval-
uate the model on non-contextual IC-SL public
datasets - ATIS (Hemphill et al., 1990) and SNIPS

(Coucke et al., 2018).

Experimental setup: To emphasize the impor-
tance of contextual signals in modeling, we first
devise a non-contextual baseline of our CASA-
NLU model, NC-NLU. It is similar to CASA-

3Dataset will be released to the public
4Detailed data stats provided in Appendix B
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Model ATIS SNIPS
RNN-LSTM* (Hakkani-Tür et al., 2016) 92.6 96.9
Atten.-BiRNN* (Liu and Lane, 2016b) 91.1 96.7
LSTM+attn+gates (Goo et al., 2018) 94.1 97.0
Capsules Neural Network (Zhang et al., 2018) 95.0 97.7
NC-NLU (ours) 95.4 98.4

Table 1: Average IC accuracy scores (%) on non-
contextual datasets. *: as reported in (Goo et al., 2018)

NLU in terms of model architecture except no con-
textual signals are used. Since neither datasets
nor implementation details were shared in previ-
ous works on contextual NLU (Bhargava et al.,
2013; Shi et al., 2015), we also implement another
baseline, CGRU-NLU that uses GRU (Cho et al.,
2014) instead of self-attention for temporal con-
text fusion. For fair comparison to existing non-
contextual baselines, no pre-trained embeddings
are used in any of the experiments though the
model design can easily benefit from pre-training.

5 Results and Analysis

Table 1 shows the performance of our non-
contextual model on two datasets, ATIS and
SNIPS. As shown, we obtain a new SOTA for
IC on both the datasets.5 We hypothesize that
the high performance is due to the utterance-level
position-aware multi-dimensional self-attention.

As shown in Table 2, CASA-NLU model outper-
forms non-contextual NLU on both the Booking
and Cable datasets. Further, CASA-NLU model
significantly outperforms CGRU-NLU on the Ca-
ble dataset by 7.26% on IC accuracy and 5.31% on
SL F1 absolute, respectively. We believe the rea-
son for strong performance yielded by the CASA-
NLU model is due to its multi-dimensional na-
ture, where we learn different weights for different
dimensions within the context feature vector Ti.
This enables the model to learn different attention
distributions for different contextual signals lead-
ing to more robust modeling compared to CGRU-
NLU model. Table 3 gives further breakdown of
the results by showing performance on first vs.
follow-up turns in a dialogue. For the more chal-
lenging follow-up turns, CASA-NLU yields signif-
icant gains over the baseline IC performance.

Table 4 shows impact of some of the contex-
tual signals on model performance for the Booking
validation dataset. As expected, contextual sig-

5Since we compute token-level F1, SL performance is not
compared to results reported in previous work

Model Booking Cable
IC SL IC SL

NC-NLU 91.11 88.21 44.98 27.34
CGRU-NLU 94.86 88.47 66.68 51.58
CASA-NLU 95.16 88.80 73.94 56.97

Table 2: IC accuracy and SL F1 scores (%) for the
three models NC-NLU, CGRU-NLU, CASA-NLU on the
2 contextual datasets - Booking and Cable.

Model Booking Cable
Ft FU Ft FU

NC-NLU 95.67 89.51 40.35 48.33
CGRU-NLU 98.93 94.24 46.6 72.22
CASA-NLU 99.70 94.45 47.44 81.25

Table 3: IC accuracy scores (%) on first (Ft) and
follow-up (FU) turns in contextual datasets - Booking
and Cable.

nals improve IC and SL performance (Configs -
II-V). We observe that adding intent history (Ihist)
leads to highest gains in IC accuracy (Config - IV).
At the same time, we see that slot history (SLhist)
has minimal impact on SL performance for this
dataset. Exhaustive experiments showed that the
choice of contextual signals is dependent upon the
dataset. Our model facilitates switching these con-
textual signals on or off easily.

Config Ihist SLhist Utthist DAhist IC SL
I x x x x 89.44 97.62
II x x X x 92.52 98.09
III x X X X 92.35 98.33
IV X X X x 95.27 98.34
V X X X X 96.53 98.25

Table 4: Impact of contextual signals on IC accuracy
and SL F1 scores (%) on Booking validation set for
CASA-NLU

Qualitative Analysis: Using example conver-
sation in Figure 1, we highlight the relevance
of contextual information in making intent pre-
dictions by visualizing attention weights P(T)
(Equation 1) for different contextual signals as
shown in Figure 3.6 At user turn 2, the intent is
switched to UpgradeService which the model suc-
cessfully interprets by paying less attention to pre-
vious intents. At turn 3, however, contextual in-
formation is critical as user responds to elicitation
by agent and hence model emphasizes on last ut-
terance and intent rather than the current or other
previous turns.

6For each context signal, attention weights are averaged
across all its feature dimensions in P(T)
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Figure 3: Visualization of attention weights given to two
different context signals - previous utterances (top) and pre-
vious intents (bottom) for turns t=2 (left) and t=3 (right) from
Figure 1; darker colors reflect higher attention weights.

6 Conclusion

We proposed CASA-NLU model that uses a vari-
able context and various contextual signals in ad-
dition to the current utterance to predict the intent
and slot labels for the current turn. CASA-NLU

achieves gains of over 7% on IC accuracy for Ca-
ble dataset over CGRU-NLU baseline, and almost
29% over non-contextual version. This highlights
the importance of using contextual information,
meanwhile showing that, learning correct atten-
tion is also vital for NLU systems.

7 Implementation Details

We use hidden layer size of 56 with dropout
probability of 0.3. Context history window K
was varied from 1 to 5 and the optimal value
of 3 was selected. Word embeddings are trained
from scratch using an embedding layer size of 56.
Adam (Kingma and Ba, 2014) algorithm with ini-
tial learning rate of 0.01 gave the optimal perfor-
mance. Concatenation window sizew of 3 is used.
α and β in loss objective are set to 0.9. Early stop-
ping is used with patience of 10 and threshold of
0.5. Each model is trained for 3 seeds and scores
averaged across the seeds are reported.

8 Acknowledgements

The authors would like to thank the entire AWS
Lex Science team for having insightful discussions
and providing feedback with experiments. The au-
thors would also like to express their gratitude to
Yi Zhang for his generous help and suggestions for
this work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.
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