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Abstract

Finding the right reviewers to assess the
quality of conference submissions is a time
consuming process for conference organiz-
ers. Given the importance of this step, var-
ious automated reviewer-paper matching so-
lutions have been proposed to alleviate the
burden. Prior approaches, including bag-of-
words models and probabilistic topic mod-
els have been inadequate to deal with the
vocabulary mismatch and partial topic over-
lap between a paper submission and the re-
viewer’s expertise. Our approach, the com-
mon topic model, jointly models the topics
common to the submission and the reviewer’s
profile while relying on abstract topic vectors.
Experiments and insightful evaluations on two
datasets demonstrate that the proposed method
achieves consistent improvements compared
to available state-of-the-art implementations
of paper-reviewer matching.

1 Introduction

The peer review mechanism constitutes the
bedrock of today’s academic research landscape
spanning submissions to conferences, journals,
and funding bodies across numerous disciplines.
Matching a paper (or a proposal) to an expert in the
topic presented in the paper requires the knowl-
edge of diverse topics of both the submission as
well as that of the reviewer’s expertise in addition
to knowing recent affiliations and co-authorship to
resolve conflict of interest. Considering the scale
of current conference submissions, performing the
task of paper-reviewer matching manually incurs
significant overheads to the program committee
(PC) and calls for automating the process. Faced
with record number of paper submissions essen-
tially interdisciplinary in nature, the inadequacy

*Omer Anjum and Hongyu Gong have equal contribu-
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of available reviewer matching systems to scale
to the current needs is being expressed by many
conference program committees. It is also no-
table that the approaches to address the challenges
seem ad-hoc and non-scalable, as described in a
few of the PC blogs; “Looking at the abstracts for
many of the submissions it also quickly became
clear that there was disparity in how authors chose
topic keywords for submissions with many only
using a single keyword and others using over half
a dozen keywords. As such relying on the key-
words for submissions became difficult. The com-
bined effect of these problems made any automatic
or semi-automatic assignment using HotCRP sub-
optimal...So, we chose to hand assign the papers.”
(Falsafi et al., 2018), and again in “Our plan was
to rely on the Toronto Paper Matching System
(TPMS) in allocating papers to reviewers. Unfor-
tunately, this system didnt prove as useful as we
had hoped for (it requires more extensive reviewer
profiles for optimal performance than what we had
available) and the work had to rely largely on the
manual effort...” (ACL, 2019). Noting the urgent
need to advance research to address this problem,
we study this challenge of matching a paper with a
reviewer from a list of potential reviewers for the
purpose of assessing the quality of the submission.

Aside from the long precedence of research in
the related area of expertise retrieval – that of
expert finding and expert profiling (Balog et al.,
2012), several recent attempts have been made
to automate the process (Price and Flach, 2017).
These include, the Toronto paper matching system
(Laurent and Zemel, 2013), the IEEE INFOCOM
review assignment system (Li and Hou, 2016), and
the online reviewer recommendation system (Qian
et al., 2018). Central to these systems is a mod-
ule that performs the paper-reviewer assignment,
which can be broken down into its matching and
constraint satisfaction constituents. The constraint
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satisfaction component typically handles the con-
straints that each paper be reviewed by at least a
few reviewers, each reviewer be assigned no more
than a few papers, and thaat reviewers not be as-
signed papers for which they have a conflict of in-
terest. A second constituent is that of finding a
reviewer from a list of reviewers based on the rel-
evance of the person’s expertise with the topic of
the submission. This latter aspect will be the focus
of our study.

Available approaches to solve this matching
problem can be broadly classified into the follow-
ing categories (Price and Flach, 2017): a) Feature-
based matching, where a set of topic keywords are
collected for each paper and each reviewer. The
reviewers are then ranked in order of the number
of keyword matches with the paper; b) Automatic
feature construction with profile-based matching,
where the relevance is decided by building auto-
matic topic representations of both papers and re-
viewers; c) Bidding, a more recent method, in-
volves giving the reviewers access to all the pa-
pers and asking them to bid on papers of their
choice. The approaches used in this study are of
the profile-based matching kind, where we rely on
the use of abstract topic vectors and word embed-
dings (Mikolov et al., 2013b) to derive the seman-
tic representations of the paper and the expertise
area of the reviewer. This is a departure from the
bag-of-words approach taken in related prior ap-
proaches, e.g. (Laurent and Zemel, 2013), relying
on automatic topic extraction using keywords – a
ranked list of terms taken from the paper and the
reviewer’s profile.

In general, we assume that a reviewer can be
represented by a collection of the abstracts of her
past publications (termed as the reviewer’s profile)
and a submission by its abstract. While attempt-
ing to match the paper with the reviewer via their
profile representations, the obvious difference in
the document lengths gives rise to a mismatch due
to the small overlap in vocabulary and a conse-
quent scarcity of shared contexts of these overlap-
ping terms. This is because, while past publica-
tions of a reviewer may be sufficient to provide a
reasonable context for a topical word, a submis-
sion abstract provides a very limited context for
that topical word.

To alleviate this problem of mismatched ‘pro-
files’, we use the idea of a shared topic space be-
tween the submission and the reviewer’s profile.

In our experiments we compare our approach to
match the profiles using abstract vectors with that
using the hidden topic model (also a set of ab-
stract topic vectors) (Gong et al., 2018). The two
approaches primarily differ in the way the shared
topic space is constructed, which we describe in
Section 4. We also include other baseline com-
parisons where the matching is done on the basis
of common topic words (keywords) and word- or
document-embeddings.

This study makes the following contributions:
(1) Instead of relying on a collection of topic
words (keywords chosen by the authors or ex-
perts), our approach relies on abstract topic vec-
tors to represent the common topics shared by the
submission and the reviewer.
(2) We propose a model that outperforms state-of-
the-art approaches in the task of paper-reviewer
matching on a benchmark dataset (Mimno and
McCallum, 2007). Additionally, a field evaluation
of our approach performed by the program com-
mittee of a tier-1 conference showed that it was
highly useful.

2 Related Work

The paper-reviewer matching task lays the basis
for the peer review process ubiquitous in aca-
demic conferences and journals. Existing auto-
matic approaches can be broadly categorized into
the following types according to the type of mod-
els for comparing documents: feature-based mod-
els, probabilistic models, embedding-based mod-
els, graph models and neural network models.
Feature-based models. A list of keywords which
summarizes the topics of a submission is used
as informative features in the matching process
(Dumais and Nielsen, 1992; Basu et al., 1999).
Automatic extraction of these features achieves
higher efficiency and one commonly-used feature
is a bag-of-words weighted by the words’ TF-IDF
scores (Jin et al., 2018; Tang et al., 2010; Li and
Hou, 2016; Nguyen et al., 2018).
Probabilistic models. The Latent Dirichlet Allo-
cation (LDA) model is the most commonly used
probabilistic model in expertise matching, where
each topic is represented as a distribution over a
given vocabulary and each document is a mixture
of hidden topics (Blei et al., 2003). The popu-
lar Toronto Paper Matching System (TPMS) (Lau-
rent and Zemel, 2013) uses LDA to generate the
similarity score between a reviewer and a submis-
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sion (Li and Hou, 2016). One limitation of LDA
is that it does not make use of the potential se-
mantic relatedness between words in a topic be-
cause of its assumption that words are generated
independently (Xie et al., 2015). Variants of LDA
have been proposed to incorporate notions of se-
mantic coherence for more effective topic model-
ing (Hu and Tsujii, 2016; Das et al., 2015; Xun
et al., 2017). Beyond having probabilistic models
for topics, Jin et al. sought to capture the temporal
changes of reviewer interest as well as the stability
of their interest trend with probabilistic modeling
(Jin et al., 2017).

In addition to their inherent limiting assump-
tions such as independence of semantically related
words, probabilistic models, including LDA, re-
quire a large corpus to accurately identify the top-
ics and topic distribution in each document, which
can be problematic when applied to short docu-
ments, such as abstracts.

Embedding-based models. Latent Semantic In-
dexing (LSI) proposes to represent a document as
a single dense vector (Deerwester et al., 1990).
The documents corresponding to reviewers and
submissions can thus be transformed into their
respective vector representations. The relevance
of a reviewer to a given submission would then
be measured using a distance metric in the vec-
tor space, such as the cosine similarity. Other
approaches have used word or document embed-
dings as document representations in order to
compare two documents.

Kou et al. derived topic vectors by treating each
topic as a distribution of words (Kou et al., 2015).
In comparison, the key improvement in our work
is that the topics are derived based on word em-
beddings instead of word distributions. Moreover,
we derive common topics for each submission-
reviewer pair, and as a result, the topics can vary
from pair to pair.

Another approach to capture similarity between
documents is by the use of the Word Mover’s Dis-
tance (WMD). It relies on the alignment of word
pairs from two texts, and the textual dissimilar-
ity is measured as the total distance between the
vectors of the word pairs (Kusner et al., 2015).
More recently, a hidden topic model has been used
to compare two documents via extracted abstract
topic vectors, which showed a strong performance
in comparing document for semantic similarity
(Gong et al., 2018).

Extending the models in this category, we pro-
pose the common topic model. Similar to the
hidden topic model, we extract topic vectors us-
ing word embeddings and match documents at the
topic level. The hidden topic model extracts top-
ics purely relying on the reviewer profile, so the
topic vectors can be regarded as a summary of the
reviewers’ research interest. In contrast, the com-
mon topic vectors are selected based on the knowl-
edge of both the submission and the reviewer’s
profile, which are expected to capture the topical
overlap between the two. As we will show in the
qualitative evaluation, the hidden topic model is
likely to miss some important topics when a re-
viewer has broad research interests, resulting in an
underestimation of the paper-reviewer relevance.
The common topic model is able to overcome this
limitation by extracting topics with reference to
submissions.
Graph models. All of the models mentioned
above only assume access to the texts of submis-
sions and reviewers’ publications. Some works
also make use of external information such as
coauthorship to improve the matching perfor-
mance. For instance, Liu et al. capture aca-
demic connections between reviewers using a
graph model, and show that such information im-
proves the matching quality. Each node in their
graph model represents a reviewer (Liu et al.,
2014). There is an edge between two nodes if the
corresponding reviewers have co-authored papers,
and the edge weight is the number of publications.
This work also uses LDA to measure the similarity
between the submission and the reviewer.
Neural network models. Dense vectors are
learned by neural networks as the semantic rep-
resentation of documents (Socher et al., 2011; Le
and Mikolov, 2014; Lin et al., 2015; Lau and Bald-
win, 2016). When it comes to the task of expertise
matching, the reviewer-submission relevance can
thus be measured by the similarity of the vector
representations of their textual descriptions.

3 System Overview

The different stages of our system, together called
PaRe, are briefly explained as below:
Data collection. At this stage, we collect previous
publications from one or more tier-1 conferences
in the same domain as the one to which reviewer-
submission matching is applied. This data is used
to create our pool of candidate reviewers and do-
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main knowledge of the research area. The source
of the data is Microsoft Academic Graph (MSG)
(Sinha et al., 2015). All the abstracts of a reviewer
are concatenated as one document, which is then
used to profile the reviewer. Reviewers’ profiles
reflect their research topics, which are later used
in the reviewer-submission matching process.
Data processing. Since our proposed model is
based on word embeddings, we pre-train embed-
dings using CBOW model of word2vec on the col-
lected publications (Mikolov et al., 2013a). The
dense word representations are intended to cap-
ture domain-specific lexical semantics. The data
collection and processing are detailed in Section
5.
Reviewer-submission matching. A common topic
modeling approach is proposed in this work to
match reviewers with submissions. The model
compares the abstracts of submissions and review-
ers’ past abstracts during the matching process to
decide the reviewer-submission relevance by find-
ing their common research topics. The algorithm
is described in Section 4.

4 Modeling

For the purpose of our study, we consider a re-
viewer’s profile to be the concatenation of the ab-
stracts from their previous publications. Let m
be the number of words in the reviewer’s profile
and let the normalized word embeddings of these
words be stacked as a reviewer matrix R ∈ Rd×m,
where d is the embedding dimension. Since the
embedding is normalized, we have ‖Ri‖2 = 1 for
each column in R. Next suppose that the submis-
sion is represented by an n−word sequence of its
abstract. Similar to the case of the reviewer, we
stack its normalized embeddings as a submission
matrix S ∈ Rd×n. Also we have for each column
‖Sj‖2 = 1, ∀1 ≤ j ≤ n.
Common topic selection. Inspired by the com-
positionality of embeddings (Gong et al., 2017)
and the hidden topic model in document match-
ing (Gong et al., 2018), our intention is to extract
topics from reviewer profiles and submissions to
summarize their topical overlap. We would like to
remind the reader that the topics extracted are nei-
ther words nor distributions, but only abstractions
and constitute a set of numeric vectors that do not
necessarily have a textual representation. To es-
tablish the connection between topics, reviewer
profiles and submissions, we assume that the topic

vectors can be written as a linear combination of
the embeddings of component words in either the
reviewer profiles or the submissions. This as-
sumption is supported by the geometric property
of word embeddings that the weighted sum of the
component word embeddings have been shown to
be a robust and efficient representation of sen-
tences and documents (Mikolov et al., 2013b). In-
tuitively, the extracted common topics would be
highly correlated with the subset of the words in
the reviewer profile or that of the submission in
terms of semantic similarity.

Let both the reviewer and the submission have
K research topics, with each topic represented by
a d−dimensional vector. This vector is an abstract
topic vector and does not necessarily correspond
to a specific word or a word distribution as in LDA
(Blei et al., 2003). Suppose that these topic vectors
of the reviewer are stacked as a matrix P ∈ Rd×K ,
and those of the submission as Q ∈ Rd×K . There-
fore, these matrices can be represented as a linear
combination of the underlying word vectors.

P = Ra,

Q = Sb, (1)

where a ∈ Rm×K ,b ∈ Rn×K are the coefficients
in the linear combinations.

Our goal is to find the common topics shared
by a given reviewer and a given submission, to ac-
count for the overlap of their research areas. We
consider a pair of topics from a reviewer and a sub-
mission respectively to constitute a pair of com-
mon topics if they are semantically similar. For
example, if the reviewer’s research areas are ma-
chine learning and theory of computation, and the
submission is about classification in natural lan-
guage processing, then (machine learning, clas-
sification) can be regarded as a pair of common
topics, while the other pairs corresponding to the
areas theory of computation and natural language
processing are much less similar. We used cosine
similarity to measure the semantic similarity of
two topic vectors ∗. The similarity sim(Pk,Qk)
between reviewer topic Pk and submission topic
Qk is shown below.

sim(Pk,Qk) =
PT

kQk

‖Pk‖ · ‖Qk‖
. (2)

∗We leave it to future work to experiment with other use-
ful measures of semantic similarity.
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For K pairs of topic vectors {Pk,Qk}Kk=1, their
similarity is the sum of the pairwise similarities:

sim(P,Q) =
K∑
k=1

sim(Pk,Qk). (3)

This in turn translates to identifying the com-
mon research topics between the reviewer and the
submission, i.e., we need to find K such pairs of
topics that have the maximum similarity. Based on
our discussions above, the approach of common
topic extraction can be formulated as an optimiza-
tion problem:

max
a,b

sim(P,Q)

s.t. P = Ra,

Q = Sb,

PTP = QTQ = I (4)

The first two constraints are based on the linear
assumption shown in Eq. 1. Without loss of gener-
ality, we add the third constraint that the topic vec-
tors are orthogonal as shown in Eq. 4 to avoid gen-
erating multiple similar topic vectors. The closed-
form solution to this optimization problem can be
derived via singular value decomposition on the
correlation matrix of R and S (Wegelin, 2000).

Let topic vectors P∗ and Q∗ be the optimal so-
lution, both describing the common topics shared
by the reviewer and the submission. In the follow-
ing discussions, we use P∗ as the common topic
vectors.
Common topic scoring. To further quantify the
reviewer-submission relevance, we need to eval-
uate how significant these common topics are
for the reviewer and the submission respectively.
Reusing the example where a reviewer’s area are
machine learning and theory of computation, we
know that machine learning is the common topic
between the reviewer and the submission. If the
topic of machine learning were only a small part
of the reviewer’s publications, the reviewer may
not be a good match for the submission since re-
viewer is more of an expert in theory of computa-
tion than in machine learning.

To evaluate how well the topics reflect a re-
viewer’s expertise, we define the importance of
common topics P∗ for both the reviewer and the
submission. Consider the vector of the i−th word
in the reviewer’s profile, Ri, and the k-th topic

vector P∗
k. The relevance between Ri and P∗

k is
defined as the their squared cosine similarity.

rel(Ri,P
∗
k) = cos2(Ri,P

∗
k) = (RT

i P
∗
k)

2. (5)

Note that we do not use cosine similarity as is,
since Ri and P∗

k might be negatively correlated
and the cosine similarity can be negative. Instead,
we use the square of the cosine similarity to reflect
the strength of their correlation.

The relevance between word Ri and a set of
topic vectors P∗ is defined as the sum of the rele-
vance between the word and each topic vector.

rel(Ri,P
∗) =

K∑
k=1

rel(Ri,P
∗
k). (6)

We can think of word vector Ri to be projected
along the K dimensions of a linear subspace
spanned by topic vectors in P∗. If Ri lies in this
linear subspace, then it can be represented as a
linear combination of the topic vectors. In this
case, rel(Ri,P) achieves the maximum of 1. If
the word vector is orthogonal to all topic vectors
in P∗, the relevance results in the minimum rele-
vance of 0. Thus, the range of rel(Ri,P) is from
0 to 1.

Furthermore, we define the relevance between
the reviewer and the topics as the average of the
relevance between the words and the topics.

rel(R,P∗) =
1

m

m∑
i=1

rel(Ri,P
∗). (7)

The reviewer-topic relevance rel(R,P) also
ranges from 0 to 1.

Similarly, we measure the relevance between a
submission and a set of common topics, rel(S,P∗)
by measuring the relevance between words in the
submission and common topics. The submission-
topic relevance reflects the importance of the
common topics for a submission. We define
the reviewer-submission matching score as a har-
monic mean (f-measure) of the reviewer-topic and
submission-topic relevance (Powers, 2015).

rel(R,S) =
2 · rel(R,P∗) · rel(S,P∗)

rel(R,P∗) + rel(S,P∗)
. (8)

The reviewer-submission relevance is high
when the common topic vectors P∗ are highly
relevant to both the reviewer and the submission.
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It indicates that the submission has a substantial
overlap with reviewer’s research area, and that the
reviewer is considered to be a good match for the
submission.

5 Experiments and Results

In this section, we empirically compare our pro-
posed common topic model approach against a va-
riety of models in the task of expertise matching.

5.1 Dataset

For our experiments, we use the two datasets de-
scribed below.
NIPS dataset. This is a benchmark dataset de-
scribed in (Mimno and McCallum, 2007) and
commonly used in the evaluation of expertise
matching. It consists of 148 NIPS papers accepted
in 2006 and abstracts from the publications of 364
reviewers. It includes annotations from 9 annota-
tors on the relevance of 650 reviewer-paper pairs.
Each pair is rated on a scale from 0 to 3. Here “0”
means irrelevant, “1” means slightly relevant, “2”
means relevant and “3” means very relevant.
A new dataset. Our proposed paper-reviewer
matching system is applied to a tier-1 conference
in the area of computer architecture. We created a
new dataset for the evaluation of expertise match-
ing from the submissions to this conference. We
first collected a pool of 2284 candidate reviewers
with publications in top conferences of computer
architecture. A reviewer selection policy was
adopted by the conference program committee
to select reviewers still active in relevant areas.
Reviewers were excluded if
1) they started publishing 40 years ago, but had
no publications for the last ten years;
2) they did not have publications for the last ten
years and have fewer than three papers before that.

The publications of these reviewers were col-
lected from Microsoft Academic Graph (Sinha
et al., 2015). Each reviewer had at least one pub-
lication, and some reviewers had as many as 34
publications. Again the abstracts were used as re-
viewers’ profile.

We then used our proposed common topic
model to assist the program committee of the
conference on computer architecture, and recom-
mended most relevant reviewers to all submissions
in the conference. We randomly selected 20 sub-
missions and with the help of the committee, we

collected feedbacks from 33 reviewers on their
relevance to the assigned submissions. These 33
reviewers were among the top reviewers recom-
mended by our system for each of 20 submissions.
The relevance was rated on a scale from 1 to 5,
where a score of “1” meant that the paper was not
relevant at all, “2” meant that the reviewer had
passing familiarity with the topic of the submis-
sion, “3” meant that the reviewer knew the mate-
rial well, “4” meant that the reviewer had a deep
understanding of the submission, and “5” means
that the reviewer was a champion candidate for the
submission.

5.2 Baselines
We include previous approaches to paper-reviewer
matching as our baselines.

• APT 200. Author-Person-Topic (Mimno and
McCallum, 2007) is a generative probabilis-
tic topic model which groups documents of an
author into different clusters with the author’s
topic distribution. Clusters represent different
areas of a reviewer’s research.
• Single Doc. The Single Doc model is a proba-

bilistic model which takes the idea of language
modeling and estimates the likelihood that a
submission is assigned to a reviewer given the
reviewer’s previous works (Mimno and McCal-
lum, 2007).
• Latent Dirichlet Allocation (LDA): LDA and

its variants are the most popular topic models in
expertise matching systems (Blei et al., 2003).
LDA models assume that each document is a
mixture of topics where each topic is a multi-
nomial distribution over the words.
• Hierarchical Dirichlet Process (HDP). HDP

model is an extension of LDA (Teh et al., 2006).
It is a non-parametric mixed-membership
Bayesian model with variable number of topics.
It is effective in choosing the number of topics
to characterize a given corpus.
• Random Walk with Restart (RWR). RWR is

a graph model with sparsity constraints in ex-
pertise matching (Liu et al., 2014). It relies on
LDA to capture reviewer-submission relevance
and also takes diversity into consideration in the
matching process.
• Word Mover’s Distance (WMD). WMD is a

distance metric between two documents on the
basis of pre-trained word embeddings (Kusner
et al., 2015). It calculates the dissmilarity be-
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Method Number of Topics P@5 P@10 P@5 P@10 P@5 P@10
GT1 GT2 GT3

Common Topic Model
5 53.7 43.0 58.5 49.1 63.7 55.8
10 56.6 44.6 63.2 50.4 67.2 55.2
20 54.4 43.4 59.2 49.5 63.6 54.7

Hidden Topic Model
10 43.4 41.1 46.4 45.4 61.8 46.3
20 51.3 43.4 58.4 49.0 63.6 53.6
30 47.5 40.0 49.6 44.0 56.3 49.4

APT200 200 41.18 29.71 - - - -
Single Doc - 44.71 27.35 - - - -

LDA
50 41.3 38.4 51.2 45.0 55.4 51.5

200 47.5 37.3 53.6 43.6 50.9 50.0
300 46.2 38.8 52.0 46.8 50.0 45.2

HDP - 45.5 38.0 48.0 44.5 55.4 50.0
RWR - 45.3 43 - - - -

Doc2Vec - 51.7 41.1 59.2 46.8 64.5 51.1
WMD - 36.1 32.4 42.2 36.8 46.8 41.8

Table 1: The mean precision of different baselines with optimal hyperparamters on the NIPS dataset. A reviewer
is classified as relevant with a TREC score ≥ 2.

tween two documents, which is measured by the
embedding distance of aligned words in these
documents.
• Hidden Topic Model. This model proposes to

learn hidden topic vectors to measure document
similarity based on word embeddings (Gong
et al., 2018).
• Doc2Vec. Doc2Vec is a neural network model

which trains document embeddings to predict
component words in the documents (Le and
Mikolov, 2014). In expertise matching, the
Doc2Vec model is pre-trained on the corpus
consisting of reviewers’ previous publications.
We use the trained model to generate represen-
tations for reviewers and submissions respec-
tively. The reviewer-submission relevance is
quantified by the cosine similarity of their em-
beddings.

Setting. Since our model relies on word embed-
dings, we pre-train embeddings on all papers pub-
lished in the NIPS conference until 2017 for the
matching task in NIPS dataset. Similarly for our
new dataset, we collected a corpus of publications
until 2018 from top computer architecture con-
ferences for embedding training. The embedding
dimension was set as 100, and these word em-
beddings were also used in two embedding-based
baselines: word mover’s distance and hidden topic
model. For a fair comparison, the corpora used
for word embedding training were also used to

train Doc2Vec model to generate document em-
beddings.

5.3 Results on NIPS Data

The NIPS dataset provides ground truth relevance
for reviewer-submission pairs, and the relevance
scales from 0 to 3. A score of 0 is assigned when
that the reviewer is considered to be not relevant
and a score of 3 is assigned when the reviewer
is considered to be highly relevant. We set a rel-
evance threshold of 2, and considered reviewers
with a score equal to or higher than this threshold
to be relevant reviewers to the given submission.
In our matching system, we sorted reviewers in
decreasing order of the predicted relevance score
for a given submission.
Evaluation Metric. Precision at k (P@k) is a
commonly-used ranking metric on NIPS dataset.
P@k is defined to be the percentage of relevant
reviewers in the top-k recommendations made by
the model to a submission. It is likely that the top-
k recommendations made by the model contain re-
viewers whose relevance information is not avail-
able in the ground truth. To address this issue, we
first discard reviewers that do not have a relevance
information prior to calculating P@k. In our ex-
periments, we set k to be 5 and 10. We report the
average P@k over all submissions in Table 1.

We note that not all submissions in NIPS dataset
have the same number of relevant reviewers and a
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failure to account for this discrepancy would neg-
atively impact the performance of a system. For
example, a submission with only one relevant re-
viewer would result in a P@5 no higher than 20%
for any model. In order to take this discrepancy
into consideration, we report the performance only
on submissions with at least two relevant review-
ers in the columns of “GT2”, and on submissions
with at least three relevant reviewers in column
“GT3”. In “GT1”, we report the performance
without making this distinction.

The reviewer-submission matching results of
our model on the NIPS dataset are presented in
Table 1 alongside those of our chosen baselines.
We note that the results for APT 200 and Single
Doc were only available for GT1 and we report
them as such. Some approaches including Com-
mon Topic Model, Hidden Topic Model and LDA
required a hyperparameter (number of topics) to
be specified. We performed experiments on NIPS
data with different number of topics in Table 1. As
is shown, our proposed approach consistently out-
performs the strong baselines. We also note that
Hidden Topic Model and Doc2Vec are competi-
tive approaches in expertise matching compared
against probabilistic models.

Expertise
Level

% of Reviewers
Predicted by the System

≥5 15.2
≥4 63.6
≥3 87.9
≥2 100

Table 2: Percentage of reviewers in levels of expertise
to the submissions recommended by our model.

5.4 Results on the New Dataset

Our proposed approach has been used to assist
in the paper-reviewer matching process in a tier-
1 conference of computer architecture. We eval-
uated our approach on a new dataset constructed
with reviewers’ feedbacks on their assigned sub-
missions. Based on the optimal number of topics
on the NIPS dataset, we set the number of com-
mon topics to be 10 in this experiment.

We report the percentage of reviewers whose re-
ported expertise level falls in the given range in Ta-
ble 2. We note that all recommendations made by
our system are reasonable considering that all re-
viewers had expertise levels no lower than 2. The

majority (87.9%) of reviewers reported that they
were familiar with the topics of the submissions
assigned to them, and 63.6% of the reviewers had
deep understanding of the submissions.

6 Error Analysis

We perform a qualitative analysis on NIPS dataset
to analyze the difference of different algorithms
on expertise matching. For the clarity of our dis-
cussion, we sample a submission whose abstract
is shown in Table 4. We consider five models:
common topic modeling (CT), hidden topic mod-
eling (HT), LDA, Doc2Vec and WMD. We list
reviewers who were considered as top candidates
for this submission by the five models in Table 3.
For the analyses, we used research topics from the
publications of the reviewers as well as their rel-
evance scores assigned by human annotators (i.e.,
their TREC scores in NIPS dataset). Reviewers
are sorted in decreasing order of their relevance to
the submission by five models. For example, rank
1 corresponds to the highest relevance. In Table 3,
We also present the rank of each reviewer given by
the models.

Common topic model. According to the com-
mon topic model, reviewer 3, 4 and 5 are included
as its top 3 recommendations. But we note that
it ranks reviewer 3 higher than reviewer 4 and 5.
The relevance scoring of common topic model is
based on the relevance between the common topic
“Bayesian method” and reviewers’ profile. Since
reviewer 3 is more focused on Bayesian model, it’s
topic-reviewer relevance is higher than reviewer
4 and 5 who have broader research interests be-
yond Bayesian model and more publications. One
limitation of common topic model reflected in this
case is that it does not capture the authority and
experience of reviewers.

Hidden topic model. It incorrectly considered
reviewer 1 more relevant to the submission com-
pared to reviewer 5. We note that reviewer 5 works
on a broad set of research topics ranging from
Bayesian model to active learning. Since the hid-
den topic model extracts reviewer’s topics based
on the topic importance without any knowledge
of the submission, it is likely that Bayesian model
was not selected into representative hidden topics,
which results in low relevance of reviewer 5 to the
given submission.

LDA model. LDA assigns higher relevance to
reviewer 1 than reviewer 4. Reviewer 1 used
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Reviewer TREC Research topics CT HT LDA Doc2Vec WMD
1 1 Speech recognition with Bayesian approach, Neural network 6 2 4 1 7
2 0 Online learning, Sequential prediction, Bayes point machine 10 10 8 9 1
3 2 Bayesian network, Variational Bayes estimation, Mixture models 1 4 3 2 9
4 3 Variational method, Bayesian learning, Markov model 2 3 9 4 8
5 3 Bayesian learning, Variational method, Active learning 3 5 1 7 6

Table 3: Examples of reviewers and their relevance to the submission ranked by different algorithms.

Dirichlet Process (DP) mixture models are
candidates for clustering applications where the
number of clusters is unknown a priori. [...] The
speedup is achieved by incorporating kd-trees
into a variational Bayesian algorithm for DP
mixture [...]

Table 4: An example of abstract from a submission.

Bayesian approach, whereas it was not his re-
search focus according to his publications. Re-
viewer 4 had done extensive research in general
graphical models including Bayesian model. We
observed that LDA fails to capture the relevance
between graph model and Bayesian model since it
ignores the semantic similarity between words.

Doc2Vec model. Doc2Vec assigned the high-
est relevance to reviewer 1 among all reviewers.
The document representation it generates for re-
viewer 1’s profile is similar to the representation
for the submission, possibly because the key word
“Bayesian” and “mixture” in the submission also
occurs frequently in the profile. It suggests that
Doc2Vec model might be limited to lexical over-
lap.

WMD. Reviewer 2 is included as WMD’s top
recommendation, whereas the research focus of
reviewer 2 is sequential prediction which is ir-
relevant to the submission. Moreover, actually
relevant reviewers 4 and 5 were excluded from
WMD’s top recommendations. This may have
resulted from WMD’s word-level similarity mea-
sure. Reviewer 2’s publications had some lexical
overlap with the submission (e.g., words “Bayes”,
“algorithm” and “learning”, which have high fre-
quency in the submission). WMD tends to assign
high relevance scores due to such lexical overlap.

7 Future Work

This study used a basic version of a reviewer’s pro-
file to be the concatenation of the abstracts from
their previous publications. A concrete direction
for future work would be to consider enhance-

ments in representing reviewers’ profiles. Such
efforts could consider, for instance, the tempo-
ral variation of research interests in order to cap-
ture the relevance of a given reviewer to a given
topic based on the recency of the contributions to
a given area. Other efforts could involve the use of
a variable number of research topics for each re-
viewer and exploring ways to render reviewer pro-
files human interpretable.

8 Conclusion

We proposed an automated reviewer-paper match-
ing algorithm via jointly finding the common re-
search topics between submissions and reviewers’
publications. Our model is based on word embed-
dings and efficiently captures the reviewer-paper
relevance. It is robust to cases of vocabulary mis-
match and partial topic overlap between submis-
sions and reviewers – factors that have posed prob-
lems for previous approaches. The common topic
model showed strong empirical performance on a
benchmark and a newly collected dataset.
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