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Abstract

Prior work on pretrained sentence embeddings
and benchmarks focuses on the capabilities of
representations for stand-alone sentences. We
propose DiscoEval, a test suite of tasks to eval-
uate whether sentence representations include
information about the role of a sentence in its
discourse context. We also propose a variety
of training objectives that make use of natural
annotations from Wikipedia to build sentence
encoders capable of modeling discourse in-
formation. We benchmark sentence encoders
trained with our proposed objectives, as well
as other popular pretrained sentence encoders,
on DiscoEval and other sentence evaluation
tasks. Empirically, we show that these train-
ing objectives help to encode different aspects
of information from the surrounding document
structure. Moreover, BERT (Devlin et al.,
2019) and ELMo (Peters et al., 2018a) demon-
strate strong performance across DiscoEval
tasks with individual hidden layers showing
different characteristics.1

1 Introduction

Pretrained sentence representations have been
found useful in various downstream tasks such as
visual question answering (Tapaswi et al., 2016),
script inference (Pichotta and Mooney, 2016),
and information retrieval (Le and Mikolov, 2014;
Palangi et al., 2016). Benchmark datasets (Adi
et al., 2017; Conneau and Kiela, 2018; Wang et al.,
2018a, 2019) have been proposed to evaluate the
encoded knowledge, where the focus has been pri-
marily on natural language understanding capabil-
ities of the representation of a stand-alone sen-
tence, such as its semantic roles, rather than the
broader context in which it is situated.

∗Equal contribution. Listed in alphabetical order.
1Data processing and evaluation scripts are available at

https://github.com/ZeweiChu/DiscoEval.
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[The European Community’s consumer price index rose a
provisional 0.6% in September from August]1 [and was up
5.3% from September 1988,]2 [according to Eurostat, the
EC’s statistical agency.]3

Figure 1: An RST discourse tree from the RST Dis-
course Treebank. “N” represents “nucleus”, contain-
ing basic information for the relation. “S” represents
“satellite”, containing additional information about the
nucleus.

In this paper, we seek to incorporate and eval-
uate discourse knowledge in general purpose sen-
tence representations. A discourse is a coherent,
structured group of sentences that acts as a funda-
mental type of structure in natural language (Ju-
rafsky and Martin, 2009). A discourse structure
is often characterized by the arrangement of se-
mantic elements across multiple sentences, such
as entities and pronouns. The simplest such ar-
rangement (i.e., linearly-structured) can be under-
stood as sentence ordering, where the structure is
manifested in the timing of introducing entities.
Deeper discourse structures use more complex re-
lations among sentences (e.g., tree-structured; see
Figure 1).

Theoretically, discourse structures have been
approached through Centering Theory (Grosz
et al., 1995) for studying distributions of enti-
ties across text and Rhetorical Structure Theory
(RST; Mann and Thompson, 1988) for modelling
the logical structure of natural language via dis-
course trees. Researchers have found modelling
discourse useful in a range of tasks (Guzmán et al.,
2014; Narasimhan and Barzilay, 2015; Liu and
Lapata, 2018; Pan et al., 2018), including summa-
rization (Gerani et al., 2014), text classification (Ji

https://github.com/ZeweiChu/DiscoEval


650

and Smith, 2017), and text generation (Bosselut
et al., 2018).

In this paper, we propose DiscoEval, a task suite
designed to evaluate discourse-related knowledge
in pretrained sentence representations. Disco-
Eval comprises 7 task groups covering multiple
domains, including Wikipedia, stories, dialogues,
and scientific literature. The tasks are probing
tasks (Shi et al., 2016; Adi et al., 2017; Belinkov
et al., 2017; Peters et al., 2018b; Conneau et al.,
2018; Poliak et al., 2018; Tenney et al., 2019; Liu
et al., 2019a; Ettinger, 2019; Chen et al., 2019,
inter alia) based on sentence ordering, anno-
tated discourse relations, and discourse coherence.
The data is either generated semi-automatically or
based on human annotations (Carlson et al., 2001;
Prasad et al., 2008; Lin et al., 2009; Kummerfeld
et al., 2019).

We also propose a set of novel multi-task learn-
ing objectives building upon standard pretrained
sentence encoders, which rely on the assumption
of distributional semantics of text. These objec-
tives depend only on the natural structure in struc-
tured document collections like Wikipedia.

Empirically, we benchmark our models and sev-
eral popular sentence encoders on DiscoEval and
SentEval (Conneau and Kiela, 2018). We find that
our proposed training objectives help the mod-
els capture different characteristics in the sentence
representations. Additionally, we find that ELMo
shows strong performance on SentEval, whereas
BERT performs the best among the pretrained em-
beddings on DiscoEval. Both BERT and Skip-
thought vectors (Kiros et al., 2015), which have
training losses explicitly related to surrounding
sentences, perform much stronger compared to
their respective prior work, demonstrating the ef-
fectiveness of incorporating losses that make use
of broader context. Through per-layer analysis,
we also find that for both BERT and ELMo, deep
layers consistently outperform shallower ones on
DiscoEval, showing different trends from Sent-
Eval where the shallow layers have the best per-
formance.

2 Related Work

Discourse modelling and discourse parsing have
a rich history (Marcu, 2000; Barzilay and Lapata,
2008; Zhou et al., 2010; Kalchbrenner and Blun-
som, 2013; Ji and Eisenstein, 2015; Li and Juraf-
sky, 2017; Wang et al., 2018c; Liu et al., 2018; Lin

et al., 2019, inter alia), much of it based on recov-
ering linguistic annotations of discourse structure.

Several researchers have defined tasks related
to discourse structure, including sentence order-
ing (Chen et al., 2016; Logeswaran et al., 2016;
Cui et al., 2018), sentence clustering (Wang et al.,
2018b), and disentangling textual threads (Elsner
and Charniak, 2008, 2010; Lowe et al., 2015;
Mehri and Carenini, 2017; Jiang et al., 2018;
Kummerfeld et al., 2019).

There is a great deal of prior work on pre-
trained representations (Le and Mikolov, 2014;
Kiros et al., 2015; Hill et al., 2016; Wieting et al.,
2016; McCann et al., 2017; Gan et al., 2017; Pe-
ters et al., 2018a; Logeswaran and Lee, 2018; Dev-
lin et al., 2019; Tang and de Sa, 2019; Yang et al.,
2019; Liu et al., 2019b, inter alia). Skip-thought
vectors form an effective architecture for general-
purpose sentence embeddings. The model en-
codes a sentence to a vector representation, and
then predicts the previous and next sentences in
the discourse context. Since Skip-thought per-
forms well in downstream evaluation tasks, we use
this neighboring-sentence objective as a starting
point for our models.

There is also work on incorporating discourse
related objectives into the training of sentence
representations. Jernite et al. (2017) propose
binary sentence ordering, conjunction prediction
(requiring manually-defined conjunction groups),
and next sentence prediction. Similarly, Sileo
et al. (2019) and Nie et al. (2019) create train-
ing datasets automatically based on discourse re-
lations provided in the Penn Discourse Tree-
bank (PDTB; Lin et al., 2009).

Our work differs from prior work in that we pro-
pose a general-purpose pretrained sentence em-
bedding evaluation suite that covers multiple as-
pects of discourse knowledge and we propose
novel training signals based on document struc-
ture, including sentence position and section titles,
without requiring additional human annotation.

3 Discourse Evaluation

We propose DiscoEval, a test suite of 7 tasks to
evaluate whether sentence representations include
semantic information relevant to discourse pro-
cessing. Below we describe the tasks and datasets,
as well as the evaluation framework. We closely
follow the SentEval sentence embedding evalua-
tion suite, in particular its supervised sentence and
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sentence pair classification tasks, which use pre-
defined neural architectures with slots for fixed-
dimensional sentence embeddings. All DiscoEval
tasks are modelled by logistic regression unless
otherwise stated in later sections.

We also experimented with adding hidden lay-
ers to the DiscoEval classification models. How-
ever, we find simpler linear classifiers to provide
a clearer comparison among sentence embedding
methods. More complex classification models
lead to noisier results, as more of the modelling
burden is shifted to the optimization of the clas-
sifiers. Hence we decide to evaluate the sentence
embeddings with simple classification models.

In the rest of this section, we will use [·, ·, · · · ]
to denote concatenation of vectors, � for element-
wise multiplication, and | · | for element-wise ab-
solute value.

3.1 Discourse Relations

As the most direct way to probe discourse knowl-
edge, we consider the task of predicting anno-
tated discourse relations among sentences. We
use two human-annotated datasets: the RST
Discourse Treebank (RST-DT; Carlson et al.,
2001) and the Penn Discourse Treebank (PDTB;
Prasad et al., 2008). They have different label-
ing schemes. PDTB provides discourse markers
for adjacent sentences, whereas RST-DT offers
document-level discourse trees, which recently
was used to evaluate discourse knowledge en-
coded in document-level models (Ferracane et al.,
2019). The difference allows us to see if the pre-
trained representations capture local or global in-
formation about discourse structure.

More specifically, as shown in Figure 1, in RST-
DT, text is segmented into basic units, elementary
discourse units (EDUs), upon which a discourse
tree is built recursively. Although a relation can
take multiple units, we follow prior work (Ji and
Eisenstein, 2014) to use right-branching trees for
non-binary relations to binarize the tree structure
and use the 18 coarse-grained relations defined by
Carlson et al. (2001).

When evaluating pretrained sentence encoders
on RST-DT, we first encode EDUs into vectors,
then use averaged vectors of EDUs of subtrees
as the representation of the subtrees. The target
prediction is the label of nodes in discourse trees
and the input to the classifier is [xleft, xright, xleft �
xright, |xleft−xright|], where xleft and xright are vec-

1. In any case, the brokerage firms are clearly moving
faster to create new ads than they did in the fall of 1987.
2. [But] it remains to be seen whether their ads will be
any more effective.
label: Comparison.Contrast

Figure 2: Example in the PDTB explicit relation task.
The words in [] are taken out from input sentence 2.

1. “A lot of investor confidence comes from the fact that
they can speak to us,” he says.
2. [so] “To maintain that dialogue is absolutely crucial.”
label: Contingency.Cause

Figure 3: Example in the PDTB implicit relation task.

tor representations of the left and right subtrees re-
spectively. For example, the input for target “NN-
Attribution” in Figure 1 would be xleft =

x1+x2
2 ,

xright = x3, where xi is the encoded representa-
tion for the ith EDU in the text. We use the stan-
dard data splits, where there are 347 documents for
training and 38 documents for testing. We choose
35 documents from the training set to serve as a
validation set.

For PDTB, we use a pair of sentences to pre-
dict discourse relations. Following Lin et al.
(2009), we focus on two kinds of relations from
PDTB: explicit (PDTB-E) and implicit (PDTB-I).
The sentence pairs with explicit relations are two
consecutive sentences with a particular connective
word in between. Figure 2 is an example of an
explicit relation.

In the PDTB, annotators insert an implicit con-
nective between adjacent sentences to reflect their
relations, if such an implicit relation exists. Fig-
ure 3 shows an example of an implicit relation.
The PDTB provides a three-level hierarchy of re-
lation tags. In DiscoEval, we use the second level
of types (Lin et al., 2009), as they provide finer se-
mantic distinctions compared to the first level. To
ensure there is a reasonable amount of evaluation
data, we use sections 2-14 as training set, 15-18
as development set, and 19-23 as test set. In addi-
tion, we filter out categories that have less than 10
instances. This leaves us 12 categories for explicit
relations and 11 for implicit ones. Category names
are listed in the supplementary material.

We use the sentence embeddings to infer sen-
tence relations with supervised training. As in-
put to the classifier, we encode both sentences
to vector representations x1 and x2, concatenated
with their element-wise product and absolute dif-
ference: [x1, x2, x1 � x2, |x1 − x2|].
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- She was excited thinking she must have lost weight.
- Bonnie hated trying on clothes.
- Then she realized they actually size 14s, and 12s.
- She picked up a pair of size 12 jeans from the display.
- When she tried them on they were too big!

Figure 4: Example from the ROC Stories domain of the
Sentence Position task. The first sentence should be in
the fourth position.

3.2 Sentence Position (SP)

We create a task that we call Sentence Position.
It can be seen as way to probe the knowledge of
linearly-structured discourse, where the ordering
corresponds to the timings of events. When con-
structing this dataset, we take five consecutive sen-
tences from a corpus, randomly move one of these
five sentences to the first position, and ask models
to predict the true position of the first sentence in
the modified sequence.

We create three versions of this task, one for
each of the following three domains: the first
five sentences of the introduction section of a
Wikipedia article (Wiki), the ROC Stories cor-
pus (ROC; Mostafazadeh et al., 2016), and the first
5 sentences in the abstracts of arXiv papers (arXiv;
Chen et al., 2016). Figure 4 shows an example of
this task for the ROC Stories domain. The first
sentence should be in the fourth position among
these sentences. To make correct predictions, the
model needs to be aware of both typical orderings
of events as well as how events are described in
language. In the example shown, Bonnie’s excite-
ment comes from her imagination so it must hap-
pen after she picked up the jeans and tried them on
but right before she realized the actual size.

To train classifiers for these tasks, we do the fol-
lowing. We first encode the five sentences to vec-
tor representations xi. As input to the classifier,
we include x1 and the concatenation of x1−xi for
all i: [x1, x1 − x2, x1 − x3, x1 − x4, x1 − x5].

3.3 Binary Sentence Ordering (BSO)

Similar to sentence position prediction, Binary
Sentence Ordering (BSO) is a binary classification
task to determine the order of two sentences. The
fact that BSO only has a pair of sentences as input
makes it different from Sentence Position, where
there is more context, and we hope that BSO can
evaluate the ability of capturing local discourse co-
herence in the given sentence representations. The
data comes from the same three domains as Sen-
tence Position, and each instance is a pair of con-

1. These functions include fast and synchronized re-
sponse to environmental change, or long-term memory
about the transcriptional status.
2. Focusing on the collective behaviors on a popula-
tion level, we explore potential regulatory functions this
model can offer.

Figure 5: Example from the arXiv domain of the
Binary Sentence Ordering task (incorrect ordering
shown).

secutive sentences.
Figure 5 shows an example from the arXiv do-

main of the Binary Sentence Ordering task. The
order of the sentences in this instance is incorrect,
as the “functions” are referenced before they are
introduced. To detect the incorrect ordering in this
example, the encoded representations need to be
able to provide information about new and old in-
formation in each sentence.

To form the input when training classifiers,
we concatenate the embeddings of both sentences
with their element-wise difference: [x1, x2, x1 −
x2].

3.4 Discourse Coherence (DC)

Inspired by prior work on chat disentangle-
ment (Elsner and Charniak, 2008, 2010) and sen-
tence clustering (Wang et al., 2018b), we propose
a sentence disentanglement task. The task is to de-
termine whether a sequence of six sentences forms
a coherent paragraph. We start with a coherent
sequence of six sentences, then randomly replace
one of the sentences (chosen uniformly among
positions 2-5) with a sentence from another dis-
course. This task, which we call Discourse Coher-
ence (DC), is a binary classification task and the
datasets are balanced between positive and nega-
tive instances.

We use data from two domains for this task:
Wikipedia and the Ubuntu IRC channel.2 For
Wikipedia, we begin by choosing a sequence of
six sentences from a Wikipedia article. For pur-
poses of choosing difficult distractor sentences, we
use the Wikipedia categories of each document as
an indication of its topic. To create a negative in-
stance, we randomly sample a sentence from an-
other document with a similar set of categories
(measured by the percentage of overlapping cat-
egories). This sampled sentence replaces one of
the six consecutive sentences in the original se-
quence. When splitting the train, development,

2irclogs.ubuntu.com/

https://irclogs.ubuntu.com/
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1. It is possible he was the youngest of the family as the
name “Sextus” translates to sixth in English implying he
was the sixth of two living and three stillborn brothers.
2. According to Roman tradition, his rape of Lucretia was
the precipitating event in the overthrow of the monarchy
and the establishment of the Roman Republic.
3. Tarquinius Superbus was besieging Ardea, a city of the
Rutulians.
4. The place could not be taken by force, and the Roman
army lay encamped beneath the walls.
5. He was soon elected to the Academy’s membership
(although he had to wait until 1903 to be elected to the
Society of American Artists), and in 1883 he opened
a New York studio, dividing his time for several years
between Manhattan and Boston.
6. As nothing was happening in the field, they mounted
their horses to pay a surprise visit to their homes.

Figure 6: An example from the Wikipedia domain of
the Discourse Coherence task. This sequence is not
coherent; the boldface sentence was substituted in for
the true fifth sentence from another article.

and test sets, we ensure there are no overlapping
documents among them.

Our proposed dataset differs from the sentence
clustering task of Wang et al. (2018b) in that it pre-
serves sentence order and does not anonymize or
lemmatize words, because they play an important
role in conveying information about discourse co-
herence.

For the Ubuntu domain, we use the human an-
notations of conversation thread structure from
Kummerfeld et al. (2019) to provide us with a co-
herent sequence of utterances. We filter out sen-
tences by heuristic rules to avoid overly technical
and unsolvable cases. The negative sentence is
randomly picked from other conversations. Sim-
ilarly, when splitting the train, development, and
test sets, we ensure there are no overlapping con-
versations among them.

Figure 6 is an instance of the Wikipedia domain
of the Discourse Coherence task. This instance is
not coherent and the boldfaced text is from a dif-
ferent document. The incoherence can be found
either by comparing characteristics of the entity
being discussed or by the topic of the sentence
group. Solving this task is non-trivial as it may re-
quire the ability to perform inference across mul-
tiple sentences.

In this task, we encode all sentences to vec-
tor representations and concatenate all of them
([x1, x2, x3, x4, x5, x6]) as input to the classifica-
tion model. Note that in this task, we use a hid-
den layer of 2000 dimensions with sigmoid activa-
tion in the classification model, as this is necessary

1. The theory behind the SVM and the naive Bayes clas-
sifier is explored.
2. This relocation of the active target may be repeated an
arbitrary number of times.

Figure 7: Examples from Sentence Section Prediction.
The first is from an Abstract while the second is not.

Task PDTB-E PDTB-I Ubuntu RST-DT Others

Train 9383 8693 5816 17051 10000
Dev. 3613 2972 1834 2045 4000
Test 3758 3024 2418 2308 4000

Table 1: Size of datasets in DiscoEval.

for the classifier to use features based on multiple
inputs simultaneously given the simple concate-
nation as input. We could have developed richer
ways to encode the input so that a linear classifier
would be feasible (e.g., use the element-wise prod-
ucts of all pairs of sentence embeddings), but we
wish to keep the input dimensionality of the clas-
sifier small enough that the classifier will be learn-
able given fixed sentence embeddings and limited
training data.

3.5 Sentence Section Prediction (SSP)

The Sentence Section Prediction (SSP) task is de-
fined as determining the section of a given sen-
tence. The motivation behind this task is that
sentences within certain sections typically exhibit
similar patterns because of the way people write
coherent text. The pattern can be found based on
connectives or specificity of a sentence. For exam-
ple, “Empirically” is usually used in the abstract or
introduction sections in scientific writing.

We construct the dataset from PeerRead (Kang
et al., 2018), which consists of scientific papers
from a variety of fields. The goal is to predict
whether or not a sentence belongs to the Abstract
section. After eliminating sentences that are too
easy for the task (e.g., equations), we randomly
sample sentences from the Abstract or from a sec-
tion in the middle of a paper.3 Figure 7 shows two
sentences from this task, where the first sentence
is more general and from an Abstract whereas the
second is more specific and is from another sec-
tion. In this task, the input to the classifier is sim-
ply the sentence embedding.

Table 1 shows the number of instances in each
DiscoEval task introduced above.

3We avoid sentences from the Introduction or Conclusion
sections to make the task more solvable.
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4 Models and Learning Criteria

Having described DiscoEval, we now discuss
methods for incorporating discourse information
into sentence embedding training. All models in
our experiments are composed of a single encoder
and multiple decoders. The encoder, parameter-
ized by a bidirectional Gated Recurrent Unit (Bi-
GRU; Chung et al., 2014), encodes the sentence,
either in training or in evaluation of the down-
stream tasks, to a fixed-length vector representa-
tion (i.e., the average of the hidden states across
positions).

The decoders take the aforementioned encoded
sentence representation, and predict the targets we
define in the sections below. We first introduce
Neighboring Sentence Prediction, the loss for our
baseline model. We then propose additional train-
ing losses to encourage our sentence embeddings
to capture other context information.

4.1 Neighboring Sentence Prediction (NSP)
Similar to prior work on sentence embed-
dings (Kiros et al., 2015; Hill et al., 2016), we use
an encoded sentence representation to predict its
surrounding sentences. In particular, we predict
the immediately preceding and succeeding sen-
tences. All of our sentence embedding models use
this loss. Formally, the loss is defined as

NSP = − log pθ(st−1|st)− log pφ(st+1|st)

where we parameterize pθ and pφ as separate feed-
forward neural networks and compute the log-
probability of a target sentence using its bag-of-
words representation.

4.2 Nesting Level (NL)
A table of contents serves as a high level descrip-
tion of an article, outlining its organizational struc-
ture. Wikipedia articles, for example, contain rich
tables of contents with many levels of hierarchical
structure. The “nesting level” of a sentence (i.e.,
how many levels deep it resides) provides infor-
mation about its role in the overall discourse. To
encode this information into our sentence repre-
sentations, we introduce a discriminative loss to
predict a sentence’s nesting level in the table of
contents:

NL = − log pθ(lt|st)

where lt represents the nesting level of the sen-
tence st and pθ is parameterized by a feedforward

neural network. Note that sentences within the
same paragraph share the same nesting level. In
Wikipedia, there are up to 7 nesting levels.

4.3 Sentence and Paragraph Position (SPP)

Similar to nesting level, we add a loss based on
using the sentence representation to predict its po-
sition in the paragraph and in the article. The po-
sition of the sentence can be a strong indication of
the relations between the topics of the current sen-
tence and the topics in the entire article. For ex-
ample, the first several sentences often cover the
general topics to be discussed more thoroughly in
the following sentences. To encourage our sen-
tence embeddings to capture such information, we
define a position prediction loss

SPP = − log pθ(spt|st)− log pφ(ppt|st)

where spt is the sentence position of st within the
current paragraph and ppt is the position of the
current paragraph in the whole document.

4.4 Section and Document Title (SDT)

Unlike the previous position-based losses, this loss
makes use of section and document titles, which
gives the model more direct access to the topical
information at different positions in the document.
The loss is defined as

SDT = − log pθ(stt|st)− log pφ(dtt|st)

Where stt is the section title of sentence st, dtt is
the document title of sentence st, and pθ and pφ
are two different bag-of-words decoders.

5 Experiments

5.1 Setup

We train our models on Wikipedia as it is a knowl-
edge rich textual resource and has consistent struc-
tures over all documents. Details on hyperparame-
ters are in the supplementary material. When eval-
uating on DiscoEval, we encode sentences with
pretrained sentence encoders. Following Sent-
Eval, we freeze the sentence encoders and only
learn the parameters of the downstream classifier.
The “Baseline” row in Table 2 are embeddings
trained with only the NSP loss. The subsequent
rows are trained with extra losses defined in Sec-
tion 4 in addition to the NSP loss.
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SentEval DiscoEval
USS SSS SC Probing SP BSO DC SSP PDTB-E PDTB-I RST-DT avg.

Skip-thought 41.7 81.2 78.4 70.1 44.6 63.0 54.9 77.6 39.6 38.7 59.7 53.8
InferSent 63.4 83.3 79.7 71.8 43.6 62.9 56.3 77.2 37.1 38.0 53.2 49.8
DisSent 50.0 79.2 80.5 74.0 44.9 64.9 54.8 77.6 41.6 39.9 57.8 54.6
ELMo 60.9 77.6 80.8 74.7 46.4 66.6 59.4 78.4 41.5 41.5 58.8 56.1

BERT-Base 30.1 66.3 81.4 73.9 49.1 68.1 58.9 80.6 44.0 42.5 58.7 57.4
BERT-Large 43.6 70.7 83.4 75.0 49.9 69.3 60.5 80.4 44.1 43.8 58.8 58.1

Baseline (NSP) 57.8 77.1 77.0 70.6 44.1 63.8 61.2 78.2 36.9 38.0 57.0 54.5
+ SDT 59.0 77.3 76.8 69.7 43.9 62.9 60.0 78.0 37.0 37.7 56.2 53.7
+ SPP 56.0 77.5 77.4 70.7 45.6 64.3 60.8 78.6 37.1 37.7 57.1 54.6
+ NL 56.7 78.2 77.2 70.6 44.7 64.0 61.2 78.3 37.2 37.8 56.4 54.4

+ SPP + NL 55.4 76.7 77.0 70.4 45.7 64.9 60.9 79.2 37.9 39.3 56.7 55.1
+ SDT + NL 58.5 76.9 77.2 70.2 44.4 63.2 61.0 78.4 36.6 37.9 57.4 54.2
+ SDT + SPP 58.4 77.4 76.6 70.2 44.4 63.9 60.5 78.0 37.3 36.9 56.2 54.1

ALL 58.8 76.3 77.0 70.2 43.9 63.3 60.3 78.7 36.5 38.2 55.8 54.1

Table 2: Results for SentEval and DiscoEval. The highest number in each column is boldfaced. The highest
number for our models in each column is underlined. “All” uses all four losses. “avg.” is the averaged accuracy
for all tasks in DiscoEval.

Additionally, we benchmark several popular
pretrained sentence encoders on DiscoEval, in-
cluding Skip-thought,4 InferSent (Conneau et al.,
2017),5 DisSent (Nie et al., 2019),6 ELMo,7

and BERT.8 For ELMo, we use the averaged vec-
tor of all three layers and time steps as the sentence
representations. For BERT, we use the averaged
vector at the position of the “[CLS]” token across
all layers. We also evaluate per-layer performance
for both models in Section 6.

When reporting results for SentEval, we com-
pute the averaged Pearson correlations for Se-
mantic Textual Similarity tasks from 2012 to
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016).
We refer to the average as unsupervised semantic
similarity (USS) since those tasks do not require
training data. We compute the averaged results for
the STS Benchmark (Cer et al., 2017), textual en-
tailment, and semantic relatedness (Marelli et al.,
2014) and refer to the average as supervised se-
mantic similarity (SSS). We compute the average
accuracy for movie review (Pang and Lee, 2005);
customer review (Hu and Liu, 2004); opinion po-
larity (Wiebe et al., 2005); subjectivity classifi-
cation (Pang and Lee, 2004); Stanford sentiment
treebank (Socher et al., 2013); question classifica-
tion (Li and Roth, 2002); and paraphrase detec-
tion (Dolan et al., 2004), and refer to it as sentence
classification (SC). For the rest of the linguistic

4github.com/ryankiros/skip-thoughts
5github.com/facebookresearch/InferSent
6github.com/windweller/DisExtract
7github.com/allenai/allennlp
8github.com/huggingface/

pytorch-pretrained-BERT

probing tasks (Conneau et al., 2018), we report the
average accuracy and report it as “Probing”.

5.2 Results
Table 2 shows the experiment results over all Sent-
Eval and DiscoEval tasks. Different models and
training signals have complex effects when per-
forming various downstream tasks. We summarize
our findings below:

• On DiscoEval, Skip-thought performs best on
RST-DT. DisSent performs strongly for PDTB
tasks but it requires discourse markers from
PDTB for generating training data. BERT
has the highest average by a large margin, but
ELMo has competitive performance on multiple
tasks.
• The NL or SPP loss alone has complex effects

across tasks in DiscoEval, but when they are
combined, the model achieves the best perfor-
mance, outperforming our baseline by 0.6% on
average. In particular, it yields 39.3% accu-
racy on PDTB-I, outperforming Skip-thought
by 0.6%. This is presumably caused by the dif-
fering, yet complementary, effects of these two
losses (NL and SPP).
• The SDT loss generally hurts performance on

DiscoEval, especially on the position-related
tasks (SP, BSO). This can be explained by the
notion that consecutive sentences in the same
section are encouraged to have the same sen-
tence representations when using the SDT loss.
However, the SP and BSO tasks involve differ-
entiating neighboring sentences in terms of their
position and ordering information.

https://github.com/ryankiros/skip-thoughts
https://github.com/facebookresearch/InferSent
https://github.com/windweller/DisExtract
https://github.com/allenai/allennlp
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Low High

Figure 8: Heatmap for individual hidden layers of
BERT-Base (lower part) and ELMo (upper part).

ELMo BERT-Base

SentEval 0.8 5.0
DiscoEval 1.3 8.9

Table 3: Average of the layer number for the best layers
in SentEval and DiscoEval.

• On SentEval, SDT is most helpful for the USS
tasks, presumably because it provides the most
direct information about the topic of each sen-
tence, which is a component of semantic simi-
larity. SDT helps slightly on the SSS tasks. NL
gives the biggest improvement in SSS.
• In comparing BERT to ELMo and Skip-thought

to InferSent on DiscoEval, we can see the bene-
fit of adding information about neighboring sen-
tences. Our proposed training objectives show
complementary improvements over NSP, which
suggests that they can potentially benefit these
pretrained representations.

6 Analysis

Per-Layer analysis. To investigate the perfor-
mance of individual hidden layers, we evaluate
ELMo and BERT on both SentEval and DiscoEval
using each hidden layer. For ELMo, we use the av-
eraged vector from the targeted layer. For BERT-
Base, we use the vector from the position of the
“[CLS]” token. Figure 8 shows the heatmap of
performance for individual hidden layers. We note
that for better visualization, colors in each col-
umn are standardized. On SentEval, BERT-Base

Baseline w/o hidden layer 52.0
Baseline w/ hidden layer 61.2

Table 4: Accuracies with baseline encoder on Dis-
course Coherence task, with or without a hidden layer
in the classifier.

performs better with shallow layers on USS, SSS,
and Probing (though not on SC), but on Disco-
Eval, the results using BERT-Base gradually in-
crease with deeper layers. To evaluate this phe-
nomenon quantitatively, we compute the average
of the layer number for the best layers for both
ELMo and BERT-Base and show it in Table 3.
From the table, we can see that DiscoEval requires
deeper layers to achieve better performance. We
assume this is because deeper layers can capture
higher-level structure, which aligns with the infor-
mation needed to solve the discourse tasks.

DiscoEval architectures. In all DiscoEval tasks
except DC, we use no hidden layer in the neural
architectures, following the example of SentEval.
However, some tasks are unsolvable with this sim-
ple architecture. In particular, the DC tasks have
low accuracies with all models unless a hidden
layer is used. As shown in Table 4, when adding a
hidden layer of 2000 to this task, the performance
on DC improves dramatically. This shows that DC
requires more complex comparison and inference
among input sentences. Our human evaluation be-
low on DC also shows that human accuracies ex-
ceed those of the classifier based on sentence em-
beddings by a large margin.

Human Evaluation. We conduct a human eval-
uation on the Sentence Position, Binary Sentence
Ordering, and Discourse Coherence datasets. A
native English speaker was provided with 50 ex-
amples per domain for these tasks. While the re-
sults in Table 5 show that the overall human ac-
curacies exceed those of the classifier based on
BERT-Large by a large margin, we observe that
within some specific domains, for example Wiki in
BSO, BERT-Large demonstrates very strong per-
formance.

Does context matter in Sentence Position? In
the SP task, the inputs are the target sentence to-
gether with 4 surrounding sentences. We study the
effect of removing the surrounding 4 sentences,
i.e., only using the target sentence to predict its
position from the start of the paragraph.
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Sentence Position Binary Sentence Ordering Discourse Coherence

Human 77.3 84.7 87.0
BERT-Large 49.9 69.3 60.5

Wiki arXiv ROC Wiki arXiv ROC Wiki Ubuntu
Human 84.0 76.0 94.0 64.0 72.0 96.0 98.0 74.0
BERT-Large 43.0 56.0 50.9 70.3 66.8 70.9 64.9 56.1

Table 5: Accuracies (%) for a human annotator and BERT-Large on Sentence Position, Binary Sentence Ordering,
and Discourse Coherence tasks.

Random 20
Baseline w/o context 43.2
Baseline w/ context 46.0

Table 6: Accuracies (%) for baseline encoder on Sen-
tence Position task when using downstream classifier
with or without context.

Table 6 shows the comparison of the base-
line model performance on Sentence Position with
or without the surrounding sentences and a ran-
dom baseline. Since our baseline model is al-
ready trained with NSP, it is expected to see im-
provements over a random baseline. The further
improvement from using surrounding sentences
demonstrates that the context information is help-
ful in determining the sentence position.

7 Conclusion

We proposed DiscoEval, a test suite of tasks to
evaluate discourse-related knowledge encoded in
pretrained sentence representations. We also pro-
posed a variety of training objectives to strengthen
encoders’ ability to incorporate discourse infor-
mation. We benchmarked several pretrained sen-
tence encoders and demonstrated the effects of
the proposed training objectives on different tasks.
While our learning criteria showed benefit on cer-
tain classes of tasks, our hope is that the Disco-
Eval evaluation suite can inspire additional re-
search in capturing broad discourse context in
fixed-dimensional sentence embeddings.
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