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Abstract

As an essential component of natural language
processing, text classification relies on deep
learning in recent years. Various neural net-
works are designed for text classification on
the basis of word embedding. However, pol-
ysemy is a fundamental feature of the natu-
ral language, which brings challenges to text
classification. One polysemic word contains
more than one sense, while the word embed-
ding procedure conflates different senses of a
polysemic word into a single vector. Extract-
ing the distinct representation for the specific
sense could thus lead to fine-grained models
with strong generalization ability. It has been
demonstrated that multiple senses of a word
actually reside in linear superposition within
the word embedding so that specific senses can
be extracted from the original word embed-
ding. Therefore, we propose to use capsule
networks to construct the vectorized represen-
tation of semantics and utilize hyperplanes to
decompose each capsule to acquire the spe-
cific senses. A novel dynamic routing mech-
anism named ‘routing-on-hyperplane’ will se-
lect the proper sense for the downstream clas-
sification task. Our model is evaluated on
6 different datasets, and the experimental re-
sults show that our model is capable of ex-
tracting more discriminative semantic features
and yields a significant performance gain com-
pared to other baseline methods.

1 Introduction

Text classification is a crucial task in natural
language processing, which has many applica-
tions, such as sentiment analysis, intent identifica-
tion and topic labeling[Aggarwal and Zhai, 2012;
Wang and Manning, 2012a]. Recent years, many
studies rely on neural networks and have shown
promising performance.

∗ Authors contributed equally.
†Corresponding author.

The success of deep learning model for NLP is
based on the progress in learning distributed word
representations in semantic vector space, where
each word is mapped to a vector called a word
embedding. The word’s representation is calcu-
lated relying on the distributional hypothesis -
the assumption that semantically similar or related
words appear in similar contexts [Mikolov et al.,
2013; Langendoen, 1959]. Normally, each word’s
representation is constructed by counting all its
context features. However, for the polysemic word
which contains multiple senses, the context fea-
tures of different senses are mixed together, lead-
ing to inaccurate word representation. As demon-
strated in [Arora et al., 2018], multiple senses of a
word actually reside in linear superposition within
the word embedding:

v ≈ α1vsense1+α2vsense2+α3vsense3+· · · , (1)

where coefficients αi are nonnegative and
vsense1, vsense2... are the hypothetical embed-
dings of different senses. As a result, the word
embedding v deviates from any sense, which
brings ambiguity for the subsequent task. It
demands us to extract the separate senses from
the overall word representation to avoid the
ambiguity.

Similar to the word embedding, the recently
proposed capsule network constructs vectorized
representations for different entities[Hinton et
al., 2018; Sabour et al., 2017; Hinton et al.,
2011]. A dynamic routing mechanism, ‘routing-
by-agreement’, is implemented to ensure that the
output of the capsule gets sent to an appropriate
parent in the layer above. Very recently, capsule
network is applied in the field of NLP where each
capsule is obtained from the word embedding.
Compared with the standard neural nets using a
single scalar (the output of a neural unit) to rep-
resent the detected semantics, the vectorized rep-
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resentation in capsule network enables us to uti-
lize hyperplanes to extract the component from the
overall representation and get the specific sense.

Therefore, we propose to attach different hyper-
planes to capsules to tackle the ambiguity caused
by polysemy. Each capsule is decomposed by
projecting the output vector on the hyperplanes,
which can extract the specific semantic feature.
The projected capsule denotes a specific sense of
the target words, and a novel dynamic routing
mechanism named ‘routing-on-hyperplane’ will
decide which specific senses are selected for the
downstream classification and which senses are ig-
nored. Similar to routing-by-agreement [Sabour et
al., 2017], we aim to activate a higher-level cap-
sule whose output vector is agreed with the predic-
tions from the lower-level capsules. Differently,
before the active capsule at a level makes predic-
tions for the next-level capsules, the capsule’s out-
put vector will be projected on the trainable hyper-
plane. The hyperplanes will be trained discrimina-
tively to extract specific senses. Moreover, in or-
der to encourage the diversity of the hyperplanes,
a well-designed penalization term is implemented
in our model. We define the cosine similarity be-
tween the normal vectors of the hyperplanes as a
measure of redundancy, and minimize it together
with the original loss.

We test our model (HCapsNet) on the text clas-
sification task and conduct extensive experiments
on 6 datasets. Experimental results show that the
proposed model could learn more discriminative
features and outperform other baselines. Our main
contributions are summarized as follows:

• We explore the capsule network for text clas-
sification and propose to decompose capsules
by means of projecting on hyperplanes to
tackle the polysemy problem in natural lan-
guage.

• Propose routing-on-hyperplane to dynami-
cally select specific senses for the subse-
quent classification. A penalization term is
designed to obtain diversified hyperplanes
and offer multiple senses representations of
words.

• Our work is among the few studies which
prove that the idea of capsule networks have
promising applications on natural language
processing tasks.

2 Related Work

2.1 Neural Networks for Text Classification

Various neural networks for text classification
have been proposed based on the word embed-
ding. Commonly used models include convolu-
tional neural networks [Kim, 2014], recursive neu-
ral network [Socher et al., 2013] and recurrent
neural networks. There have been several recent
studies of CNN for text classification in the large
training dataset and deep complex model struc-
tures [Schwenk et al., 2017; Johnson and Zhang,
2017]. Some models were proposed to combine
the strength of CNN and RNN [Lai et al., 2015;
Zhang et al., 2016]. Moreover, the accuracy was
further improved by attention-based neural net-
works[Lin et al., 2017; Vaswani et al., 2017; Yang
et al., 2016]. However, these models are less effi-
cient than capsule networks.

As a universal phenomenon of language, poly-
semy calls much attention of linguists. It has been
demonstrated that learning a distinct representa-
tion for each sense of an ambiguous word could
lead to more powerful and fine-grained models
based on vector-space representations [Li and Ju-
rafsky, 2015].

2.2 Capsule Network

Capsule network was proposed to improve the rep-
resentational limitations of CNN and RNN by ex-
tracting features in the form of vectors. The tech-
nique was firstly proposed in [Hinton et al., 2011]
and improved in [Sabour et al., 2017] and [Hin-
ton et al., 2018]. Vector-based representation is
able to encode latent inter-dependencies between
groups of input features during the learning pro-
cess. Introducing capsules also allows us to use
routing mechanism to generate high-level features
which is a more efficient way for feature encoding.

Several types of capsule networks have been
proposed for natural language processing. Yang
et al. [2018] investigated capsule networks with
routing-by-agreement for text classification. They
also found that capsule networks exhibit signif-
icant improvement when transfer single-label to
multi-label text classification. Capsule networks
also show a good performance in multi-task learn-
ing [Xiao et al., 2018]. Xia et al. [2018] discov-
ered the capsule-based model’s potential on zero-
shot learning. However, existing capsule networks
for natural language processing cannot model the
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polysemic words or phrases which contain multi-
ple senses.

3 Model

In this section, we begin by introducing the idea of
routing-on-hyperplane and formulate it in details.
Then the architecture of the HCapsNet is formally
presented in the second subsection. Finally, the
penalization term and loss function implemented
in this paper are explained.

3.1 Routing-on-hyperplane

Suppose that we have already decided on the out-
put vectors of all the capsules in the layer L and
we now want to decide which capsules to activate
in the layer L+1. We should also consider how to
assign each active capsule in the layer L to one ac-
tive capsule in the layer L + 1. The output vector
of capsule i in the layer L is denoted by ui, and
the output vector of capsule j in the layer L+ 1 is
denoted by vj .

Firstly, for all the capsules in the layer L, we
attach the trainable hyperplane to each capsule.
Capsule’s output vectors will be projected on the
hyperplanes before making predictions. More
specifically, for capsule i, we define the trainable
matrix W h

i , which is used to decide the normal
vector wi of the attached hyperplane. By restrict-
ing ‖wi‖2 = 1, we can get the projected capsule’s
output vector u⊥i:

wi = W h
i ui. (2)

u⊥i = ui −wT
i uiwi. (3)

In this way, the output vectors of capsules will be
projected on the specific hyperplanes to get differ-
ent components which denote the specific senses
in our task. To retain or ignore a specific sense
(projected capsule) will be decided through an it-
erative procedure. The procedure contains making
predictions and calculating the agreement. When
one projected capsule’s prediction is highly agreed
with one target parent capsule, the probability
of retaining the projected capsule gets gradually
larger. In another word, when a specific sense is
highly relevant with the subsequent classification,
we choose to keep it and ignore others.

Therefore, the u⊥i will then be used to make
predictions for the L+ 1 layer’s capsules and cal-
culate coupling coefficients cij . When making

Algorithm 1 Routing-on-hyperplane returns the
output vector of capsule j in the layer L+1 given
the output vector of capsule i in the layer L. Wij

are trainable parameters denoting the transforma-
tion matrix between the two adjacent layers. W h

i

are trainable parameters for each capsule i to cal-
culate the proposed hyperplane’s normal vectors
wi, we restrict that ‖wi‖2 = 1.

1: initialize the routing logits:
for all capsule i in the layer L and capsule j
in the layer L+ 1: bij ← 0;

2: for every capsule i in the layer L: wi =
W h

i ui

3: for every capsule i in the layerL: u⊥i ← ui−
wT

i uiwi

4: for every capsule i in the layer L: û⊥j|i =
Wiju⊥i

5: for r iterations do
6: for all capsule i and j: cij ← exp(bij)∑

k exp(bik)

7: for all capsule j in the layer L+ 1:
s⊥j ←

∑
i cijû⊥j|i

8: for all capsule j in the layer L+ 1:
vj ←

‖s⊥j‖2
1+‖s⊥j‖2

s⊥j

‖s⊥j‖
9: for all capsule i and capsule j: bij ← bij +

û⊥j|i · vj
10: end for
11: return vj

predictions, the capsules in the layer L will multi-
ply their projected output vector u⊥i by a weight
matrix Wij :

û⊥j|i = Wiju⊥i, (4)

where û⊥j|i denotes the ‘vote’ of the capsule i for
the capsule j. The agreement between the predic-
tion vector û⊥j|i with current output vector of par-
ent capsule j will be fed back to the coupling co-
efficients cij between the two capsules: increase
cij if highly agreed. Similar with [Sabour et al.,
2017] we define the agreement as scalar product
between the two vectors. bij is the accumulation
of the agreement after each iteration and the soft-
max function is implemented to ensure the cou-
pling coefficients between the capsule i and all the
capsules in the layer above sum to one:

bij ← bij + û⊥j|i · vj (5)

cij =
exp(bij)∑
k exp(bik)

(6)
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Each iteration will result in a temporary output
vector of the capsule j: the weighted sum over
all prediction vectors û⊥j|i using coefficient cij .
Moreover, to ensure the length of the output vector
of capsule j is able to represent the probability and
prevent it from being too big, we use a non-linear
‘squashing’ function to make the vector’s length
range from zero to one without changing the vec-
tor’s direction:

s⊥j =
∑
i

cijû⊥j|i. (7)

vj =
‖s⊥j‖2

1 + ‖s⊥j‖2
s⊥j
‖s⊥j‖

. (8)

The vj will then be returned as input to calcu-
late the agreement for the next iteration. The cou-
pling coefficients cij and the output vector of cap-
sule j gradually converge after several iterations.
After the last iteration of the routing process, the
coupling coefficients cij is determined. Hyper-
plane plays the role to extract specific senses and
assist to route the lower-level capsules to the right
parent capsules. We detail the whole routing-on-
hyperplane algorithm in Algorithm 1.

3.2 HCapsNet Model Architecture
We propose a model named HCapsNet for text
classification based on the theory of capsule net-
work and routing-on-hyperplane. The architec-
ture is illustrated in Figure 1. The model consists
of three layers: one bi-directional recurrent layer,
one convolutional capsule layer, and one fully con-
nected capsule layer. The input of the model is a
sentence S consisting of a sequence of word to-
kens t1, t2, ..., tn. The output of the model con-
tains a series of capsules. Each top-level capsule
corresponds to a sentence category. The length of
the top-level capsule’s output vector is the prob-
ability p that the input sentence S belongs to the
corresponding category.

The recurrent neural network can capture long-
distance dependencies within a sentence. For this
strength, a bi-directional recurrent neural network
is the first layer of HCapsNet. We concatenate the
left context and the right context as the word’s el-
ementary representation xi, which is the input to
the second layer:

cl(ti) =
−−−→
RNN(ti), (9)

cr(ti) =
←−−−
RNN(ti), (10)

xi = [cl(ti), cr(ti)]. (11)

The second layer is a convolutional capsule
layer. This is the first layer consisting of capsules,
we call capsules in this layer as primary capsules.
Primary capsules are groups of detected features
which means piecing instantiated parts together to
make familiar wholes. Since the output of the bi-
directional recurrent neural network is not in the
form of capsules, no routing method is used in this
layer.

The final layer is fully connected capsule layer.
Each capsule corresponds to a sentence class. All
the capsules in this layer receive the output of the
lower-level capsules by the routing-on-hyperplane
method as we described in Section 3.1. The length
of the top-level capsule’s output vector represents
the probability that the input sentence belongs to
the corresponding category.

3.3 Penalization Term

The HCapsNet may suffer from redundancy prob-
lem if the output vectors of capsules are always
getting projected on the similar hyperplanes at the
routing-on-hyperplane procedure. Thus, we need
a penalization term to encourage the diversity of
the hyperplanes. We introduce an easy penaliza-
tion term with low time complexity and space cost.
Firstly, we construct a matrix Xi the columns of
which is the normal vectors w of the hyperplanes
for the ith word. The dot product of Xi and its
transpose, subtracted by an identity matrix is de-
fined as a measure of redundancy. The penaliza-
tion term is the sum of all the words’ redundancy:

Pi = ||(XiX
T
i − I)||2F . (12)

P =
∑
i

Pi, (13)

where || • ||F stands for the Frobenius norm of a
matrix. Similar to adding the L2 regularization
term, this penalization term P will be multiplied
by a coefficient, and we minimize it together with
the original loss.

Let’s consider the two columns wa and wb in
Xi, which are two normal vectors of hyperplanes
for the ith word. We have restricted that ||w|| = 1
as described in Algorithm 1. For any non-diagonal
elements xab (a 6= b) in the XiX

T
i matrix, it cor-

responds to the cosine similarity between the two
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Figure 1: The architecture of HCapsNet

normal vectors:

−1 < xab =
∑
k

wa
kw

b
k < 1. (14)

where wa
k and wb

k are k-th element in the wa and
wb vectors, respectively. In the most extreme case,
where the two normal vectors of hyperplanes are
orthometric with each other, i.e. the word is pro-
jected to two extremely different meanings, the
corresponding xab is 0. Otherwise, the absolute
value will be positive. In the other most extreme
case, where the two normal vectors of hyperplanes
are identical, i.e. the word is projected to the same
vector, the corresponding absolute value of xab
is 1. The diagonal elements xab (a = b) in the
XiX

T
i matrix is the normal vectors’ cosine sim-

ilarity with themselves, so they are all 1. The
XiX

T
i is subtracted by an identity matrix I so as

to eliminate the meaningless elements. We min-
imize the Frobenius norm of Pi to encourage the
non-diagonal elements in Pi to converge to 0, in
another word, to encourage word vector to be pro-
jected on orthometric hyperplanes and get diversi-
fied explanation.

3.4 Loss Function

In HCapsNet, each top-level capsule corresponds
to a sentence category. The length of the top-level
capsule’s output vector represents the probability
that the input sentence belongs to the correspond-
ing category. We would like the top-level capsule
for the category k to have a long output vector if
the input sentence belongs to the category k and
have a short output vector if the input sentence
does not belong to the category k. Similar with

[Sabour et al., 2017], We use a separate margin
loss, Lk for each top-level capsule k. The total
loss L is simply the sum of the losses of all top-
level capsules:

L =
∑
k

{Tk max(0,m+ − ||vk||)2+

λ1(1− Tk)max(0, ||vk|| −m−)2}+ λ2P,

(15)

where Tk will be 1 if the sentence belongs to the
k class, or else Tk will be 0. ||vk|| is the length
of the output vector of capsule k. We introduce λ1
to reduce the penalization to avoid shrinking the
length of the capsules’ output vectors in the initial
learning stage. P is the penalization term intro-
duced in Section 3.3. In our experiments, m+ =
0.9, m− = 0.1, λ1 = 0.5.

4 Experiments

We compare our method with the widely used text
classification methods and baseline models (listed
in Table 1).

4.1 Datasets
HCapsNet is evaluated on six widely studied
datasets including three common text classifica-
tion tasks: sentiment analysis, question classi-
fication and topic classification. These datasets
are Stanford Sentiment Treebank [Socher et al.,
2013], Movie Review Data [Pang and Lee, 2005],
Subjectivity dataset [Pang and Lee, 2004], TREC
[Li and Roth, 2002] and AG’s corpus of news ar-
ticles [Zhang et al., 2015b]. Summary statistics of
the datasets are listed in Table2.
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Method SST-2 SST-5 MR Subj TREC AG’s news

SVM [Socher et al., 2013] 79.4 40.7 - - - -
NB [Socher et al., 2013] 81.8 41.0 - - - -
NBSVM-bi [Wang and Manning, 2012b] - - 79.4 93.2 - -

Standard-LSTM 80.6 45.3 75.9 89.3 86.8 86.1
bi-LSTM 83.2 46.7 79.3 90.5 89.6 88.2
RCNN [Lai et al., 2015] - 47.21 - - -
SNN [Zhao et al., 2018] - 50.4 82.1 93.9 96 -

CNN-non-static [Kim, 2014] 87.2 48.0 81.5 93.4 93.6 92.3
VD-CNN [Schwenk et al., 2017] - - - 88.2 85.4 91.3
CL-CNN [Zhang et al., 2015a] - - - 88.4 85.7 92.3
Capsule-B [Yang et al., 2018] 86.8 - 82.3 93.8 93.2 92.6

HCapsNet 88.7 50.8 83.5 94.2 94.2 93.5

Table 1: Experimental results of our model compared with other models. Performance is measured in accuracy
(%). Models are divided into 3 categories. The first part is baseline methods including SVM and Naive Bayes and
their variations. The second part contains models about recurrent neural networks. The third part contains models
about convolutional neural networks.

Dataset Class Len V Train Dev Test
SST-2 2 54 16185 6920 872 1821
SST-5 5 54 17836 8544 1101 2210
MR 2 58 18765 9596 - 1066
Subj 2 121 21323 9000 - 1000

TREC 6 37 9592 5452 - 500
AG’s news 4 197 51379 120k - 7.6k

Table 2: Summary statistics for the datasets.

4.2 Hyperparameters

In our experiments, we use 300-dimensional
word2vec [Mikolov et al., 2013] vectors to initial-
ize word representations. In the first bi-directional
RNN layer of HCapsNet, we use Long Short Term
Memory network, the dimension of the hidden
state is 256. The second layer contains 32 chan-
nels of primary capsules and the number of cap-
sules in one channel depends on the sentence
length. Each primary capsule contains 8 atoms
which means that the dimension of the primary
capsules is 8. The top-level capsules are obtained
after 3 routing iterations. The dimension of the
output vector of top-level capsules is 16. For all
the datasets, we conduct mini-batch with size 25.
We use Adam [Kingma and Ba, 2014] as our opti-
mization method with 1e − 3 learning rate. λ2 is
0.01.

4.3 Results and Discussions

Table 1 reports the results of our model on dif-
ferent datasets comparing with the widely used
text classification methods and state-of-the-art ap-
proaches. We can have the following observations.

Our HCapsNet achieves the best results on 5
out of 6 datasets, which verifies the effectiveness
of our model. In particular, HCapsNet outper-
forms vanilla capsule network Capsule-B[Yang et
al., 2018] by a remarkable margin, which only uti-
lizes the dynamic routing mechanism without hy-
perplane projecting.

HCapNet does not perform best on the TREC
dataset. One main reason maybe TREC dataset is
used for question type classification, where sam-
ples are all question sentences. The task is mainly
determined by interrogative words. For example,
the sentence containing ‘where’ will probably be
classified to ‘location’. The ability to tackle pol-
ysemy doesn’t play an important role. So, our
model gets a similar result with Capsule-B.

4.4 Ablation Study

To analyze the effect of different components in-
cluding hyperplane projection, penalization term,
and routing iterations, we report the results of vari-
ants of HCapsNet in Table 4.

The results show that capsule network performs
best when conducting 3 routing iterations, which
stays in line with the conclusion in [Sabour et
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Sentence Projected representation for polyseme Capsule-B HCapsNet
like old myths and [wonder] tales spun afresh. [0.4632, 0.1429, -0.2311, 0.4664, 0.2448,

-0.6256, -0.0975, 0.1784]
PX PX

as your relatives swap one mundane story after
another , you begin to [wonder] if they are ever
going to depart.

[-0.059, -0.3657, -0.3788, -0.0716, 0.4276,
-0.5122, 0.5092, 0.092]

N× PX

you [wonder] why enough was n’t just a music
video rather than a full-length movie . [0.0137, -0.2311, -0.4361, 0.0194, 0.5012,

-0.5311, 0.4617, -0.0082]
P× NX

trouble every day is a success in some sense , but
it ’s hard to like a film so [cold] and dead [0.1758, -0.3037, -0.3679, 0.0992, 0.3996,

-0.6481, 0.3668, 0.1267]
NX NX

the [cold] and dreary weather is a perfect
metaphor for the movie itself , which contains
few laughs and not much drama

[-0.3810, -0.3923, -0.3016, -0.3045,
0.2417, -0.3109, 0.5999, -0.0391]

N× PX

Table 3: Projected primary capsule’s representations for polysemic words. P and N denote positive and negative
classification results, respectively. X denotes the right classification and × denotes the incorrect classification.

• Almost every scene in this film is a gem that could stand alone, a perfectly realized observation of mood, behavior and intent.
• A spunky, original take on a theme that will resonate with singles of many ages.
• The story drifts so inexorable into cliches about tortured lrb and torturing rrb artists and consuming but impossible love that you 

can’t help but become more disappointed as each overwrought new sequence plods on.
• The premise is in extremely bad taste, and the film’s supposed insights are so poorly thought out and substance free that even a

high school senior taking his or her first psychology class could dismiss them.

Figure 2: Examples of routing results for SST-2.

al., 2017; Yang et al., 2018]. Compared with the
vanilla capsule network (row 3), applying routing-
on-hyperplane brings a noticeable improvement
(row 2). This demonstrates the necessity of inte-
grating hyperplane projecting at the routing pro-
cedure to tackle the polysemy problems. More-
over, the penalization term described in Section
3.3 also marginally improves the accuracy, which
proves that the orthogonal constraint on hyper-
plane is beneficial for text classification.

Hyperplane Pena. Iterations Accuracy
X X 3 83.5
X × 3 83.2
× × 3 82.5
X X 1 81.5
X X 5 82.6

Table 4: Ablation study on MR dataset. “Pena.” de-
notes Penalization Term in Section 3.3.

4.5 Case Study
Table 3 shows some sample cases from SST val-
idation dataset, which are movie reviews for sen-
timent analysis. We analyze the attended primary
capsule representation for the polysemic words in
brackets. Specifically, we report the output vectors
of the projected primary capsule, which is mostly
attended by the routing mechanism.

The word ‘wonder’ in the first sample sentence

means something that fills you with surprise and
admiration, which shows a very positive senti-
ment. However, the polysemic word ‘wonder’
in the second and third sentences means to think
about something and try to decide what is true,
which is neutral in sentiment. We can observe
that for the same word, the attended projected cap-
sule representations are quite different according
to different word senses. The projected repre-
sentations for the same sense are similar, the Eu-
clidean distance is 0.23 (row 2,3). On the contrary,
for the different senses, the Euclidean distance is
1.12 (row 1,2). This property helps our model to
make the predictions all correctly, while Capsule-
B [Yang et al., 2018] can not handle the latter two
sentences. Similarly, the word ‘cold’ conveys two
different senses in the last two samples (row 4-5),
which means cruel and low temperature, respec-
tively. The corresponding projected vectors are
also quite different, which verifies the ability to
tackle polysemy by routing-on-hyperplane.

4.6 Visualizing Routing Results

After several iterations of the routing algorithm,
each primary capsule and the top-level capsule
will be connected via a calculated coupling coeffi-
cient. The coupling coefficient corresponds to how
much contribution of a low-level capsule to a spe-
cific high-level capsule. Routing-on-hyperplane
can also be viewed as a parallel attention mech-
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Figure 3: Illustrating the effect of the hyperplane.

anism that allows each capsule at one level to at-
tend to some active capsules at the level below and
to ignore others. We can thus draw a heat map
to figure which phrases are taken into account a
lot, and which ones are skipped by the routing-on-
hyperplane in the task of text classification.

We randomly select 4 examples of reviews from
the test set of SST, when the model has a high
confidence (>0.8) in predicting the label. As
shown in Figure 2, the words whose coupling co-
efficient greater than 0.7 are marked. It is easy
to conclude that our routing method can effec-
tively extract the sentimental words that indicate
strongly on the sentiment behind the sentence
and assign a greater coupling coefficient between
the corresponding capsules. For example, ‘gem’,
‘spunky’, ‘disappointed’, ‘bad taste’ etc.

4.7 Visualizing Effects of The Hyperplane

In order to assess the effect of the hyperplane, we
randomly select 3 examples in SST dataset and
draw the distribution maps of primary capsules’
output vectors before and after the projection op-
eration respectively. As the dimension of the pri-
mary capsule’s output vector is 8, T-Distributed
Stochastic Neighbor Embedding (t-SNE) is per-
formed on the vectors to reduce the dimension for
visualization. As illustrated in Figure 3, the three
pictures in the first line show the distribution be-
fore the projection operation for the three example
sentences respectively. And the three pictures in
the second line show the distribution after the pro-
jection. The blue points in the distribution maps
denote the normal words and the red crosses de-
note the words attended by the routing algorithm
which are defined in Section 4.6.

The relationship between the semantic capsules
can be estimated by analyzing the distribution of

the low-dimensional data in Figure 3. We find that
originally scattered points which denote attended
words converge after the projection. The attended
words’ projected vectors are close with each other,
showing that they contain similar senses which are
beneficial for the subsequent task. On the con-
trary, the capsules before projection contain mul-
tiple senses and show a scattered pattern. This
demonstrates that the hyperplanes can effectively
extract the guided senses and get attended by the
routing-on-hyperplane mechanism.

5 Conclusion and Future Work

In this paper, we explore the capsule network for
text classification and propose to decompose the
capsule by means of projecting on hyperplanes
to tackle the polysemy problem in natural lan-
guage. Routing-on-hyperplane, a dynamic rout-
ing method, is implemented to select the sense-
specific projected capsules for the subsequent
classification task. We assess the effect of the hy-
perplane by case study and analyzing the distribu-
tion of the capsules’ output vectors. The exper-
iments demonstrate the superiority of HCapsNet
and our proposed routing-on-hyperplane method
outperforms the existing routing method in the text
classification task.

In future, we would like to investigate the ap-
plication of our theory in various tasks includ-
ing reading comprehension and machine translat-
ing. We believe that capsule networks have broad
applicability on the natural language processing
tasks. Our core idea that decomposing the seman-
tic capsules by projecting on hyperplanes is a nec-
essary complement to capsule network to tackle
the polysemy problem in various natural language
processing tasks.
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