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Abstract
Relation extraction (RE) seeks to detect and
classify semantic relationships between enti-
ties, which provides useful information for
many NLP applications. Since the state-of-
the-art RE models require large amounts of
manually annotated data and language-specific
resources to achieve high accuracy, it is very
challenging to transfer an RE model of a
resource-rich language to a resource-poor lan-
guage. In this paper, we propose a new ap-
proach for cross-lingual RE model transfer
based on bilingual word embedding mapping.
It projects word embeddings from a target lan-
guage to a source language, so that a well-
trained source-language neural network RE
model can be directly applied to the target
language. Experiment results show that the
proposed approach achieves very good perfor-
mance for a number of target languages on
both in-house and open datasets, using a small
bilingual dictionary with only 1K word pairs.

1 Introduction

Relation extraction (RE) is an important informa-
tion extraction task that seeks to detect and clas-
sify semantic relationships between entities like
persons, organizations, geo-political entities, lo-
cations, and events. It provides useful informa-
tion for many NLP applications such as knowl-
edge base construction, text mining and question
answering. For example, the entity Washington,
D.C. and the entity United States have a CapitalOf
relationship, and extraction of such relationships
can help answer questions like “What is the capi-
tal city of the United States?”

Traditional RE models (e.g., Zelenko et al.
(2003); Kambhatla (2004); Li and Ji (2014)) re-
quire careful feature engineering to derive and
combine various lexical, syntactic and seman-
tic features. Recently, neural network RE mod-
els (e.g., Zeng et al. (2014); dos Santos et al.

(2015); Miwa and Bansal (2016); Nguyen and
Grishman (2016)) have become very successful.
These models employ a certain level of auto-
matic feature learning by using word embeddings,
which significantly simplifies the feature engineer-
ing task while considerably improving the accu-
racy, achieving the state-of-the-art performance
for relation extraction.

All the above RE models are supervised ma-
chine learning models that need to be trained
with large amounts of manually annotated RE
data to achieve high accuracy. However, anno-
tating RE data by human is expensive and time-
consuming, and can be quite difficult for a new
language. Moreover, most RE models require
language-specific resources such as dependency
parsers and part-of-speech (POS) taggers, which
also makes it very challenging to transfer an RE
model of a resource-rich language to a resource-
poor language.

There are a few existing weakly supervised
cross-lingual RE approaches that require no hu-
man annotation in the target languages, e.g., Kim
et al. (2010); Kim and Lee (2012); Faruqui and
Kumar (2015); Zou et al. (2018). However, the ex-
isting approaches require aligned parallel corpora
or machine translation systems, which may not be
readily available in practice.

In this paper, we make the following contribu-
tions to cross-lingual RE:

• We propose a new approach for direct cross-
lingual RE model transfer based on bilin-
gual word embedding mapping. It projects
word embeddings from a target language to
a source language (e.g., English), so that a
well-trained source-language RE model can
be directly applied to the target language,
with no manually annotated RE data needed
for the target language.
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• We design a deep neural network archi-
tecture for the source-language (English)
RE model that uses word embeddings and
generic language-independent features as the
input. The English RE model achieves the-
state-of-the-art performance without using
language-specific resources.

• We conduct extensive experiments which
show that the proposed approach achieves
very good performance (up to 79% of the
accuracy of the supervised target-language
RE model) for a number of target languages
on both in-house and the ACE05 datasets
(Walker et al., 2006), using a small bilin-
gual dictionary with only 1K word pairs.
To the best of our knowledge, this is the
first work that includes empirical studies for
cross-lingual RE on several languages across
a variety of language families, without using
aligned parallel corpora or machine transla-
tion systems.

We organize the paper as follows. In Section 2
we provide an overview of our approach. In Sec-
tion 3 we describe how to build monolingual word
embeddings and learn a linear mapping between
two languages. In Section 4 we present a neural
network architecture for the source-language (En-
glish). In Section 5 we evaluate the performance
of the proposed approach for a number of target
languages. We discuss related work in Section 6
and conclude the paper in Section 7.

2 Overview of the Approach

We summarize the main steps of our neural cross-
lingual RE model transfer approach as follows.

1. Build word embeddings for the source lan-
guage and the target language separately us-
ing monolingual data.

2. Learn a linear mapping that projects the
target-language word embeddings into the
source-language embedding space using a
small bilingual dictionary.

3. Build a neural network source-language
RE model that uses word embeddings and
generic language-independent features as the
input.

4. For a target-language sentence and any two
entities in it, project the word embeddings

of the words in the sentence to the source-
language word embeddings using the linear
mapping, and then apply the source-language
RE model on the projected word embeddings
to classify the relationship between the two
entities. An example is shown in Figure 1,
where the target language is Portuguese and
the source language is English.

We will describe each component of our ap-
proach in the subsequent sections.

3 Cross-Lingual Word Embeddings

In recent years, vector representations of words,
known as word embeddings, become ubiquitous
for many NLP applications (Collobert et al., 2011;
Mikolov et al., 2013a; Pennington et al., 2014).

A monolingual word embedding model maps
words in the vocabulary V of a language to real-
valued vectors in Rd×1. The dimension of the vec-
tor space d is normally much smaller than the size
of the vocabulary V = |V| for efficient represen-
tation. It also aims to capture semantic similarities
between the words based on their distributional
properties in large samples of monolingual data.

Cross-lingual word embedding models try to
build word embeddings across multiple languages
(Upadhyay et al., 2016; Ruder et al., 2017). One
approach builds monolingual word embeddings
separately and then maps them to the same vec-
tor space using a bilingual dictionary (Mikolov
et al., 2013b; Faruqui and Dyer, 2014). Another
approach builds multilingual word embeddings in
a shared vector space simultaneously, by gener-
ating mixed language corpora using aligned sen-
tences (Luong et al., 2015; Gouws et al., 2015).

In this paper, we adopt the technique in
(Mikolov et al., 2013b) because it only requires
a small bilingual dictionary of aligned word pairs,
and does not require parallel corpora of aligned
sentences which could be more difficult to obtain.

3.1 Monolingual Word Embeddings
To build monolingual word embeddings for the
source and target languages, we use a variant of
the Continuous Bag-of-Words (CBOW) word2vec
model (Mikolov et al., 2013a).

The standard CBOW model has two matrices,
the input word matrix X̃ ∈ Rd×V and the output
word matrix X ∈ Rd×V . For the ith word wi in V ,
let e(wi) ∈ RV×1 be a one-hot vector with 1 at in-
dex i and 0s at other indexes, so that x̃i = X̃e(wi)
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Figure 1: Neural cross-lingual relation extraction based on bilingual word embedding mapping - target language:
Portuguese, source language: English.

(the ith column of X̃) is the input vector repre-
sentation of word wi, and xi = Xe(wi) (the ith
column of X) is the output vector representation
(i.e., word embedding) of word wi.

Given a sequence of training words
w1, w2, ..., wN , the CBOW model seeks to
predict a target word wt using a window of 2c
context words surrounding wt, by maximizing the
following objective function:

L =
1

N

N∑
t=1

logP (wt|wt−c, ..., wt−1, wt+1, ..., wt+c)

The conditional probability is calculated using a
softmax function:

P (wt|wt−c, ..., wt+c) =
exp(xT

t x̃c(t))∑V
i=1 exp(x

T
i x̃c(t))

(1)

where xt = Xe(wt) is the output vector represen-
tation of word wt, and

x̃c(t) =
∑

−c≤j≤c,j 6=0

X̃e(wt+j) (2)

is the sum of the input vector representations of
the context words.

In our variant of the CBOW model, we use a
separate input word matrix X̃j for a context word

at position j,−c ≤ j ≤ c, j 6= 0. In addition, we
employ weights that decay with the distances of
the context words to the target word. Under these
modifications, we have

x̃new
c(t) =

∑
−c≤j≤c,j 6=0

1

|j|
X̃je(wt+j) (3)

We use the variant to build monolingual word
embeddings because experiments on named entity
recognition and word similarity tasks showed this
variant leads to small improvements over the stan-
dard CBOW model (Ni et al., 2017).

3.2 Bilingual Word Embedding Mapping
Mikolov et al. (2013b) observed that word em-
beddings of different languages often have similar
geometric arrangements, and suggested to learn a
linear mapping between the vector spaces.

Let D be a bilingual dictionary with aligned
word pairs (wi, vi)i=1,...,D between a source lan-
guage s and a target language t, where wi is a
source-language word and vi is the translation of
wi in the target language. Let xi ∈ Rd×1 be the
word embedding of the source-language word wi,
yi ∈ Rd×1 be the word embedding of the target-
language word vi.

We find a linear mapping (matrix) Mt→s such
that Mt→syi approximates xi, by solving the fol-
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lowing least squares problem using the dictionary
as the training set:

Mt→s = arg min
M∈Rd×d

D∑
i=1

||xi −Myi||2 (4)

Using Mt→s, for any target-language word v
with word embedding y, we can project it into the
source-language embedding space as Mt→sy.

3.2.1 Length Normalization and Orthogonal
Transformation

To ensure that all the training instances in the dic-
tionary D contribute equally to the optimization
objective in (4) and to preserve vector norms after
projection, we have tried length normalization and
orthogonal transformation for learning the bilin-
gual mapping as in (Xing et al., 2015; Artetxe
et al., 2016; Smith et al., 2017).

First, we normalize the source-language and
target-language word embeddings to be unit vec-
tors: x′ = x

||x|| for each source-language word em-
bedding x, and y′ = y

||y|| for each target-language
word embedding y.

Next, we add an orthogonality constraint to
(4) such that M is an orthogonal matrix, i.e.,
MTM = I where I denotes the identity matrix:

MO
t→s = arg min

M∈Rd×d,MTM=I

D∑
i=1

||x′i −My′i||2

(5)
MO

t→s can be computed using singular-value de-
composition (SVD).

3.2.2 Semi-Supervised and Unsupervised
Mappings

The mapping learned in (4) or (5) requires a seed
dictionary. To relax this requirement, Artetxe et al.
(2017) proposed a self-learning procedure that
can be combined with a dictionary-based mapping
technique. Starting with a small seed dictionary,
the procedure iteratively 1) learns a mapping us-
ing the current dictionary; and 2) computes a new
dictionary using the learned mapping.

Artetxe et al. (2018) proposed an unsupervised
method to learn the bilingual mapping without us-
ing a seed dictionary. The method first uses a
heuristic to build an initial dictionary that aligns
the vocabularies of two languages, and then ap-
plies a robust self-learning procedure to itera-
tively improve the mapping. Another unsuper-

vised method based on adversarial training was
proposed in Conneau et al. (2018).

We compare the performance of different map-
pings for cross-lingual RE model transfer in Sec-
tion 5.3.2.

4 Neural Network RE Models

For any two entities in a sentence, an RE model
determines whether these two entities have a rela-
tionship, and if yes, classifies the relationship into
one of the pre-defined relation types. We focus
on neural network RE models since these models
achieve the state-of-the-art performance for rela-
tion extraction. Most importantly, neural network
RE models use word embeddings as the input,
which are amenable to cross-lingual model trans-
fer via cross-lingual word embeddings. In this pa-
per, we use English as the source language.

Our neural network architecture has four lay-
ers. The first layer is the embedding layer which
maps input words in a sentence to word embed-
dings. The second layer is a context layer which
transforms the word embeddings to context-aware
vector representations using a recurrent or convo-
lutional neural network layer. The third layer is a
summarization layer which summarizes the vec-
tors in a sentence by grouping and pooling. The
final layer is the output layer which returns the
classification label for the relation type.

4.1 Embedding Layer
For an English sentence with n words s =
(w1, w2, ..., wn), the embedding layer maps each
word wt to a real-valued vector (word embedding)
xt ∈ Rd×1 using the English word embedding
model (Section 3.1). In addition, for each entity
m in the sentence, the embedding layer maps its
entity type to a real-valued vector (entity label em-
bedding) lm ∈ Rdm×1 (initialized randomly). In
our experiments we use d = 300 and dm = 50.

4.2 Context Layer
Given the word embeddings xt’s of the words in
the sentence, the context layer tries to build a
sentence-context-aware vector representation for
each word. We consider two types of neural net-
work layers that aim to achieve this.

4.2.1 Bi-LSTM Context Layer
The first type of context layer is based on Long
Short-Term Memory (LSTM) type recurrent neu-
ral networks (Hochreiter and Schmidhuber, 1997;
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Graves and Schmidhuber, 2005). Recurrent neural
networks (RNNs) are a class of neural networks
that operate on sequential data such as sequences
of words. LSTM networks are a type of RNNs that
have been invented to better capture long-range
dependencies in sequential data.

We pass the word embeddings xt’s to a for-
ward and a backward LSTM layer. A forward or
backward LSTM layer consists of a set of recur-
rently connected blocks known as memory blocks.
The memory block at the t-th word in the forward
LSTM layer contains a memory cell −→c t and three
gates: an input gate

−→
i t, a forget gate

−→
f t and an

output gate −→o t (−→· indicates the forward direc-
tion), which are updated as follows:

−→
i t = σ

(−→
W ixt +

−→
U i
−→
h t−1 +

−→
b i

)
−→
f t = σ

(−→
W fxt +

−→
U f
−→
h t−1 +

−→
b f

)
−→o t = σ

(−→
W oxt +

−→
U o
−→
h t−1 +

−→
b o

)
−→c t =

−→
f t �−→c t−1 +
−→
i t � tanh

(−→
W cxt +

−→
U c
−→
h t−1 +

−→
b c

)
−→
h t = −→o t � tanh(−→c t) (6)

where σ is the element-wise sigmoid function and
� is the element-wise multiplication.

The hidden state vector
−→
h t in the forward

LSTM layer incorporates information from the left
(past) tokens of wt in the sentence. Similarly, we
can compute the hidden state vector

←−
h t in the

backward LSTM layer, which incorporates infor-
mation from the right (future) tokens of wt in the
sentence. The concatenation of the two vectors
ht = [

−→
h t,
←−
h t] is a good representation of the

word wt with both left and right contextual infor-
mation in the sentence.

4.2.2 CNN Context Layer
The second type of context layer is based on Con-
volutional Neural Networks (CNNs) (Zeng et al.,
2014; dos Santos et al., 2015), which applies
convolution-like operation on successive windows
of size k around each word in the sentence. Let
zt = [xt−(k−1)/2, ...,xt+(k−1)/2] be the concate-
nation of k word embeddings around wt. The con-
volutional layer computes a hidden state vector

ht = tanh(Wzt + b) (7)

for each wordwt, where W is a weight matrix and
b is a bias vector, and tanh(·) is the element-wise
hyperbolic tangent function.

4.3 Summarization Layer
After the context layer, the sentence
(w1, w2, ..., wn) is represented by (h1, ....,hn).
Suppose m1 = (wb1 , .., we1) and m2 =
(wb2 , .., we2) are two entities in the sentence
where m1 is on the left of m2 (i.e., e1 < b2).
As different sentences and entities may have
various lengths, the summarization layer tries to
build a fixed-length vector that best summarizes
the representations of the sentence and the two
entities for relation type classification.

We divide the hidden state vectors ht’s into 5
groups:

• G1 = {h1, ..,hb1−1} includes vectors that
are left to the first entity m1.

• G2 = {hb1 , ..,he1} includes vectors that are
in the first entity m1.

• G3 = {he1+1, ..,hb2−1} includes vectors
that are between the two entities.

• G4 = {hb2 , ..,he2} includes vectors that are
in the second entity m2.

• G5 = {he2+1, ..,hn} includes vectors that
are right to the second entity m2.

We perform element-wise max pooling among
the vectors in each group:

hGi(j) = max
h∈Gi

h(j), 1 ≤ j ≤ dh, 1 ≤ i ≤ 5 (8)

where dh is the dimension of the hidden state vec-
tors. Concatenating the hGi’s we get a fixed-
length vector hs = [hG1 , ...,hG5 ].

4.4 Output Layer
The output layer receives inputs from the previous
layers (the summarization vector hs, the entity la-
bel embeddings lm1 and lm2 for the two entities
under consideration) and returns a probability dis-
tribution over the relation type labels:

p = softmax
(
Wshs+Wm1lm1+Wm2lm2+bo

)
(9)

4.5 Cross-Lingual RE Model Transfer
Given the word embeddings of a sequence of
words in a target language t, (y1, ...,yn), we
project them into the English embedding space by
applying the linear mapping Mt→s learned in Sec-
tion 3.2: (Mt→sy1,Mt→sy2, ...,Mt→syn). The
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neural network English RE model is then applied
on the projected word embeddings and the entity
label embeddings (which are language indepen-
dent) to perform relationship classification.

Note that our models do not use language-
specific resources such as dependency parsers or
POS taggers because these resources might not be
readily available for a target language. Also our
models do not use precise word position features
since word positions in sentences can vary a lot
across languages.

5 Experiments

In this section, we evaluate the performance of
the proposed cross-lingual RE approach on both
in-house dataset and the ACE (Automatic Con-
tent Extraction) 2005 multilingual dataset (Walker
et al., 2006).

5.1 Datasets
Our in-house dataset includes manually anno-
tated RE data for 6 languages: English, Ger-
man, Spanish, Italian, Japanese and Portuguese.
It defines 56 entity types (e.g., Person, Organi-
zation, Geo-Political Entity, Location, Facility,
Time, Event Violence, etc.) and 53 relation types
between the entities (e.g., AgentOf, LocatedAt,
PartOf, TimeOf, AffectedBy, etc.).

The ACE05 dataset includes manually anno-
tated RE data for 3 languages: English, Arabic and
Chinese. It defines 7 entity types (Person, Orga-
nization, Geo-Political Entity, Location, Facility,
Weapon, Vehicle) and 6 relation types between the
entities (Agent-Artifact, General-Affiliation, ORG-
Affiliation, Part-Whole, Personal-Social, Physi-
cal).

For both datasets, we create a class label “O”
to denote that the two entities under consideration
do not have a relationship belonging to one of the
relation types of interest.

5.2 Source (English) RE Model Performance
We build 3 neural network English RE models un-
der the architecture described in Section 4:

• The first neural network RE model does not
have a context layer and the word embed-
dings are directly passed to the summariza-
tion layer. We call it Pass-Through for short.

• The second neural network RE model has a
Bi-LSTM context layer. We call it Bi-LSTM
for short.

Model F1

FCM (S) (Gormley et al., 2015) 55.06
Hybrid FCM (E) (Gormley et al., 2015) 58.26

BIDIRECT (S) (Nguyen and Grishman, 2016) 57.73
VOTE-BW (E) (Nguyen and Grishman, 2016) 60.60

Pass-Through (S) 54.99
Bi-LSTM (S) 58.92

CNN (S) 57.91

Table 1: Comparison with the state-of-the-art RE mod-
els on the ACE05 English data (S: Single Model; E:
Ensemble Model).

In-House Training Dev Test
English (Source) 1137 140 140
German (Target) 280 35 35
Spanish (Target) 451 55 55
Italian (Target) 322 40 40

Japanese (Target) 396 50 50
Portuguese (Target) 390 50 50

ACE05 Training Dev Test
English (Source) 479 60 60
Arabic (Target) 323 40 40

Chinese (Target) 507 63 63

Table 2: Number of documents in the training/dev/test
sets of the in-house and ACE05 datasets.

• The third neural network model has a CNN
context layer with a window size 3. We call
it CNN for short.

First we compare our neural network English
RE models with the state-of-the-art RE models on
the ACE05 English data. The ACE05 English data
can be divided to 6 different domains: broadcast
conversation (bc), broadcast news (bn), telephone
conversation (cts), newswire (nw), usenet (un) and
webblogs (wl). We apply the same data split in
(Plank and Moschitti, 2013; Gormley et al., 2015;
Nguyen and Grishman, 2016), which uses news
(the union of bn and nw) as the training set, a half
of bc as the development set and the remaining
data as the test set.

We learn the model parameters using Adam
(Kingma and Ba, 2015). We apply dropout (Sri-
vastava et al., 2014) to the hidden layers to reduce
overfitting. The development set is used for tuning
the model hyperparameters and for early stopping.

In Table 1 we compare our models with the best
models in (Gormley et al., 2015) and (Nguyen
and Grishman, 2016). Our Bi-LSTM model out-
performs the best model (single or ensemble) in
(Gormley et al., 2015) and the best single model in
(Nguyen and Grishman, 2016), without using any
language-specific resources such as dependency
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Figure 2: Cross-lingual RE performance (F1 score) vs. dictionary size (number of bilingual word pairs for learning
the mapping (4)) under the Bi-LSTM English RE model on the target-language development data.

Model In-House ACE05
P R F1 P R F1

Pass-Through 60.8 63.1 61.9 59.4 55.1 57.2
Bi-LSTM 66.5 67.7 67.1 65.1 65.8 65.5

CNN 63.4 68.8 66.0 61.7 67.1 64.3

Table 3: Performance of the supervised English RE
models on the in-house and ACE05 English test data.

parsers.
While the data split in the previous works was

motivated by domain adaptation, the focus of this
paper is on cross-lingual model transfer, and hence
we apply a random data split as follows. For the
source language English and each target language,
we randomly select 80% of the data as the training
set, 10% as the development set, and keep the re-
maining 10% as the test set. The sizes of the sets
are summarized in Table 2.

We report the Precision, Recall and F1 score of
the 3 neural network English RE models in Table
3. Note that adding an additional context layer
with either Bi-LSTM or CNN significantly im-
proves the performance of our English RE model,
compared with the simple Pass-Through model.
Therefore, we will focus on the Bi-LSTM model
and the CNN model in the subsequent experi-
ments.

5.3 Cross-Lingual RE Performance

We apply the English RE models to the 7 target
languages across a variety of language families.

5.3.1 Dictionary Size

The bilingual dictionary includes the most fre-
quent target-language words and their translations
in English. To determine how many word pairs are
needed to learn an effective bilingual word embed-
ding mapping for cross-lingual RE, we first evalu-
ate the performance (F1 score) of our cross-lingual
RE approach on the target-language development
sets with an increasing dictionary size, as plotted
in Figure 2.

We found that for most target languages, once
the dictionary size reaches 1K, further increasing
the dictionary size may not improve the transfer
performance. Therefore, we select the dictionary
size to be 1K.

5.3.2 Comparison of Different Mappings

We compare the performance of cross-lingual RE
model transfer under the following bilingual word
embedding mappings:

• Regular-1K: the regular mapping learned in
(4) using 1K word pairs;
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Mapping German Spanish Italian Japanese Portuguese Arabic Chinese Average
Regular-1K 41.4 53.0 38.7 30.0 46.4 34.4 49.0 41.8

Orthogonal-1K 41.0 49.2 35.7 27.1 44.0 32.1 47.2 39.5
Semi-Supervised-1K 38.1 46.7 31.2 25.3 43.1 37.3 47.1 38.4

Unsupervised 37.8 45.5 28.9 21.2 40.8 37.5 49.1 37.3

Table 4: Comparison of the performance (F1 score) using different mappings on the target-language development
data under the Bi-LSTM model.

• Orthogonal-1K: the orthogonal mapping
with length normalization learned in (5) us-
ing 1K word pairs (in this case we train the
English RE models with the normalized En-
glish word embeddings);

• Semi-Supervised-1K: the mapping learned
with 1K word pairs and improved by the self-
learning method in (Artetxe et al., 2017);

• Unsupervised: the mapping learned by
the unsupervised method in (Artetxe et al.,
2018).

The results are summarized in Table 4. The reg-
ular mapping outperforms the orthogonal mapping
consistently across the target languages. While
the orthogonal mapping was shown to work bet-
ter than the regular mapping for the word transla-
tion task (Xing et al., 2015; Artetxe et al., 2016;
Smith et al., 2017), our cross-lingual RE approach
directly maps target-language word embeddings
to the English embedding space without conduct-
ing word translations. Moreover, the orthogonal
mapping requires length normalization, but we ob-
served that length normalization adversely affects
the performance of the English RE models (about
2.0 F1 points drop).

We apply the vecmap toolkit1 to obtain the
semi-supervised and unsupervised mappings. The
unsupervised mapping has the lowest average ac-
curacy over the target languages, but it does not re-
quire a seed dictionary. Among all the mappings,
the regular mapping achieves the best average ac-
curacy over the target languages using a dictionary
with only 1K word pairs, and hence we adopt it for
the cross-lingual RE task.

5.3.3 Performance on Test Data
The cross-lingual RE model transfer results for the
in-house test data are summarized in Table 5 and
the results for the ACE05 test data are summa-
rized in Table 6, using the regular mapping learned

1https://github.com/artetxem/vecmap

with a bilingual dictionary of size 1K. In the ta-
bles, we also provide the performance of the su-
pervised RE model (Bi-LSTM) for each target lan-
guage, which is trained with a few hundred thou-
sand tokens of manually annotated RE data in the
target-language, and may serve as an upper bound
for the cross-lingual model transfer performance.

Among the 2 neural network models, the Bi-
LSTM model achieves a better cross-lingual RE
performance than the CNN model for 6 out of the
7 target languages. In terms of absolute perfor-
mance, the Bi-LSTM model achieves over 40.0 F1

scores for German, Spanish, Portuguese and Chi-
nese. In terms of relative performance, it reaches
over 75% of the accuracy of the supervised target-
language RE model for German, Spanish, Ital-
ian and Portuguese. While Japanese and Ara-
bic appear to be more difficult to transfer, it still
achieves 55% and 52% of the accuracy of the su-
pervised Japanese and Arabic RE model, respec-
tively, without using any manually annotated RE
data in Japanese/Arabic.

We apply model ensemble to further improve
the accuracy of the Bi-LSTM model. We train 5
Bi-LSTM English RE models initiated with differ-
ent random seeds, apply the 5 models on the tar-
get languages, and combine the outputs by select-
ing the relation type labels with the highest prob-
abilities among the 5 models. This Ensemble ap-
proach improves the single model by 0.6-1.9 F1

points, except for Arabic.

5.3.4 Discussion
Since our approach projects the target-language
word embeddings to the source-language embed-
ding space preserving the word order, it is ex-
pected to work better for a target language that
has more similar word order as the source lan-
guage. This has been verified by our experiments.
The source language, English, belongs to the SVO
(Subject, Verb, Object) language family where in
a sentence the subject comes first, the verb second,
and the object third. Spanish, Italian, Portuguese,
German (in conventional typology) and Chinese
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Model German Spanish Italian Japanese Portuguese
P R F1 P R F1 P R F1 P R F1 P R F1

Bi-LSTM 39.6 48.9 43.8 54.5 47.6 50.8 41.8 34.2 37.6 33.9 25.1 28.9 52.9 44.5 48.4
CNN 32.5 50.5 39.5 49.3 48.3 48.8 36.6 34.9 35.7 27.3 31.5 29.3 49.0 44.0 46.3

Ensemble 39.6 50.5 44.4 56.9 49.1 52.7 42.6 35.3 38.6 35.3 26.4 30.2 54.9 45.2 49.6
Supervised 59.3 56.4 57.8 68.4 65.4 66.8 51.4 48.3 49.8 52.7 52.0 52.4 64.0 61.3 62.6

Table 5: Performance of the cross-lingual RE approach on the in-house target-language test data.

Model Arabic Chinese
P R F1 P R F1

Bi-LSTM 30.3 45.7 36.4 61.7 37.8 46.8
CNN 24.0 39.7 29.9 56.4 33.8 42.3

Ensemble 27.5 48.7 35.2 61.0 40.4 48.6
Supervised 70.0 69.1 69.5 66.9 69.4 68.1

Table 6: Performance of the cross-lingual RE approach
on the ACE05 target-language test data.

also belong to the SVO language family, and our
approach achieves over 70% relative accuracy for
these languages. On the other hand, Japanese be-
longs to the SOV (Subject, Object, Verb) language
family and Arabic belongs to the VSO (Verb, Sub-
ject, Object) language family, and our approach
achieves lower relative accuracy for these two lan-
guages.

6 Related Work

There are a few weakly supervised cross-lingual
RE approaches. Kim et al. (2010) and Kim and
Lee (2012) project annotated English RE data
to Korean to create weakly labeled training data
via aligned parallel corpora. Faruqui and Kumar
(2015) translates a target-language sentence into
English, performs RE in English, and then projects
the relation phrases back to the target-language
sentence. Zou et al. (2018) proposes an adversarial
feature adaptation approach for cross-lingual rela-
tion classification, which uses a machine transla-
tion system to translate source-language sentences
into target-language sentences. Unlike the ex-
isting approaches, our approach does not require
aligned parallel corpora or machine translation
systems. There are also several multilingual RE
approaches, e.g., Verga et al. (2016); Min et al.
(2017); Lin et al. (2017), where the focus is to im-
prove monolingual RE by jointly modeling texts
in multiple languages.

Many cross-lingual word embedding models
have been developed recently (Upadhyay et al.,
2016; Ruder et al., 2017). An important applica-
tion of cross-lingual word embeddings is to enable

cross-lingual model transfer. In this paper, we ap-
ply the bilingual word embedding mapping tech-
nique in (Mikolov et al., 2013b) to cross-lingual
RE model transfer. Similar approaches have been
applied to other NLP tasks such as dependency
parsing (Guo et al., 2015), POS tagging (Gouws
and Søgaard, 2015) and named entity recognition
(Ni et al., 2017; Xie et al., 2018).

7 Conclusion

In this paper, we developed a simple yet effective
neural cross-lingual RE model transfer approach,
which has very low resource requirements (a small
bilingual dictionary with 1K word pairs) and can
be easily extended to a new language. Extensive
experiments for 7 target languages across a va-
riety of language families on both in-house and
open datasets show that the proposed approach
achieves very good performance (up to 79% of
the accuracy of the supervised target-language
RE model), which provides a strong baseline for
building cross-lingual RE models with minimal
resources.

Acknowledgments

We thank Mo Yu for sharing their ACE05 English
data split and the anonymous reviewers for their
valuable comments.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016.

Learning principled bilingual mappings of word em-
beddings while preserving monolingual invariance.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2289–2294, Austin, Texas. Association for Compu-
tational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451–462,
Vancouver, Canada. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042


408

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsuper-
vised cross-lingual mappings of word embeddings.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 789–798, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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2017. A survey of cross-lingual embedding models.
CoRR, abs/1706.04902.

Cicero dos Santos, Bing Xiang, and Bowen Zhou.
2015. Classifying relations by ranking with con-
volutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 626–634. Association
for Computational Linguistics.

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word em-
beddings: An empirical comparison. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1661–1670. Association for Computa-
tional Linguistics.

Patrick Verga, David Belanger, Emma Strubell, Ben-
jamin Roth, and Andrew McCallum. 2016. Multi-
lingual relation extraction using compositional uni-
versal schema. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 886–896. Association for
Computational Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilingual
training corpus. Philadelphia: Linguistic Data Con-
sortium.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A.
Smith, and Jaime Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 369–379, Brussels, Belgium. Association
for Computational Linguistics.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin.
2015. Normalized word embedding and orthog-
onal transform for bilingual word translation. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1006–1011, Denver, Colorado. Association
for Computational Linguistics.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. The Journal of Machine Learning Re-
search, 3:1083–1106.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344. Dublin City University and As-
sociation for Computational Linguistics.

Bowei Zou, Zengzhuang Xu, Yu Hong, and Guodong
Zhou. 2018. Adversarial feature adaptation for
cross-lingual relation classification. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 437–448, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

https://www.aclweb.org/anthology/I17-1068
https://www.aclweb.org/anthology/I17-1068
https://www.aclweb.org/anthology/I17-1068
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://arxiv.org/abs/1511.05926
https://arxiv.org/abs/1511.05926
https://arxiv.org/abs/1511.05926
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/P13-1147
https://www.aclweb.org/anthology/P13-1147
https://www.aclweb.org/anthology/P13-1147
http://arxiv.org/abs/1706.04902
https://doi.org/10.3115/v1/P15-1061
https://doi.org/10.3115/v1/P15-1061
https://openreview.net/forum?id=r1Aab85gg
https://openreview.net/forum?id=r1Aab85gg
https://openreview.net/forum?id=r1Aab85gg
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://doi.org/10.18653/v1/P16-1157
https://doi.org/10.18653/v1/P16-1157
https://doi.org/10.18653/v1/N16-1103
https://doi.org/10.18653/v1/N16-1103
https://doi.org/10.18653/v1/N16-1103
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://www.aclweb.org/anthology/D18-1034
https://www.aclweb.org/anthology/D18-1034
https://www.aclweb.org/anthology/D18-1034
https://doi.org/10.3115/v1/N15-1104
https://doi.org/10.3115/v1/N15-1104
http://dl.acm.org/citation.cfm?id=944919.944964
http://dl.acm.org/citation.cfm?id=944919.944964
http://aclweb.org/anthology/C14-1220
http://aclweb.org/anthology/C14-1220
https://www.aclweb.org/anthology/C18-1037
https://www.aclweb.org/anthology/C18-1037

