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Abstract

Zero pronouns (ZPs) are frequently omitted in
pro-drop languages, but should be recalled in
non-pro-drop languages. This discourse phe-
nomenon poses a significant challenge for ma-
chine translation (MT) when translating texts
from pro-drop to non-pro-drop languages. In
this paper, we propose a unified and discourse-
aware ZP translation approach for neural MT
models. Specifically, we jointly learn to
predict and translate ZPs in an end-to-end
manner, allowing both components to inter-
act with each other. In addition, we em-
ploy hierarchical neural networks to exploit
discourse-level context, which is beneficial
for ZP prediction and thus translation. Ex-
perimental results on both Chinese⇒English
and Japanese⇒English data show that our ap-
proach significantly and accumulatively im-
proves both translation performance and ZP
prediction accuracy over not only baseline but
also previous works using external ZP predic-
tion models. Extensive analyses confirm that
the performance improvement comes from the
alleviation of different kinds of errors espe-
cially caused by subjective ZPs.

1 Introduction

Zero anaphora is a discourse phenomenon, where
pronouns can be omitted when they are pragmat-
ically or grammatically inferable from intra- and
inter-sentential context (Li and Thomson, 1979).
However, translating such implicit information
(i.e. zero pronoun, ZP) poses various difficulties
for machine translation (MT) in terms of com-
pleteness and correctness. Although neural mod-
els are getting better at learning representations, it
is still difficult to implicitly learn complex ZPs in a
general model. Actually, ZP prediction and trans-
lation need to not only understand the semantics
or intentions of a single sentence, but also utilize
its discourse-level context.

Two technological advances in the field of ZP
and MT, have seen vast progress over the last
decades, but they have been developed very much
in isolation. Early studies (Chung and Gildea,
2010; Le Nagard and Koehn, 2010; Xiang et al.,
2013) fed MT systems with the results of ZP pre-
diction models, which are trained on a small-scale
and non-homologous data compared to MT mod-
els. To narrow the data-level gap, Wang et al.
(2016) proposed an automatic method to annotate
ZPs by utilizing the parallel corpus of MT. The ho-
mologous data for both ZP prediction and transla-
tion leads to significant improvements on transla-
tion performances for both statistical MT (Wang
et al., 2016) and neural MT models (Wang et al.,
2018a). However, such approaches still require
external ZP prediction models, which have a low
accuracy of 66%. The numerous errors of ZP
prediction errors will be propagated to transla-
tion models, which leads to new translation prob-
lems. In addition, relying on external ZP predic-
tion models in decoding makes these approaches
unwieldy in practice, due to introducing more
computation cost and pipeline complexity.

In this work, we try to further bridge the model-
level gap by jointly modeling ZP prediction and
translation. Joint learning has proven highly effec-
tive on alleviating the error propagation problem,
such as joint parsing and translation (Liu and Liu,
2010), as well as joint tokenization and transla-
tion (Xiao et al., 2010). Similarly, we expect that
ZP prediction and translation could interact with
each other: prediction offers more ZP information
beyond 1-best result to translation and translation
helps prediction resolve ambiguity. Specifically,
we first cast ZP prediction as a sequence labeling
task with a neural model, which is trained jointly
with a standard neural machine translation (NMT)
model in an end-to-end manner. We leverage the
auto-annotated ZPs to supervise the learning of ZP
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prediction component, which releases the reliance
on external ZP knowledge in decoding phase.

In addition, previous studies revealed that
discourse-level information can better tackle ZP
resolution, because around 23% of ZPs appear
two or more sentences away from their an-
tecedents (Zhao and Ng, 2007; Chen and Ng,
2013). Inspired by these findings, we exploit inter-
sentential context to further improve ZP prediction
and thus translation. Concretely, we employ hi-
erarchical neural networks (Sordoni et al., 2015;
Wang et al., 2017) to summarize the context of
previous sentences in a text, which is integrated
to the joint model for ZP prediction.

We validate the proposed approach on the
widely-used data for ZP translation (Wang et al.,
2018a), which consist of 2.15M Chinese–English
sentence pairs. Experimental results show that
the joint model indeed improves performances on
both ZP prediction and translation. Incorporating
discourse-level context further improves perfor-
mances, and outperforms ther external ZP predic-
tion model (Wang et al., 2018a) by +2.29 BLEU
points in translation and +11% in prediction accu-
racy. Experimental results on a further Japanese–
English translation task show that our model con-
sistently outperforms both the baseline and the ex-
ternal ZP prediction model, demonstrating the uni-
versality of the proposed approach.

The key contributions of this paper are:

1. We propose a single model to jointly learn ZP
prediction and translation, which improves
performances on both tasks by allowing the
two components to interact with each other.

2. Our study demonstrates the effectiveness of
discourse-level context for ZP prediction.

3. Based on our manually-annotated testset, we
conduct extensive analyses to assess ZP pre-
diction and translation.

2 Background

2.1 Zero Pronoun

In pro-drop languages such as Chinese and
Japanese, ZPs occur much more frequently com-
pared to non-pro-drop languages such as En-
glish (Zhao and Ng, 2007). As seen in Ta-
ble 1, the subject pronoun (“我”) and the object
pronoun (“它”) are omitted in Chinese sentences
(“Inp.”) while these pronouns are all compulsory

Inp. 等我搬进来，(我我我)能买台电视吗？
Ref. Can I get a TV when I move in?
Out. When I move in to buy a TV.
Inp. 这块蛋糕很美味！你烤的 (它它它)吗？
Ref. The cake is very tasty! Did you bake it?
Out. The cake is delicious! Are you baked?

Table 1: Examples of ZPs and translations where words
in brackets are ZPs that are invisible in decoding and
underlined words are antecedents of anaphoric ZPs.
This leads to problems for NMT in respect of complete-
ness (first case) and correctness (second case). “Inp.”
and “Ref.” indicate Chinese input and English trans-
lation, respectively. “Out.” represents the output of a
NMT model.

in their English translations (“Ref.”). This is not
a problem for human beings since we can eas-
ily recall these missing pronoun from the context.
Taking the second sentence for example, the pro-
noun “它” is an anaphoric ZP that refers to the an-
tecedent (“蛋糕”) in previous sentence, while the
non-anaphoric pronoun “我” can still be inferred
from the whole sentence. The first example also
indicates the necessity of intra-sentential informa-
tion for ZP prediction.

However, ZP poses a significant challenge for
translation models from pro-drop to non-pro-drop
languages, where ZPs are normally omitted in
the source side but should be generated overly
in the target side. As shown in Table 1, even
a strong NMT model fails to recall the implicit
information, which lead to problems like incom-
pleteness and incorrectness. The first case is trans-
lated into “When I move in to buy a TV”, which
makes the output miss subject element (incom-
pleteness). The second case is translated into “Are
you baked?”, while the correct translation should
be “Did you bake it?” (incorrectness).

2.2 Bridging Data Gap Between ZP
Prediction and Translation

Recent efforts have explored ways to bridge the
gap of ZP prediction and translation (Wang et al.,
2016, 2018a,b) by training both models on the ho-
mologous data. The pipeline involves two phases,
as described below.

Translation-Oriented ZP Prediction Its goal is
to recall the ZPs in the source sentence (i.e. pro-
drop language) with the information of the target
sentence (i.e. non-pro-drop language) in a paral-



923

lel corpus. Taking the second case (assuming that
Inp. and Ref. are sentence pair in a parallel cor-
pus) in Table 1 for instance, the ZP “它 (it)” is
dropped in the Chinese side while its equivalent
“it” exists in the English side. It is possible to
identify the ZP position (between “的” and “吗”)
by alignment information, and then recover the ZP
word “它” by a language model (scoring all pos-
sible pronoun candidates and select the one with
the lowest perplexity). Wang et al. (2016) pro-
posed a novel approach to automatically annotate
ZPs using alignment information from bilingual
data, and the auto-annotation accuracy can achieve
above 90%. Thus, a large amount of ZP-annotated
sentences were available to train an external ZP
prediction model, which was further used to an-
notate source sentences in test sets during the de-
coding phase. They integrated the ZP predictor
into SMT and showed promising results on both
Chinese–English and Japanese–English data.

However, their neural-based ZP prediction
model still produce low accuracies on predicting
ZPs, which is 66% in F1 score. This is a key
problem for the pipeline framework, since numer-
ous errors would be propagated to the subsequent
translation process.

Translation with ZP-Annotated Data An in-
tuitive way to exploit the annotated data is to
train a standard NMT model on the annotated
parallel corpus, which decodes the input sen-
tence annotated by the external ZP prediction
model. Wang et al. (2018a) leveraged the encoder-
decoder-reconstructor framework (Tu et al., 2017)
for this task, which reconstructs the intermediate
representations of NMT model back to the ZP-
annotated input. The auxiliary loss on ZP recon-
struction can guide the intermediate representa-
tions to learn critical information relevant to ZPs.
However, their best model still needs external ZP
prediction at decoding time. In response to this
problem, Wang et al. (2018b) leveraged the pre-
diction results of the ZP positions, which have rel-
atively higher accuracy (e.g. 88%). Accordingly,
they jointly learn the partial ZP prediction (i.e.,
predict the ZP word given the externally annotated
ZP position) and ZP translation.

In this work, we follow this direction with the
encoder-decoder-reconstructor framework, and
show our approach outperforms both strategies of
using externally annotated data.

Figure 1: Architecture of the joint ZP prediction and
translation model, in which ZP prediction is casted as a
sequence labelling problem.

3 Approach

In this study, we propose a joint model to learn
ZP prediction and translation, which can be further
improved by leveraging discourse-level context.

• Joint ZP Prediction and Translation (Sec-
tion 3.1) We cast ZP prediction as a sequence
labeling problem, which can be trained to-
gether with ZP translation model in an end-
to-end manner. This releases the reliance on
external ZP prediction models (e.g. 66% or
88% accuracy), since no ZP-annotated sen-
tence is required any more in decoding. In-
stead, only the high-quality annotated bilin-
gual data (e.g. 93% accuracy) are needed.

• Discourse-Aware ZP Prediction (Section 3.2)
We further improve ZP prediction and thus
its translation with discourse-level context,
which is summarized by hierarchical neural
networks. The contextual representation is
integrated into the reconstructor, based on
which ZP prediction is conducted.

3.1 Joint ZP Prediction and Translation

Figure 1 illustrates the architecture of the joint
model, which consists of two main components.
The ZP translation component is a standard
encoder-decoder NMT model, while an additional
reconstructor is introduced for ZP prediction. To
guarantee the reconstructor states contain enough
information for ZP prediction, the reconstructor
reads both the encoder and decoder states and the
reconstruction score is computed by

R(x̂|henc,hdec) =
T∏
t=1

gr(x̂t−1,h
rec
t , ĉenct , ĉdect )
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where hrect is the hidden state in the reconstructor:

hrect = fr(x̂t−1,h
rec
t−1, ĉ

enc
t , ĉdect ) (1)

Here gr(·) and fr(·) are respective softmax and ac-
tivation functions for the reconstructor. The con-
text vectors ĉenct and ĉdect are the weighted sum of
henc and hdec, and the weights are calculated by
two interactive attention models:

α̂enc = ATTenc(xt−1,h
rec
t−1,h

enc) (2)

α̂dec = ATTdec(xt−1,h
rec
t−1,h

dec, ĉenct ) (3)

The interaction between two attention models
leads to a better exploitation of the encoder and
decoder representations (Wang et al., 2018b).

ZP Prediction as Sequence Labelling We cast
ZP prediction as a sequence labelling task, where
each word is labelled if there is a pronoun missing
before it. Given the input x = {x1, x2, . . . , xT }
with the last word xT being the end-of-sentence
tag “ 〈eos〉”,1 the output to be labelled is a se-
quence of labels zp = {zp1, zp2, . . . , zpT } with
zpt ∈ {N} ∪ Vzp. Among the label set, “N”
denotes no ZP, and Vzp is the vocabulary of pro-
nouns.2 Taking Figure 1 as an example, the label
sequence “N N N它 N N” indicates that the pro-
noun “它” is missing before the fourth word “吗”
in the source sentence “你 烤 的 吗？”. More
specifically, we model the probability of generat-
ing the label sequence zp as:

P (zp|hrec) =
T∏
t=1

P (zpt|hrect )

=
T∏
t=1

gl(zpt,h
rec
t )

(4)

where gl(·) is softmax for the ZP labeler. As seen,
we integrate the ZP generation component into the
ZP translation model. There is no reliance on ex-
ternal ZP prediction models in decoding phase.

Training and Testing The newly introduced
prediction component is trained together with the

1We introduce “ 〈eos〉” to cover the case that a pronoun is
missing at the end of a sentence.

2We employ the pronoun vocabulary used in Wang et al.
(2016), which contains 30 distinct Chinese pronouns.

Figure 2: Architecture of hierarchical neural encoder.
x−K , . . . ,x−1 are K previous sentences before the
current source sentence “你烤的吗 ?” in a text.

encoder-decoder-reconstructor:

J(θ, γ, ψ) = argmax
θ,γ,ψ

{
logL(y|x; θ)︸ ︷︷ ︸

likelihood
+ logR(x|henc,hdec; θ)︸ ︷︷ ︸

reconstruction

+ logP (zp|hrec; θ, γ)︸ ︷︷ ︸
ZP labeling

} (5)

where {θ, γ} are respectively the parameters asso-
ciated with the encoder-decoder-reconstructor and
the ZP prediction component. The auxiliary pre-
diction loss P (·) guides the hidden states of both
the encoder-decoder and the reconstructor to em-
bed the ZPs in the source sentence. Although the
calculation of labeling loss relies on explicitly an-
notated labels, it is only used in training to guide
the parameters to learn ZP-enhanced representa-
tions. Benefiting from the implicit integration of
ZP information, we release the reliance on exter-
nal ZP prediction model in testing.

3.2 Discourse-Aware ZP Prediction
Discourse information have proven useful for pre-
dicting antecedents, which may occur in previ-
ous sentences (Zhao and Ng, 2007; Chen and Ng,
2013). Therefore, we further improve ZP predic-
tion with discourse-level context, which is learned
together with the joint model.

Encoding Discourse-Level Context Hierarchi-
cal structure networks are usually used for
modelling discourse context on various natu-
ral language processing tasks such query sug-
gestion (Sordoni et al., 2015), dialogue model-
ing (Serban et al., 2016) and MT (Wang et al.,
2017). Therefore, we employ hierarchical en-
coder (Wang et al., 2017) to encoder discourse-
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level context for NMT. More specifically, we
use the previous K source sentences X =
{x−K , . . . ,x−1} as the discourse information,
which is summarized with a two-layer hierarchical
encoder, as shown in Figure 2. For each sentence
x−k, we employ a word-level encoder to summa-
rize the representation of the whole sentence:

h−k = ENCODERword(x
−k) (6)

After we can obtain all sentence-level representa-
tions HX = {h−K , . . . ,h−1}, we feed them into
a sentence-level encoder to produce a vector that
represents the discourse-level context:

C = ENCODERsentence(H
X) (7)

Here the summary C consists of not only the de-
pendencies between words, but also the relations
between sentences. Following Voita et al. (2018),
we share the parameters of word-level encoder
ENCODERword with the encoder component in
standard NMT model. Note that, ENCODERword
and ENCODERsentence can be implemented as ar-
bitrary networks, such as recurrent networks (Cho
et al., 2014), convolutional networks (Gehring
et al., 2017), or self-attention networks (Vaswani
et al., 2017). In this study, we used recurrent net-
works to implement our ENCODER.

Integrating Discourse into ZP Prediction We
directly feed the discourse-level context to the re-
constructor to improve ZP prediction. Specifi-
cally, we combine the context vector and the re-
constructor state:

ĥrect = fc(h
rec
t ,C) (8)

Here fc(·) is a function for combining reconstruc-
tor states and the context vector, which is a sim-
ple concatenation (CONCAT) in this work. The re-
vised reconstructor state ĥrect is then used in Equa-
tions (1) and (4).

4 Experiments

4.1 Setup
We conducted translation experiments on both
Chinese⇒English and Japanese⇒English trans-
lation tasks, since Chinese and Japanese are
pro-drop languages while English is not. For
Chinese⇒English translation task, we used the
data of auto-annotated ZPs (Wang et al., 2018a).3

3https://github.com/longyuewangdcu/
tvsub.

The training, validation, and test sets contain
2.15M, 1.09K, and 1.15K sentence pairs, respec-
tively. In the training data, there are 27% of Chi-
nese pronouns are ZPs, which poses difficulties
for NMT models. For Japanese⇒English transla-
tion task, we respectively selected 1.03M, 1.02K,
and 1.02K sentence pairs from Opensubtitle20164

as training, validation, and test sets (Tiedemann,
2012). We used case-insensitive 4-gram NIST
BLEU (Papineni et al., 2002) as evaluation met-
rics, and sign-test (Collins et al., 2005) to test for
statistical significance.

To make fair comparison with Wang et al.
(2018a), we also implemented our approach on
top of the RNN-based NMT model, which in-
corporates dropout (Hinton et al., 2012) on the
output layer and improves the attention model
by feeding the most recently generated word.
For training the models, we limited the source
and target vocabularies to the most frequent
30K words for Chinese⇒English and 20K for
Japanese⇒English. Each model was trained on
sentences of length up to a maximum of 20 words
with early stopping. Mini-batches were shuffled
during processing with a mini-batch size of 80.
The dimension of word embedding was 620 and
the hidden layer size was 1,000. We trained for
20 epochs using Adadelta (Zeiler, 2012), and se-
lected the model that yielded best performances on
validation sets. For training the proposed models,
the hidden layer sizes of hierarchical model and
reconstruction model are 1,000 and 2,000, respec-
tively. We modeled previous three sentences as
discourse-level context.5

4.2 Results on Chinese⇒English Task
Table 2 lists the performance of ZP translation and
prediction on Chinese⇒English data.

The baseline (Row 1) is trained on the standard
NMT model using the original parallel data (x,
y). In addition, we implemented two compara-
tive models (Row 2-3), which differ with respect
to the training data used. The “+ ZP-Annotated
Data” model was still trained on standard NMT
model but using new training instances (x̂, y)
whose source-side sentences are auto-annotated
with ZPs. The “+ Reconstruction” is the best
model reported in Wang et al. (2018a), which em-
ploys two reconstructors to reconstruct the x̂ from

4http://www.opensubtitles.org.
5We followed Wang et al. (2017) and Tu et al. (2018) to

use 3 previous sentences as discourse context.

https://github.com/longyuewangdcu/tvsub
https://github.com/longyuewangdcu/tvsub
 http://www.opensubtitles.org
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# Model
Translation Prediction

#Params BLEU P R F1

1 Baseline 86.7M 31.80 n/a n/a n/a
External ZP Prediction (Wang et al., 2018a)

2 + ZP-Annotated Data +0M 32.67
0.67 0.65 0.66

3 + Reconstruction +73.8M 35.08
This Work: Joint ZP Prediction and Translation

4 Joint Model +35.6M 36.04† 0.72 0.68 0.70
5 + Discourse-Level Context +56.6M 37.11† 0.76 0.77 0.77

Table 2: Evaluation of ZP translation and prediction on the Chinese–English data. “#Params” represents the
number of parameters used in different models. “†” indicates statistically significant difference (p < 0.01) from
the best external ZP prediction model for translation performance. As seen, the proposed joint models improve
performances in both ZP translation and prediction, over the external ZP prediction models.

hidden representations of encoder and decoder. At
decoding time, ZPs can not be annotated by align-
ment method since target sentences are not avail-
able. Thus, source sentences are annotated by
an external ZP prediction model, which is trained
on monolingual training instances x̂. Finally, we
evaluated two proposed models (Row 4-5) which
are introduced in Section 3.1 and 3.2, respectively.

Translation Quality Benefiting from the explic-
itly annotated ZPs in the source language, the
“+ ZP-Annotated Data” model (Row 2) outper-
forms the baseline system built on the original
data where the pronouns are missing (i.e., +0.87
BLEU point). This illustrates that explicitly recall-
ing translation of ZPs at training time helps pro-
duce better translations. Furthermore, the “+ Re-
constuction” approach (Row 3) respectively out-
performs the baseline and “+ ZP-Annotated Data”
models by +3.28 and +2.41 BLEU points, which
indicates that explicitly handling ZPs with recon-
struction model can better address ZP problems.

The proposed models consistently outperform
other models in all cases, demonstrating the su-
periority of the joint learning of ZP prediction and
translation. Specifically, the “Joint Model” (Row
4) significantly improves translation performance
by +4.24 over baseline model. In addition, this
joint approach also outperforms two comparative
models “+ ZP-Annotated Data” and “+ Recon-
struction” by +3.37 and +0.96 BLEU points, re-
spectively. We attribute the improvement over ex-
ternal ZP prediction to: 1) releasing the reliance on
external ZP prediction models can greatly alleviate
error propagation problems; and 2) joint learning
of ZP prediction and translation is able to guide the

Model BLEU 4
Baseline 19.94 –
External ZP Prediction 20.86 +0.92
Joint Model 21.39 +1.45
+ Discourse-Level Context 22.00 +2.06

Table 3: Translation quality on Japanese–English data.
As seen, the proposed models can also significantly im-
prove translation performance, which shares the same
trend with that on Chinese–English translation.

related parameters to learn better latent represen-
tations. Furthermore, introducing discourse-level
context (Row 5) accumulatively improves transla-
tion performance, and significantly outperform the
joint model by +1.07 BLEU points.

More parameters may capture more informa-
tion, at the cost of posing difficulties to training.
Wang et al. (2018a) leverage two separate recon-
structors with hidden state size being 2000 and
1000 respectively. Accordingly, their models in-
troduce a large number of parameters. In con-
trast, we set the hidden size of the reconstructor
be 1000, which greatly reduce the newly intro-
duced parameters (+35.6M vs. +73.8M). Mod-
eling discourse-level context further introduces
+21M new parameters, which is reasonable com-
paring with previous work. Our best model varia-
tion outperform that of external ZP prediction by
over 2 BLEU points with less parameters (143.3M
vs. 160.5M), showing that the improvements are
attributed to the stronger modeling capacity rather
than more parameters.

ZP Prediction Accuracy The joint model im-
proves prediction accuracy as expected, which we
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Model
ZP-Annotated Input
X × 5

Baseline 31.80 –
External ZP Predict. 35.08 34.02 -1.06
Joint Model 36.04 35.93 -0.11

+ Discourse 37.11 36.51 -0.60

Table 4: Translation results when no ZP-annotated in-
put is used in decoding by removing the reconstructor
component. “5” denotes the performance gap between
whether using the annotated input (“X”) or not (“×”).

attribute to the leverage of useful translation infor-
mation. Incorporating the discourse-level context
further improves ZP prediction, and the best per-
formance is 11% higher than external ZP predic-
tion model. These results confirm our claim that
joint learning of ZP prediction and translation can
benefit both components by allowing them to in-
teract with each other.

4.3 Results on Japanese⇒English Task
Table 3 lists the results. We compare our models
and the best external ZP prediction approach. As
seen, our models also significantly improve trans-
lation performance, demonstrating the effective-
ness and universality of the proposed approach.

This improvement on Japanese⇒English trans-
lation is lower than that on Chinese⇒English,
showing that ZP prediction and translation are
more challenging for Japanese. The reason may
be two folds: 1) Japanese language has a larger
number of pronoun variations borrowed from ar-
chaism, which leads to more difficulties in learn-
ing ZPs; 2) Japanese language is subject-object-
verb (SOV) while English has subject-verb-object
(SVO) structure, and this poses difficulties for ZP
annotation via alignment method.

4.4 Analysis
We conducted extensive analyses on Chinese
⇒English to better understand our models in
terms of the effect of external ZP annotation and
different types of ZPs errors.

Reliance on Externally ZP-Annotated Input
Some researchers may argue that previous ap-
proaches (Wang et al., 2018a) are also able to re-
lease the reliance of externally annotated input by
removing the reconstructor component. Table 4
lists the results. Without ZP-annotated input in
decoding, all approaches can still outperform the

Model BLEU 4
Baseline 31.80 –

+ Discourse⇒Decoder 32.34 +0.54
Baseline + ZP-Anno. 32.67

+ Discourse⇒Decoder 32.55 -0.12
Joint Model 36.04 –

+ Discourse⇒Decoder 34.66 -1.38

Table 5: Translation results when transforming the con-
textual representation to decoder of different models.
Incorporating discourse-level context does not always
lead to improvement of translation performance.

baseline model, by benefiting better intermediate
representations that contain necessary ZP informa-
tion. Compared with reconstruction-based mod-
els, however, removing the reconstruction compo-
nents leads to decrease on translation quality. As
seen, the BLEU score of best “External ZP pre-
diction” model dramatically drops by -1.06 points,
showing that this approach is heavily dependent
on the results of external ZP annotations. The per-
formances of proposed models only decrease by -
0.1∼-0.6 BLEU point. It indicates that our models
are compatible with the standard encoder-decoder-
reconstructor framework, thus enjoy an additional
benefit of re-scoring translation hypotheses in test-
ing with reconstruction scores. All the results to-
gether prove the superiority of the proposed uni-
fied framework for ZP translation.

Effect of Discourse-Level Context Recent
studies revealed that inter-sentential context can
implicitly help to tackle anaphora resolution in
NMT architecture (Jean et al., 2017b; Baw-
den et al., 2018; Voita et al., 2018). Some
may argue that document-level architectures are
strong enough to alleviate ZP problems for NMT.
To answer this concern, we compared with “+
Discourse⇒Decoder” models, which transform
the contextual representation to the decoder part of
different models. In this way, the discourse-level
context can benefit both the generation of transla-
tion and ZP prediction.

As shown in Table 5, directly incorporating
inter-sentential context into standard NMT model
(one of document-level NMT architectures) can
improve translation quality by +0.54 BLEU point
than baseline. However, this integration mech-
anism does not work well in “Baseline + ZP-
Annotation” and our “Joint” models, which de-
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Model Error Sub. Obj. Dum. All
BASE. Total 112 41 45 198

EXTE.
Fixed 50 34 33 117
New 11 14 7 32
Total 73 21 19 113

JOIN.
Fixed 61 35 37 133
New 8 11 7 26
Total 59 17 15 91

+DIS.
Fixed 70 39 38 147
New 7 9 7 23
Total 49 11 14 74

Table 6: Translation error statistics. The ZP types
“Sub.”, “Obj.” and “Dum.” denote errors caused by
subjective, objective and dummy pronouns, respec-
tively. The models “Base.”, “Exte.”, “Join.” and
“+Dis.” denote “Baseline”, “+ Reconstruction”, “Joint
Model” and “+ Discourse-Level context” models. Bold
numbers denote the least errors in each category.

creasing by -0.12 and -1.38 BLEU points, respec-
tively. One potential problem with this strategy is
that the propagation path is longer: C → hdec →
hrec → zp, which may suffer from the van-
ishing effect. This also confirms our hypothesis
that discourse-level context benefits ZP prediction
more than ZP translation. Therefore, we incorpo-
rate the discourse-level context into reconstructor
instead of the decoder.

Manual Evaluation on Translation Errors We
finally investigate how the proposed approaches
improve the translation by human evaluation. We
randomly select 500 sentences from the test set.
As shown in Table 6, we count how many trans-
lation errors caused by different types of ZPs
(i.e., “Subjective”, “Objective” and “Dummy”6)
are fixed (“Fixed”) and newly generated (“New”)
by different models.

All the models can fix different amount of ZP
problems in terms of completeness and correct-
ness, which is consistent with the translation re-
sults reported in Table 2. This confirms that
our improvement in terms of BLEU scores in-
deed comes from alleviating translation errors
caused by ZPs. Among them, the proposed model
“+DIS.” performs best, which fixes 74% of the ZP
errors, and only introduces 12% of new errors.

In addition, we found that subjective ZPs are

6In pro-drop languages, it is used to fulfill the syntactical
requirements without providing explicit meaning (e.g. “it”).

more difficult to predict and translate since they
usually occur in imperative sentences, and ZP pre-
diction needs to understand intention of speakers.
The “EXTE.” model only fixes 45% of subjec-
tive ZP errors but made 10% new errors by pre-
dicting wrong ZPs. However, the proposed joint
model works better, which fixes 54% error with
only introducing 7% new errors. Predicting ob-
jective ZPs needs inter-sentential context, thus our
“+DIS.” model is able to fix more objective ZP er-
rors (95% vs. 82%) by introducing less new errors
(22% vs. 34%) than “EXTE.”.

Case Study Table 7 shows two typical exam-
ples, of which pronouns are mistakenly translated
by the strong baseline (“External ZP Prediction”)
model (Wang et al., 2018a) while fixed by our
model and failed to be fix. In “Fixed Error” case,
the dropped word “它 (it)” is an anaphoric ZP
whose antecedent is the noun “电视 (television)”
in previous sentence while the dropped word “你
(you)” is a non-anaphoric ZP that depends upon
speaker or listener. As seen, our “JOIN.” model
performs better than the “EXTE.” model because
two ZP positions are syntactically recalled in the
target side, showing that the joint approach have
better capability of utilizing intra-sentential infor-
mation for identifying ZPs. Besides, our “+DIS.”
model can semantically fix the error by predict-
ing correct ZP words, demonstrating that inter-
sentential context can aid to recovering such com-
plex ZPs. However, as shown in “Non-Fixed Er-
ror” case, there are still some ZPs can not be pre-
cisely predicted due to the misunderstanding of in-
tentions of utterances. Thus, exploiting dialogue
focus for ZP translation is our future work (Rao
et al., 2015).

5 Related Work

ZP Prediction and Translation ZP resolution
is a challenging task which needs lexical, syn-
tactic, discourse knowledge. Previous studies
have been conducted to improves the perfor-
mance of ZP resolution for different pro-drop lan-
guages (Kong and Zhou, 2010; Chen and Ng,
2013; Park et al., 2015; Yin et al., 2017). How-
ever, directly using results of external ZP resolu-
tion systems for translation task shows limited im-
provements (Chung and Gildea, 2010; Le Nagard
and Koehn, 2010; Taira et al., 2012; Xiang et al.,
2013), since such external systems are trained on
small-scale data that is non-homologous to MT. To
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Fixed Error
PRE. 等我搬进来,能买台电视吗?
INP. 当然可以,乔伊不让 (你)买 (它)?

REF. Sure. Joey wouldn’t let you buy it?
EXTE. Of course. Sure, Joey won’t get it?
JOIN. Sure. Joey won’t let us buy one?
+DIS. Sure. Joey wouldn’t let you buy it?

Non-Fixed Error
PRE. 我和露西只是要搬到对门。

INP. 我们一分手 (我)就搬回去。
REF. Once we broke up, I’ll move back.

EXTE. Once we broke up, she’ll move back.
JOIN. Once we broke up, we moved back.
+DIS. Once we broke up, we’ll move back.

Table 7: Example translations where pronouns in
brackets are dropped in original inputs (“INP.”) but la-
beled by humans according to references (“REF.”) and
previous sentence (“PRE.”). We italicize some mis-
translated errors and highlight the correct ones in bold.

overcome the data-level gap, Wang et al. (2016)
proposed an automatic approach of ZP annotation
by utilizing an alignment matrix from a large par-
allel data. By using the translation-oriented ZP
corpus, they exploited different approaches to al-
leviate ZP problems for translation models (Wang
et al., 2016, 2018a,b). Note that Wang et al.
(2018b) also explored to address the problem of
error propagation by jointly predicting ZP words
given ZP position information. However, this
method still relies an external model that predict-
ing ZP positions at decoding time. Instead, this
work proposes a unified model without any addi-
tional ZP annotations in decoding, thus release re-
liance on external ZP prediction in practice.

Discourse-Aware NMT Recent years, context-
aware architecture has been well studied for
NMT (Wang et al., 2017; Jean et al., 2017a; Tu
et al., 2018). Wang et al. (2017) proposed hier-
archical recurrent neural networks to summarize
inter-sentential context from previous sentences
and then integrate it into a standard NMT model
with difference strategies. Jean et al. (2017a) in-
troduced an additional set of an encoder and at-
tention to encode and select part of the previous
source sentence for generating each target word.
Besides, Tu et al. (2018) proposed to augment
NMT models with a cache-like memory network,
which stores the translation history in terms of

bilingual hidden representations at decoding steps
of previous sentences. They also evaluated the
above three models on different domains of data,
showing that the hierarchical encoder performs
comparable with the multi-attention model. More
recently, some researchers began to investigate the
effects of context-aware NMT on cross-lingual
pronoun prediction (Jean et al., 2017b; Bawden
et al., 2018; Voita et al., 2018). They mainly
exploited general anaphora in non-pro-drop lan-
guages such as English⇒Russian.

6 Conclusion

In this work, we proposed a unified model to
learn jointly predict and translate ZPs by lever-
aging multi-task learning. We also employed hi-
erarchical neural networks to exploit discourse-
level information for better ZP prediction. Ex-
perimental results on both Chinese⇒English and
Japanese⇒English data show that the two pro-
posed approaches accumulatively improve both
the translation performance and ZP prediction
accuracy. Our models also outperform the ex-
isting ZP translation models in previous work,
and achieve a new state-of-the-art on the widely-
used subtitle corpus. Manual evaluation confirms
that the performance improvement comes from
the alleviation of translation errors, which are
mainly caused by subjective, objective as well as
discourse-aware ZPs.

There are two potential extensions to our
work. First, we will evaluate our method
on other implication phenomena (or called un-
aligned words (Takeno et al., 2017)) such as
tenses and article words for NMT. Second, we
will investigate the impact of different context-
aware models on ZP translation, including multi-
attention (Jean et al., 2017b) and context-aware
Transformer(Voita et al., 2018).
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.



930

Tagyoung Chung and Daniel Gildea. 2010. Effects
of empty categories on machine translation. In
EMNLP.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. In ACL.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In ICML.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sebastien Jean, Stanislas Lauly, Orhan Firat, and
Kyunghyun Cho. 2017a. Does neural machine
translation benefit from larger context? arXiv
preprint arXiv:1704.05135.

Sebastien Jean, Stanislas Lauly, Orhan Firat, and
Kyunghyun Cho. 2017b. Neural machine transla-
tion for cross-lingual pronoun prediction. In Work-
shop on Discourse in Machine Translation.

Fang Kong and Guodong Zhou. 2010. A tree kernel-
based unified framework for chinese zero anaphora
resolution. In EMNLP.

Ronan Le Nagard and Philipp Koehn. 2010. Aiding
pronoun translation with co-reference resolution. In
WMT-MetricsMATR.

Charles N Li and SA Thomson. 1979. Third-person
pronouns and zero-anaphora in chinese discourse in
discourse and syntax. Syntax and Semantics, 12.

Yang Liu and Qun Liu. 2010. Joint parsing and trans-
lation. In COLING.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In ACL.

Arum Park, Seunghee Lim, and Munpyo Hong. 2015.
Zero object resolution in korean. In PACLIC.

Sudha Rao, Allyson Ettinger, Hal Daumé III, and
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