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Abstract

Multi-label text classification (MLTC) aims to
tag most relevant labels for the given docu-
ment. In this paper, we propose a Label-
Specific Attention Network (LSAN) to learn
the new document representation. LSAN takes
advantage of label semantic information to
determine the semantic connection between
labels and document for constructing label-
specific document representation. Meanwhile,
the self-attention mechanism is adopted to i-
dentify the label-specific document represen-
tation from document content information. In
order to seamlessly integrate the above two
parts, an adaptive fusion strategy is designed,
which can effectively output the comprehen-
sive document representation to build multi-
label text classifier. Extensive experimental re-
sults on four benchmark datasets demonstrate
that LSAN consistently outperforms the state-
of-the-art methods, especially on the predic-
tion of low-frequency labels. The code and
hyper-parameter settings are released to facili-
tate other researchers 1.

1 Introduction

Text classification is a fundamental text mining
task including multi-class classification and multi-
label classification. The former only assigns one
label to the given document, while the latter clas-
sifies one document into different topics. In this
paper, we focus on multi-label text classification
(MLTC) because it has become one of the core
tasks in natural language processing and has been
widely applied in topic recognition (Yang et al.,
2016), question answering (Kumar et al., 2016),
sentimental analysis (Cambria et al., 2014) and so
on. With the boom of big data, MLTC becomes
significantly challenging because it has to handle

1https://github.com/EMNLP2019LSAN/
LSAN/

the massive documents, words and labels simulta-
neously. Therefore, it is an emergency to devel-
op effective multi-label text classifier for various
practical applications.

Multi-label text classification allows for the co-
existence of more than one label in a single doc-
ument, thus, there are semantical correlations a-
mong labels because they may share the same
subsets of document. Meanwhile, the document
may be long and complicated semantic informa-
tion may be hidden in the noisy or redundant con-
tent. Furthermore, most documents fall into few
labels while a large number of “tail labels” on-
ly contain very few positive documents. To han-
dle these issues, researchers pay much attention
on three facets: 1) how to sufficiently capture the
semantic patterns from the original documents, 2)
how to extract the discriminative information re-
lated to the corresponding labels from each docu-
ment, and 3) how to accurately mine the correla-
tion among labels.

Till now, in the community of machine learn-
ing and natural language processing, researcher-
s have paid tremendous efforts on developing
MLTC methods in each facet. Among them, deep
learning-based methods such as CNN (Liu et al.,
2017; Kurata et al., 2016), RNN (Liu et al., 2016),
combination of CNN and RNN (Lai et al., 2015;
Chen et al., 2017), attention mechanism (Yang
et al., 2016; You et al., 2018), (Adhikari et al.,
2019) and etc., have achieved great success in doc-
ument representation. However, most of them on-
ly focus on document representation but ignore the
correlation among labels. Recently, some meth-
ods including DXML(Zhang et al., 2018), EX-
AM(Du et al., 2018), SGM(Yang et al., 2018),
GILE(Pappas and Henderson, 2019) are proposed
to capture the label correlations by exploiting la-
bel structure or label content. Although they ob-
tained promising results in some cases, they still

https://github.com/EMNLP2019LSAN/LSAN/
https://github.com/EMNLP2019LSAN/LSAN/
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cannot work well when there is no big difference
between label texts (e.g., the categories Manage-
ment vs Management moves in Reuters News),
which makes them hard to distinguish.

In MLTC task, one document may contain mul-
tiple labels, and each label can be taken as one
aspect or component of the document, thus, the
overall semantics of the whole document can be
formed by multiple components. Motivated by
the above-mentioned observations, we propose a
novel Label-Specific Attention Network model
(LSAN) to learn document representation by suffi-
ciently exploiting the document content and label
content. To capture the label-related component
from each document, we adopt the self-attention
mechanism to measure the contribution of each
word to each label. Meanwhile, LSAN takes ad-
vantage of label texts to embed each label into a
vector like word embedding, so that the seman-
tic relations between document words and labels
can be explicitly computed. Thereafter, an adap-
tive fusion strategy is designed to extract the prop-
er amount of information from these two aspects
and construct the label-specific representation for
each document. We summarize the main contribu-
tions:

• A label-specific attention network model is
proposed to handle multi-label text classifi-
cation task by considering document content
and label texts simultaneously.

• An adaptive fusion strategy is first designed
to adaptively extract the proper semantical
information to construct label-specific docu-
ment representation.

• The performance of LSAN is thoroughly in-
vestigated on four widely-used benchmark
datasets in terms of several evaluation met-
rics, indicating its advantage over the state-
of-the-art baselines.

The rest of the paper is organized as follows.
Section 2 describes the proposed LSAN model for
multi-label text classification. The experiments on
real-word datasets are conducted in Section 3 and
their results are discussed in detail. Section 4 lists
the related work. The brief conclusions and future
work are given in Section 5.

2 Proposed Method

In this section, we introduce the proposed label-
specific attention network, as shown in Figure 1.

LSAN consists of two main parts. The first part is
to capture the label-related components from each
document by exploiting both document content
and label texts. The second part aims to adaptive-
ly extract the proper information from two aspects.
Finally, the classification model can be trained on
the fused label-specific document representations.

2.1 Preliminaries
Problem Definition: Let D = {(xi, yi)}Ni=1 de-
note the set of documents, which consists of N
documents with corresponding labels Y = {yi ∈
{0, 1}l}, here l is the total number of labels. Each
document contains a sequence of words. Each
word can be encoded to a low-dimensional s-
pace and represented as a d-dimension vector via
word2vector technique (Pennington et al., 2014).
Let xi = {w1, · · · , wp, · · · , wn} denote the i-th
document, wp ∈ Rk is the p-th word vector in the
document, n is the number of words in document.

For text classification, each label contains
textual information. Thus, similar to the doc-
ument word, one label can be represented as
an embedding vector and the label set will be
encoded by a trainable matrix C ∈ Rl×k. Given
the input documents and their associated labelsD,
MLTC aims to train a classifier to assign the most
relevant labels to the new coming documents.

Input Text Representation: To capture the for-
ward and backward sides contextual information
of each word, we adopt the bidirectional long
short-term memory (Bi-LSTM) (Zhou et al., 2016)
language model to learn the word embedding for
each input document. At time-step p, the hid-
den state can be updated with the aid of input and
(p− 1)-th step output.

−→
hp = LSTM(

−−→
hp−1, wp)

←−
hp = LSTM(

←−−
hp−1, wp)

(1)

where wp is the embedding vector of the p-th
word in the corresponding document, and

−→
hp,
←−
hp ∈

Rk indicate the forward and backward word con-
text representations respectively. Then, the whole
document can be represented by Bi-LSTM as fol-
lows.

H = (
−→
H,
←−
H )

−→
H = (

−→
h1,
−→
h2, · · · ,

−→
hn)

←−
H = (

←−
h1,
←−
h2, · · · ,

←−
hn)

(2)

In this case, the whole document set can be taken
as a matrix H ∈ R2k×n.



468

Figure 1: The architecture of the proposed label-specific attention network model (LSAN).

2.2 Label-Specific Attention Network

In this subsection, we will give the proposed at-
tention network model for label-specific documen-
t representation learning. It aims to determin the
label-related component from each document. Ac-
tually, this strategy is intuitive for text classifica-
tion. For example, regarding the text “June a fri-
day, in the lawn, a war between the young boys of
the football game starte”, it is assigned into two
categories youth and sports. Obviously, the con-
tent “young boy” is much more related to youth
than to sports, while “football game” should be
directly related to sports. Next, we will show how
to capture this characteristic with our model.

2.2.1 Self-attention Mechanism
As mentioned above, the multi-label documen-
t may be tagged by more than one label, and
each document should have the most relative con-
texts with its corresponding labels. In other word-
s, each document may contain multiple compo-
nents, and the words in one document make dif-
ferent contributions to each label. To capture d-
ifferent components for each label, we adopt the
self-attention mechanism (Lin et al., 2017), which
has been successful used in various text mining
tasks (Tan et al., 2018; Al-Sabahi et al., 2018; Y-
ou et al., 2018). The label-word attention score
(As ∈ Rl×n) can be obtained by

A(s) = softmax(W2tanh(W1H)) (3)

where W1 ∈ Rda×2k and W2 ∈ Rl×da are the so-
called self-attention parameters to be trained. da
is a hyper-parameter we can set arbitrarily. Each
row A

(s)
j· (an n-dim row vector where n is the to-

tal number of words) indicates the contribution of
all words to the j-th label. Then, we can obtain
the the linear combination of the context words

for each label with the aid of label-word attention
score (A(s)) as follows.

M
(s)
j· = A

(s)
j HT (4)

which can be taken as a new representation of the
input document along the j-th label. Then the w-
hole matrix M (s) ∈ Rl×2k is the label-specific
document representation under the self-attention
mechanism.

2.2.2 Label-Attention Mechanism
Self-attention mechanism can be taken as content-
based attention because it only considers the doc-
ument content. As we all know, labels have spe-
cific semantics in text classification, which is hid-
den in the label texts or descriptions. To make
use of the semantic information of labels, they are
preprocessed and represented as a trainable matrix
C ∈ Rl×k in the same latent k-dim space with the
words.

Once having the word embedding from Bi-
LSTM in (1) and the label embedding in C, we
can explicitly determine the semantic relation be-
tween each pair of word and label. A simple way
is calculating the dot product between

−→
h p (or

←−
h p)

and Cj· as follows.

−→
A (l) = C

−→
H

←−
A (l) = C

←−
H

(5)

where
−→
A (l) ∈ Rl×n and

←−
A (l) ∈ Rl×n indicate

the forward and backward sides semantic relation
between words and labels. Similar to the previous
self-attention mechanism, the label-specific docu-
ment representation can be constructed by linear
combining the label’s context words as follows.

−→
M (l) =

−→
A (l)−→HT

←−
M (l) =

←−
A (l)←−HT

(6)
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Finally, the document can be re-represented along
all labels via M (l) = (

−→
M (l),

←−
M (l)) ∈ Rl×2k. This

representation is based on the label texts, thus, we
called it as label-attention mechanism.

2.3 Adaptive Attention Fusion Strategy
Both M (s) and M (l) are label-specific documen-
t representation, but they are different. The for-
mer focuses on the document content, while the
later prefers to the semantic correlation between
document content and label text. In order to take
advantage these two parts, in this subsection, an
attention fusion strategy is proposed to adaptively
extract proper amount of information from them
and build comprehensive label-specific document
representation.

More specifically, two weight vectors (α, β ∈
Rl) are introduced to determine the importances
of the above two mechanisms, which can obtained
by a fully connected layer on the input M (s) and
M (l).

α = sigmoid(M (s)W3)

β = sigmoid(M (l)W4)
(7)

W3,W4 ∈ R2k are the parameters to be
trained. αj and βj indicate the importances of
self-attention and label-attention to construct the
final document representation along the j-th label
respectively. Therefore, we add the constraint on
them:

αj + βj = 1 (8)

Then, we can obtain the final document represen-
tation along the j-th label based on fusion weights
as follows.

Mj· = αjM
(s)
j· + βjM

(l)
j· (9)

The label-specific document representation along
all labels can be described as a matrixM ∈ Rl×2k.

2.4 Label Prediction
Once having the comprehensive label-specific
document representation, we can build the multi-
label text classifier via a multilayer perceptron
with two fully connected layers. Mathematical-
ly, the predicted probability of each label for the
coming document can be estimated via

ŷ = sigmoid(W6f(W5M
T )) (10)

Here W5 ∈ Rb×2k,W6 ∈ Rb are the trainable
parameters of the fully connected layer and output
layer respectively. f is the ReLU nonlinear acti-
vation function. The sigmoid function is used to

transfer the output value into a probability, in this
case, the cross-entropy loss can be used as the loss
function which has been proved suitable for multi-
label text classification task (Nam et al., 2014).

L =−
N∑
i=1

l∑
j=1

(yij log(ŷij))

+ (1− yij) log(1− ŷij)

(11)

whereN is the number of training documents, l is
the number of labels, ŷij ∈ [0, 1] is the predicted
probability, and yij ∈ {0, 1} indicates the ground
truth of the i-th document along the j-th label.

3 Experiments

In this section, we evaluate the proposed model on
four datasets (with various number of labels from
54 to 3956) by comparing with the state-of-the-art
methods in terms of widely used metrics.

3.1 Experimental Setting

Datasets: There are several multi-label text
datasets, however, only few of them have label text
information. Thus, in this paper, four benchmark
multi-label datasets including three small-scale
datasets (RCV1, AAPD and EUR-Lex) and one
medium-scale dataset (KanShan-Cup) are used to
construct the experiments.
• Reuters Corpus Volume I (RCV1) (Lewis

et al., 2004) contains more than 80K manual-
ly categorized news belonging to 103 classes.

• AAPD2 (Yang et al., 2018) collects the
abstract and the corresponding subjects of
55840 papers from arXiv in the filed of com-
puter science.
• EUR-Lex (Mencia and Fürnkranz, 2008) is a

collection of documents about European U-
nion law belonging to 3956 subjects. The
public version3 contains 11585 training in-
stances and 3865 testing instances.
• KanShan-Cup4 is released by the largest

Chinese community question answering plat-
form, Zhihu. It contains near 3 million ques-
tions about 1999 topics.

For the first three data sets, only last 500 word-
s were kept for each document, while the last 50

2https://github.com/lancopku/SGM
3https://drive.google.com/drive/

folders/1KQMBZgACUm-ZZcSrQpDPlB6CFKvf9Gfb
4https://www.biendata.com/competition/

zhihu/data/

https://github.com/lancopku/SGM
https://drive.google.com/drive/folders/1KQMBZgACUm-ZZcSrQpDPlB6CFKvf9Gfb
https://drive.google.com/drive/folders/1KQMBZgACUm-ZZcSrQpDPlB6CFKvf9Gfb
https://www.biendata.com/competition/zhihu/data/
https://www.biendata.com/competition/zhihu/data/
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Table 1: Summary of Experimental Datasets.
Datasets N M D L L̄ L̃ W̄ W̃
RCV1 23,149 781,265 47,236 103 3.18 729.67 259.47 269.23
AAPD 54,840 1,000 69,399 54 2.41 2444.04 163.42 171.65

EUR-Lex 11,585 3,865 171,120 3,956 5.32 15.59 1,225.20 1,248.07
Kanshan-Cup 2,799,967 200,000 411,721 1999 2.34 3513.13 38.06 35.48

N is the number of training instances, M is the number of test instances, D is the total number of words, L is the total number of classes, L̄ is the average number of labels per document,

L̃ is the average number of documents per label, W̄ is the average number of words per document in the training set, W̃ is the average number of words per document in the testing set.

words were used in KanShan-Cup dataset. Once
the document has less than the predifined number
of words, we extend it by padding zeros. All meth-
ods are trained and tested on the given training and
testing datasets which are summarized in Table 1.
Evaluation Metrics: We use two kinds of metric,
precision at top K (P@k) and the Normalized Dis-
counted Cumulated Gains at top K (nDCG@k)
to evaluate the prediction performance. P@k and
nDCG@k are defined according to the predicted
score vector ŷ ∈ Rl and the ground truth label
vector y ∈ {0, 1}l as follows.

P@k =
1

k

∑
l∈rankk(ŷ)

yl

DCG@k =
∑

l∈rankk(ŷ)

yl
log(l + 1)

nDCG@k =
DCG@k∑min(k,‖y‖0)

l=1
1

log(l+1)

where rankk(y) is the label indexes of the top
k highest scores of the current prediction result.
‖y‖0 counts the number of relevant labels in the
ground truth label vector y.
Baseline Models: The proposed LSAN is a deep
neural network model, thus the recent state-of-the-
art deep learning-based MLTC methods are select-
ed as baselines.
• XML-CNN: (Liu et al., 2017) adopts Con-

volutional Neural Network (CNN) and a dy-
namic pooling technique to extract high-level
feature for multi-label text classification.
• SGM: (Yang et al., 2018) applies a sequence

generation model from input document to
output label to construct the multi-label text
classifier.
• DXML: (Zhang et al., 2018) tries to explore

the label correlation by considering the label
structure from the label co-occurrence graph.

• AttentionXML: (You et al., 2018) builds
the label-aware document representation on-
ly based on the document content, thus, it can
be taken as one special case of our proposed
LSAN with arbitrarily setting α = 0.

• EXAM: (Du et al., 2018) is the most similar
work to LSAN because both of them exploit
the label text to learn the interaction between
words and labels. However, EXAM suffers
from the situation where different labels have
similar text.

Parameter Setting: For the KanShan-Cup
dataset, we use the pre-trained word embedding
and label embedding public in the official web-
site, where the embedding space size is 256, i.e.,
k = 256. The parameters corresponding to the
weights between neurals are da = 200 for W1

and W2, b = 256 for W5 and W6. For other
three datasets, k = 300, da = 200 and b = 300.
The whole model is trained via Adam (Kingma
and Ba, 2014) with the learning rate being 0.001.
The parameters of all baselines are either adopted
from their original papers or determined by exper-
iments.

3.2 Comparison Results and Discussion
In this section, the proposed LSAN is evaluated on
four benchmark datasets by comparing with five
baselines in terms of P@K and nDCG@K(K =
1, 3, 5). Table 2 and Table 3 show the averaged
performance of all test documents. According to
the formula of P@K and nDCG@K, we know
P@1 = nDCG@1, thus only nDCG@3 and
nDCG@5 are listed in Table 3. In each line, the
best result is marked in bold.

From Table 2 and 3, we can make a number
of observations about these results. Firstly, XML-
CNN is worse than other four methods because it
only considers the document content but ignores
the label correlation which has been proven very
important for multi-label learning. Secondly, At-
tentionXML is superior to EXAM on datasets R-
CV1 and Kanshan-Cup, because these two datases
have hierarchical label structures. In this case,
parent label and child label may contain similar
text, which makes them hard to distinguish ac-
cording to the text-based embedding and further
reduce the performance of EXAM. By compar-
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Datasets Metrics XML-CNN DXML SGM AttentionXML EXAM LSAN(ours)
P@1 95.75% 94.04% 95.37% 96.41% 93.67% 96.81%

RCV1 P@3 78.63% 78.65% 81.36% 80.91% 75.80% 81.89%
P@5 54.94% 54.38% 53.06% 56.38% 52.73% 56.92%
P@1 74.38% 80.54% 75.67% 83.02% 83.26% 85.28%

AAPD P@3 53.84% 56.30% 56.75% 58.72% 59.77% 61.12%
P@5 37.79% 39.16% 35.65% 40.56% 40.66% 41.84%
P@1 70.40% 75.53% 70.45% 67.34% 74.40% 79.17%

EUR-Lex P@3 54.98% 60.13% 60.37% 52.52% 61.93% 64.99%
P@5 44.86% 48.65% 43.88% 47.72% 50.98% 53.67%
P@1 49.68% 50.84% 50.32% 53.69% 51.41% 54.46%

Kanshan-Cup P@3 32.27% 32.69% 31.83% 34.10% 32.81% 34.56%
P@5 24.17% 24.07% 23.95% 25.16% 24.29% 25.54%

Table 2: Comparing LSAN with five baselines in terms of P@K (K=1,3,5)on four benchmark datasets.

Datasets Metrics XML-CNN DXML SGM AttentionXML EXAM LSAN(ours)
RCV1 nDCG@3 89.89% 89.83% 91.76% 91.88% 86.85% 92.83%

nDCG@5 90.77% 90.21% 90.69% 92.70% 87.71% 93.43%
AAPD nDCG@3 71.12% 77.23% 72.36% 78.01% 79.10% 80.84%

nDCG@5 75.93% 80.99% 75.35% 82.31% 82.79% 84.78%
EUR-Lex nDCG@3 58.62% 63.96% 60.72% 56.21% 65.12% 68.32%

nDCG@5 53.10% 57.60% 55.24% 50.78% 59.43% 62.47%
Kanshan-Cup nDCG@3 46.65% 49.54% 46.90% 51.03% 49.32% 51.43%

nDCG@5 49.60% 52.16% 50.47% 53.96% 49.74% 54.36%

Table 3: Comparing LSAN with five baselines in terms of nDCG@K (K=3,5) on four benchmark datasets.

Figure 2: The label distribution of EUR-Lex

ing with EXAM and the proposed LSAN, how-
ever, AttentionXML performs worse on EUR-Lex
dataset The main reason is that AttentionXML on-
ly focuses on the document content, which will
make it not sufficiently trained once there are only
few documents in some labels. Fortunately, EX-
AM and LSAN benefit from the label texts. Last
one, as expected, is that LSAN consistently out-
performs all baselines on all experimental dataset-
s. This result further confirms that the proposed
adaptive attention fusion strategy is much helpful
to learn the label-specific document representation
for multi-label text classification.

3.3 Comparison on Sparse Data

In order to verify the performance of LSAN on
low-frequency labels, we divided labels in EUR-
Lex into three groups according to their occurring
frequency. Figure 2 shows the distribution of la-
bel frequency on EUR-Lex, F is the frequency of

label. Among it, nearly 55% of labels occur be-
tween 1 and 5 times to form the first label group
(Group1). The labels appearing 5-37 times are as-
signed into Group2, which is 35% of the whole
label set. The remaining 10% frequent labels for-
m the last group (Group3). Obviously, Group1 is
much harder than other two groups due to the lack
of training documents.

Figure 3 shows the prediction results in terms of
P@1, P@3 and P@5 obtained by AttentionXML,
EXAM and LSAN. Three methods become bet-
ter and better from Group1 to Group3, which is
reasonable because more and more documents are
included in each label from Group1 to Group3. L-
SAN significantly improves the prediction perfor-
mance on Group1. Especially, LSAN obtains an
average of more than 83.82%, 182.55%, 244.62%
gain on three metrices for group 1 to Attention-
XML, and 3.85%, 27.19%, 58.27% gain to EX-
AM. This result demonstrates the superiority of
the proposed model on multi-label text data with
tail labels.

3.4 Ablation Test

The proposed LSAN can be taken as a joint at-
tention strategy including three parts. One is self-
attention based on document content (denoted as
A). The second one is label-attention based on
label text (denoted as L). Another one is fusion
attention by adaptively integrating A and L with
proper weights (denoted as W). In this section, we
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(a) Gropu1 (F ≤ 5) (b) Gropu2 (5 < F ≤ 37) (c) Gropu3 (F > 37)

Figure 3: Precision@k for three groups on EUR-Lex

(a) RCV1 (b) AAPD (c) EUR-Lex (d) Kanshan-Cup

Figure 4: Result of the ablation test. ‘A’ denotes the Self-Attention, ‘L’ denotes the Label-Attention, ‘W’ denotes
the Fusion Attention with Adaptive Weights.

try to demonstrate the effection of each compo-
nent via an ablation test.

Figure 4 lists the prediction results on four
datasets in terms of P@1, P@3 and P@5. (i.e.,
S+L gets better results than S and L). S prefers to
finding the useful content when constructing the
label-specific document representation, but it ig-
nores the label information. L takes adantage of
label text to explicitly determine the semantic re-
lation between documents and labels, however, la-
bel text is not easy to distinguish the difference be-
tween labels (e.g., Management vs. Management
movies). Therefore, coupling with both attentions
is really reasonable. Furthermore, adaptively ex-
tracting proper amount of information from these
two attentions benefits the final multi-label tex-
t classification.

To further verify the effectiveness of attention
adaptive fusion, Figure 5 lists the distribution of
weights on Self-attention and Label-attention on
two representative datasets, one for sparse data
(EUR-Lex) and the other for dense data (AAPD).
As expected, the label-attention is much more use-
ful than self-attention for sparse data, vice versa

for dense data. In dense data, each label has suffi-
cient documents, therefore, self-attention can suf-
ficiently obtain label-specific document represen-
tation. On the other hand, label text is helpful to
extract the semantic relations between labels and
documents. Results on other two datasets have the
similar trends which are omitted due to page limi-
tation.

For investigating the effect of label-attention,
we visualize the attention weights on the origi-
nal document using heat map, as shown in Fig-
ure 6. Among it, the example AAPD documen-
t belongs to two categories Computer Vision and
Neural and Evolutionary Computing. From the
attention weights, we can see that each category
has its own most related words, which confirms
that the proposed label specific attention network
is able to extract the label-aware content and fur-
ther construct label-specific document representa-
tion.

4 Related work

In the line of MLTC, most works focus on two is-
sues, one is document representation learning and



473

Figure 5: Weight distribution for two components on EUR-Lex (left subfigure) and AAPD (right subfigure). Hor-
izontal axis is the range of weight from 0 to 1 with 0.1 gap. Vertical axis is the frequency that the specific range
occurs in current label group.

Figure 6: Demonstration of words with largest label-attention weights (A(l)) in one AAPD document belonging to
two categories:Computer Vision and Neural and Evolutionary Computing.

the other is label correlation detection.

For document representation, along with the re-
cent success in CNN, many works are proposed
based on CNN (Kim, 2014; Liu et al., 2017; Chen
et al., 2017), which can capture the local correla-
tions from the consecutive context windows. Al-
though they obain promising results, these meth-
ods suffer from the limitation of window size so
that they cannot determine the long-distance de-
pendency of text. Meanwhile, they treat all words
equally no matter how noisy the word is. Later,
RNN and attention mechanism are introduced to
get brilliant results (Yang et al., 2016). To implic-
itly learn the document representation for each la-
bel, the self-attention mechanism (Lin et al., 2017)
is adopted for multi-label classification (You et al.,
2018).

To determine the label correlation among multi-
label data, in literatures, researchers proposed var-
ious methods. Kurata et al. (2016) adopt an ini-
tialization method to leverage label co-occurrence
information. SLEEC (Bhatia et al., 2015) divides
dataset into several clusters, and in each cluster it
detects embedding vectors by capturing non-linear
label correlation. DXML (Zhang et al., 2018) es-
tablishes an explicit label co-occurrence graph to
explore label embedding in low-dimension laten-

t space. Yang et al. (2018) use sequence-to-
sequence(Seq2Seq) model to consider the corre-
lations between labels. Recently, the textual in-
formation of labels are used to guide MLTC. EX-
AM (Du et al., 2018) introduces the interaction
mechanism to incorporate word-level matching
signals into the text classification task. GILE (Pap-
pas and Henderson, 2019) proposes a joint input-
label embedding model for neural text classifica-
tion. Unfortunately, they cannot work well when
there is no big difference between label texts.

5 Conclusions and Future Work

A new label-specific attention network, in this pa-
per, is proposed for multi-label text classification.
It makes use of document content and label text
to learn the label-specific document representation
with the aid of self-attention and label-attention
mechanisms. An adaptive fusion is designed to ef-
fectively integrate these two attention mechanisms
to improve the final prediction performance. Ex-
tensive experiments on four benchmark dataset-
s prove the superiority of LSAN by comparing
with the state-of-the-art methods, especially on the
dataset with large subset of low-frequency labels.

In real applications, more precious information
can be collected, such as label description, la-



474

bel topology (e.g., hierarchical structure) and etc.
Therefore, it is interesting to extend the curren-
t model with such extra information.
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