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Abstract

Bootstrapping for Entity Set Expansion (ESE)
aims at iteratively acquiring new instances of a
specific target category. Traditional bootstrap-
ping methods often suffer from two problems:
1) delayed feedback, i.e., the pattern evalua-
tion relies on both its direct extraction qual-
ity and the extraction quality in later iterations.
2) sparse supervision, i.e., only few seed enti-
ties are used as the supervision. To address the
above two problems, we propose a novel boot-
strapping method combining the Monte Carlo
Tree Search (MCTS) algorithm with a deep
similarity network, which can efficiently esti-
mate delayed feedback for pattern evaluation
and adaptively score entities given sparse su-
pervision signals. Experimental results con-
firm the effectiveness of the proposed method.

1 Introduction

Bootstrapping is widely used for Entity Set Ex-
pansion (ESE), which acquires new instances of a
specific category by iteratively evaluating and se-
lecting patterns, while extracting and scoring en-
tities. For example, given seeds {London, Paris,
Beijing} for capital entity expansion, a bootstrap-
ping system for ESE iteratively selects effective
patterns, e.g., “the US Embassy in *”, and extracts
new capital entities, e.g., Moscow, using the se-
lected patterns.

The main challenges of effective bootstrapping
for ESE owe to the delayed feedback and the
sparse supervision. Firstly, bootstrapping is an
iterative process, where noises brought by cur-
rently selected patterns can affect successive itera-
tions (Movshovitz-Attias and Cohen, 2012; Qadir
et al., 2015). Indeed, the pattern evaluation relies
on not only its direct extraction quality but also
the extraction quality in later iterations, which are
correspondingly denoted as instant feedback and
∗Corresponding authors.
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Figure 1: Example of the delayed feedback problem,
which expands the capital seeds {London, Paris, Bei-
jing}. We demonstrate the top entities extracted by a
pattern (correct ones are shown in blue), where P is
the precision of extracted entities.

delayed feedback in this paper. For instance, as
shown in Figure 1, although “* is a big city” and
“the US Embassy in *” have equal direct extraction
quality, the former is considered less useful since
its later extracted entities are mostly unrelated. As
a result, selecting patterns with high instant feed-
back but low delayed feedback can cause semantic
drift problem (Curran et al., 2007), where the later
extracted entities belong to other categories. Sec-
ondly, the above difficulty is further compounded
by sparse supervision, i.e., using only seed entities
as supervision, since it provides little evidence for
deciding whether an extracted entity belongs to the
same category of seed entities or not.

To address the above two challenges, we pro-
pose a novel bootstrapping method combining
the Monte Carlo Tree Search (MCTS) algorithm
with a deep similarity network, aiming to effec-
tively evaluate the delayed feedback of patterns
and adaptively score entities given sparse super-
vision signals. Specifically, our method tackles
the delayed feedback problem by enhancing the
traditional bootstrapping method using the MCTS
algorithm, which effectively estimates each pat-
tern’s delayed feedback via efficient multi-step
lookahead search. In this way, our method can
select the pattern based on its delayed feedback
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rather than instant feedback, which is beneficial
in that the former feedback is regarded more re-
liable and accurate for bootstrapping. To resolve
the sparse supervision problem, we propose a deep
similarity network—pattern mover similarity net-
work (PMSN), which uniformly embeds entities
and patterns using the distribution vectors on con-
text pattern embeddings, and measures their se-
mantic similarity to seeds as their ranking scores
based on those embeddings; furthermore, we com-
bine the PMSN with the MCTS, and fine-tune the
distribution vectors using the estimated delayed
feedback. In this way, our method can adaptively
embed and score entities.

Major contributions of this paper are tri-fold.
• Enhanced bootstrapping via the MCTS algo-

rithm to estimate delayed feedback in boot-
strapping. To our best knowledge, this is
the first work to combine bootstrapping with
MCTS for entity set expansion.
• A novel deep similarity network to evaluate

different categories of entities in the boot-
strapping for Entity Set Expansion.
• Adaptive entity scoring by combining the

deep similarity network with MCTS.

2 Background

Traditional bootstrapping systems for ESE are
usually provided with sparse supervision, i.e., only
a few seed entities, and iteratively extract new
entities from corpus by performing the following
steps, as demonstrated in Figure 2(a).

Pattern generation. Given seed entities and the
extracted entities (known entities), a bootstrapping
system for ESE firstly generates patterns from the
corpus. In this paper, we use lexicon-syntactic sur-
face words around known entities as patterns.

Pattern evaluation. This step evaluates gen-
erated patterns using sparse supervision and other
sources of evidence, e.g., pattern embedding sim-
ilarity. Many previous studies (Riloff and Jones,
1999; Curran et al., 2007; Gupta and Manning,
2014) use the RlogF function or its variants to
evaluate patterns, which usually estimate the in-
stant feedback of each pattern.

Entity expansion. This step selects top patterns
to match new candidate entities from the corpus.

Entity scoring. This step scores candidate en-
tities using sparse supervision, bootstrapping or
other external sources of evidence. The top scored
entities are then added to the extracted entity set.

As aforementioned, traditional bootstrapping
systems for ESE do not consider the delayed feed-
back when evaluating patterns, leaving consider-
able potential in further improvement. To estimate
the delayed feedback of a pattern, a simple so-
lution is to perform lookahead search for a fixed
number of steps and estimate the quality of its
successive extracted entities. However, lookahead
search may suffer from efficiency issue brought by
the enormous search space since there are many
candidate patterns at each step. Besides, due to
the sparse supervision problem, entity scoring is
often unreliable, which in turn influences the de-
layed feedback estimation.

To address the above two problems, this pa-
per enhances the bootstrapping system using the
Monte Carlo Tree Search (MCTS) algorithm for
lookahead search, combined with a pattern mover
similarity network (PMSN) for better entity scor-
ing. Specifically, we use MCTS for the efficient
lookahead search by pruning bad patterns. We ad-
ditionally estimate the delayed feedback using the
PMSN to score entities, given the sparse supervi-
sion signals, and fine-tune the PMSN using the de-
layed feedback estimated by MCTS. In this way,
both the MCTS algorithm and the PMSN are de-
vised to enhance each other, resulting in efficient
delayed feedback estimation for pattern evaluation
and reliable entity scoring.

3 Enhancing Bootstrapping via Monte
Carlo Tree Search

In this section, we describe how to enhance the tra-
ditional bootstrapping for ESE using the MCTS al-
gorithm for efficient delayed feedback estimation.

3.1 Efficient Delayed Feedback Estimation
via MCTS

To estimate the delayed feedback, this paper uses
the Monte Carlo Tree Search (MCTS) algorithm
for efficient lookahead search.

At each bootstrapping iteration, the MCTS al-
gorithm performs multiple lookahead search pro-
cedures (MCTS simulations). Starting from the
same root node, each MCTS simulation performs
forward search by iteratively constructing sub-
nodes, and moving to one of these sub-nodes.
Therefore, the whole MCTS algorithm looks like
a tree structure (see Figure 2(b)), where the node s
represents for known entities, i.e., both seed enti-
ties and previously extracted entities, and the edge,
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(a) Traditional bootstrapping system for Entity
set expansion. The main difference between our
method and traditional methods is that we en-
hance the pattern evaluation by the MCTS al-
gorithm, as demonstrated in Figure (b).

(b) The Monte Carlo Tree Search for the pattern evaluation in a boot-
strapping system for entity set expansion. The red circles refer to the
search node (i.e., seed entities plus extracted entities). A unidirectional
edge represents the selection of a pattern to match new entities, which
results in a new node.

Figure 2: Traditional Bootstrapping for ESE (a) and the enhanced pattern evaluation using MCTS (b).

linking from a node s to one of its sub-nodes s′,
represents for selecting a pattern p to expand s. At
the very beginning, the root tree node s0 is con-
structed using seed entities and the extracted en-
tities from previous iterations, and is fixed among
different simulations. Besides, for each (s, p) pair,
we store a cumulative reward Q(s, p) and a visit
count N(s, p) during tree search for the subse-
quent reward function defined in Section 3.3.

Specifically, each MCTS simulation contains
four stages, as demonstrated in Figure 2(b):

Selection. Starting from s0, each simulation
first traverses the MCTS search tree until reaching
the leaf node sL (which is never reached before)
or reaching a fixed depth. Each traversing step i
corresponding to selecting a pattern pi by:

pi = argmax
p

Q(s, p) + µ(s, p) (1)

where µ(s, p) ∝ pσ(s,p)
1+N(s,p) , pσ(s, p) is the prior

probability of p returned by the policy network pσ,
which is described in detail in Section 3.2.

Among an MCTS simulation, the lookahead
search space is reduced mainly in this stage.
Specifically, according to e.q. (1), the lookahead
search is more likely to select the potential pat-
terns with high cumulative rewards or high prior
probabilities, rather than all patterns.

Expansion. When the traversal reaches a leaf
node sL, we expand this node by selecting a new
pattern to match more entities. Due to the lack
of the cumulative rewards on the new patterns, we
select the new pattern with the highest prior prob-
ability returned by pσ.

Evaluation. Once finishing the above expan-
sion stage or the simulation procedure reaches a
fixed depth, the reward R for the leaf node is

returned by first quickly selecting multiple pat-
terns to expand the leaf node and then evaluating
the quality of all newly extracted entities in this
simulation. We herein use the RlogF function to
quickly select patterns rather than the policy net-
work (Running RlogF function is much faster than
the policy network). And the reward function is
described in Section 3.3 in detail.

Backup. At this stage, the returned reward is
used to update the cumulative rewards and visit
counts of previous (s, p) pairs by:

N(s, p) =

n∑
j

1(s, p, j)

Q(s, p) =
1

N(s, p)

n∑
j=1

1(s, p, j) ·R
(2)

where 1(s, p, j) indicates whether an edge (s, p)
was traversed during the jth simulation.

After finishing all MCTS simulations, we use
the cumulative reward of each (s0, p) pair as the
delayed feedback for pattern p. Because the cumu-
lative rewards are updated many times using the
quality evaluation of their future extracted entities,
the cumulative reward of each (s0, p) pair can be
regarded as the precise approximation of the de-
layed feedback if we have a proper reward func-
tion. As a result, our method selects the top pat-
terns with the highest cumulative rewards, which
are more likely to extract correct entities.

3.2 Prior Policy using Pattern Mover
Similarity Network

The prior policy network is mainly used to prune
bad patterns and therefore reduce the search space
in the MCTS. Intuitively, if a pattern is not similar
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to other patterns around some entities, it is likely
a general pattern or noisy pattern to these entities,
and therefore should be pruned.

To this end, this paper proposes a novel deep
similarity network, namely Pattern Mover Simi-
larity Network (PMSN), which uniformly embeds
patterns, entities and entity sets, and estimates
their embedding similarities. We describe this
model in detail in Section 4.

Particularly, for a pattern p linked from a tree
node s, the PMSN is used as the prior policy net-
work to compute the prior probability by:

pσ(s, p) =
SIM(p,E)∑
p′ SIM(p′, E)

(3)

where E is the set of known entities included in
node s, and SIM(p,E) is the similarity of the pat-
tern p to the entity set E using the PMSN.

To further reduce the search space (note that the
number of patterns at each step can be tens of thou-
sands), we use the RlogF function to retain only
the top k for lookahead search. In the experiments,
we set k to a reasonably large value, i.e., 200, to
balance between efficiency and effectiveness.

3.3 Reward Function in MCTS
The reward function is critical for efficiently esti-
mating the real delayed feedback of each pattern.
Intuitively, a pattern should have higher delayed
feedback if it extracts more similar entities and
less unrelated entities. Base on this intuition, we
devise the reward function as follows:

R =

∑
e∈E′ SIM(e, E0)

|E′|
σ(
|E′|
a

) (4)

where E0 is the set of known entities in root node,
E′ is the set of new entities, SIM(e, E) is the sim-
ilarity score of newly extracted entity e to known
entities, σ(·) is the sigmoid function, and a is a
“temperature” hyperparameter. The above reward
function can be regarded as a trade-off between
the extraction quality (the first term) and the ex-
traction amount (the second term). To compute
the similarity score, we also exploit the PMSN.

4 Pattern Mover Similarity Network

The pattern mover similarity network (PMSN) is a
unified model for adaptively scoring the similarity
of entities or patterns to seed entities. Specifically,
the pattern mover similarity network contains two
components: 1) the adaptive distributional pattern

embeddings (ADPE) that adaptively represent pat-
terns, entities, and entity sets in a unified way; 2)
the pattern mover similarity (PMS) measurement
that estimates the similarity of two ADPEs.

The PMSN model is mainly used in three as-
pects as follows. 1) The PMSN is used as the prior
policy network in the MCTS algorithm to evalu-
ate the similarity of patterns. 2) The PMSN is
used to evaluate the newly extracted entities within
the MCTS simulation, whose evaluation scores
are subsequently used to update rewards. 3) The
PMSN is also used as the entity scoring function at
the Entity Scoring stage in the bootstrapping pro-
cess as mentioned in Section 2.

4.1 Adaptive Distributional Pattern
Embeddings

In this section, we first describe how to embed pat-
terns; then, we introduce how to obtain the basic
distributional pattern embeddings for uniformly
representing entities and patterns without adapta-
tion; finally, we introduce the adaptation mecha-
nism combined with the MCTS algorithm.

Pattern Embedding. As a basic step of our
PMSN model, we first embed a context pattern of
an entity as a single embedding vector. Specifi-
cally, we use the average word embeddings, from
the pre-trained GloVe (Pennington et al., 2014)
embeddings, of a pattern surface text as the pat-
tern embeddings. We filter out patterns containing
at least two OOV terms. According to our pilot ex-
periments, replacing the average GloVe word em-
beddings with alternatives such as Convolutional
Neural Network and Recurrent Neural Network
does not influence performance.

Basic distributional pattern embeddings
without adaptation. Based on the single em-
bedding of each context pattern, this paper repre-
sents an entity using a distributional vector on its
context pattern embeddings, called distributional
pattern embeddings (DPE). The intuition behind
is that each context pattern represents one aspect
of meanings of an entity according to the distri-
butional hypothesis in linguistics (Harris, 1954),
while the importance of different patterns to the
semantic of an entity varies from each other.
Therefore, we use a distributional vector, which
stores the importance score of different patterns,
together with the context pattern embeddings to
represent the semantic of an entity.
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Figure 3: Overall architecture of the Pattern Mover Similarity Network (PMSN), as shown in the rounded square
in the middle of the figure.

To estimate each pattern’s importance score, we
suggest that a context pattern is important to the
semantic of an entity if: the pattern matches the
entity frequently; the pattern matches as few other
entities as possible. Therefore, we design a impor-
tance score function for each context pattern p of
an entity e as follows:

w(p, e) =
N(e, p)× logN(e, p)

C(p)
(5)

where C(p) is the number of different entities
matched by p, N(e, p) is the frequency of pi
matching entity e. Ultimately, the above impor-
tance scores are mapped to the distributional prob-
abilities of each entity’s context pattern such that
all probabilities sum up to 1.

In addition, we estimate the basic DPE for a sin-
gle pattern and a whole entity set. Specifically,
a single pattern can be regarded as a special “en-
tity”, whose context pattern is only the pattern it-
self. Similarly, as shown in Figure 3, an entity set
can be regarded as another special “entity”, whose
context patterns are the union of all context pat-
terns of entities in this set. Besides, the importance
score function for context patterns of an entity set
is slightly different from the one in e.q. (5):

w(p,E) =
N(E, p)× logN(E, p)

C(p)
(6)

whereE is the entity set,N(E, p) is the frequency
of p matching all entities in E.

Finally, we denote the DPE as< X,w >, where
X is the context pattern embedding matrix, and w
is the vector of distribution probabilities. For effi-
ciency, we only select the top n important patterns.
Therefore, X is actually an n× d matrix, where d
is the dimension of each pattern embedding, and
w is an n-dimensional vector.

Adaptive distributional pattern embeddings
combined with MCTS. Although the basic DPE
can provide unified representations for both pat-
terns and entities, it could still fail to repre-
sent the underlying semantics of seed entities as
unrelated patterns may match many other enti-
ties. To address this problem, we combine the
MCTS algorithm with the PMSN, to fine-tune the
distributional vector of the basic DPE, resulting
in an Adaptive Distributional Pattern Embedding
(ADPE). As shown in Figure 3, at each iteration,
multiple MCTS simulations are performed to ac-
cumulate the long-term feedback of selecting a
pattern, where the PMSN is used for entity scor-
ing; after that, the delayed feedback can be ef-
ficiently calculated for each pattern. Apart from
being used to evaluate the reward of selecting a
pattern, the delayed feedback can also be used to
estimate the importance score of a pattern, since
patterns with the high delayed feedback can ex-
tract more correct entities and less incorrect enti-
ties in the future. Therefore, at each iteration, we
fine-tune the distributional probabilities after the
MCTS simulations as following:

wt(p, e) ∝ wt−1(p, e) ·Q(s0, p) (7)

where wt−1(p,E) is the probability of p at itera-
tion t− 1, Q(s0, p) is returned cumulative reward
of pi in iteration t.

4.2 Pattern Mover Similarity
The similarity measurement for two ADPEs is im-
portant, since it is used for delayed feedback es-
timation and entity scoring. Intuitively, given two
entities embedded by two ADPEs, they can be re-
garded similarly to each other, if they have sim-
ilar context patterns and similar distributions on
these patterns. Therefore, the similarity measure-
ment should take both context pattern embeddings
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and corresponding distributional vectors into con-
sideration. Inspired by Kusner et al. (2015) on the
sentence similarity measurement, we devise a sim-
ilarity measurement for two ADPEs as follows:

max
T≥0

n∑
i,j=1

Tij · SIM(i, j)

s.t.
n∑
j=1

Tij = wi, ∀i ∈ 1, ..., n

n∑
i=1

Tij = wj , ∀j ∈ 1, ..., n

(8)

where SIM(i, j) is the cosine similarity between
the i-th pattern embedding of one entity and the
j-th pattern embedding of the other entity. We de-
note the above measurement as the Pattern Mover
Similarity (PMS) measurement.

5 Experiments

5.1 Experimental Settings

Category Description Category Description
CAP Capital name FAC Man-made structures
ELE Chemical element ORG Organizations
FEM Female first name GPE Geo-political entities

MALE Male first name LOC Non-GPE locations
LAST Last name DAT A date or period
TTL Honorific title LANG Any named language

NORP Nationality,
Religion, Political

Table 1: Target categories used on Google Web 1T.

Datasets. We conduct experiments on three
public datasets: Google Web 1T (Brants and
Franz, 2006), APR, and Wiki (Shen et al., 2017).
1) Google Web 1T contains a large scale of n-
grams compiled from a one trillion words corpus.
Following Shi et al. (2014), we use 5-grams as the
entity context and filter out those 5-grams contain-
ing all stopwords or common words. We use 13
categories of entities (see Table 1) list in Shi et al.
(2014) and compare our method with traditional
bootstrapping methods for ESE on this corpus. 2)
APR (2015 news from AP and Reuters) and Wiki
(a subset of English Wikipedia) are two datasets
published by Shen et al. (2017). Each of them con-
tains about 1 million sentences. We use totally 12
categories of entities as listed in Shen et al. (2017)
and compare the final entity scoring performance
on both datasets.

Baselines. To evaluate the efficiency of the
MCTS and the PMSN, we use several baselines:

1) POS: bootstrapping method which only uses
positive seeds without any other constraint;

2) MEB(Curran et al., 2007): mutual exclusion
bootstrapping method, which uses the category ex-
clusion as the constraints of bootstrapping;

3) COB(Shi et al., 2014): a probabilistic boot-
strapping method which uses both positive and
negative seeds.

4) SetExpan(Shen et al., 2017): corpus-based
entity set expansion method, which adaptively se-
lects context features and unsupervisedly ensem-
bles them to score entities.

Specifically, we compare baselines (1)-(3) and
our method on Google Web 1T; we compare base-
line (4) and our method on APR and Wiki 1.

Metrics. We use P@n (precision at top n),
and the mean average precision (MAP) on Google
Web 1T as in Shi et al. (2014). As for the APR and
the Wiki , we use MAP@n (n=10,20,50) to evalu-
ate entity scoring performance of our method. In
our experiments, we manually select frequent en-
tities as the seeds from these datasets; the correct-
ness of all extracted entities is manually judged
with external supporting resources, e.g., the entity
list collected from Wikipedia2.

5.2 Experimental Results

Comparison with three baseline methods on
Google Web 1T. Table 2 shows the performance
of different bootstrapping methods on Google
Web 1T. We can see that our full model outper-
forms three baseline methods: comparing with
POS, our method achieves 41% improvement in
P@100, 35% improvement in P@200 and 45%
improvement in MAP; comparing with MEB, our
method achieves 24% improvement in P@100 and
18% improvement in P@200; comparing with
COB, our method achieves 3% improvement in
both P@100 and P@200 metrics, and 2% im-
provement in MAP. The above findings indicate
that our method can extract more correct entities
with higher ranking scores than the baselines.

Comparison with SetExpan on APR and
Wiki. To further verify that our method can learn a
better representation and adaptively score entities
in ESE, we compare our method with the state-

1Due to scalability issue, we omit the result of SetExpan
on Google Web 1T. On the two smaller datasets, results of the
under-performing baselines (1-3) are also omitted for space
reason. The incompetitive performance of those 3 baselines
could be caused by the difficulty in deriving robust statistical
features out of the sparse context patterns on the small ARP
and Wiki datasets.

2The code is released at https://www.github.
com/lingyongyan/mcts-bootstrapping.

https://www.github.com/lingyongyan/mcts-bootstrapping
https://www.github.com/lingyongyan/mcts-bootstrapping
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Method P@10 P@20 P@50 P@100 P@200 MAP

POS 0.84 0.74 0.55 0.41 0.34 0.42
MEB 0.83 0.79 0.68 0.58 0.51 -
COB* 0.97 0.96 0.90 0.79 0.66 0.85

Oursfull 0.97 0.96 0.92 0.82 0.69 0.87
Ours-MCTS 0.85 0.81 0.73 0.63 0.52 0.75
Ours-PMSN 0.63 0.60 0.56 0.48 0.42 0.61

Table 2: Overall results for entity set expansion on Google Web 1T,where Oursfull is the full version of our method,
Ours-MCTS is our method with the MCTS disabled, and Ours-PMSN is our method but replacing the PMSN with
fixed word embeddings. * indicates COB using the human feedback for seed entity selection.

Method
APR Wiki

MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

SetExpan 0.90 0.86 0.79 0.96 0.90 0.75
Ours 0.96 0.90 0.81 0.98 0.93 0.79

Table 3: The adaptive entity scoring performance of different methods on the APR and Wiki.

Category P@20 P@50 P@100 P@200

CAP 1.00 1.00 0.94 0.69
ELE 1.00 0.84 0.51 0.36
FEN 1.00 1.00 1.00 0.95

MALE 1.00 1.00 1.00 0.98
LAST 1.00 1.00 1.00 1.00
TTL 0.85 0.64 0.49 0.34

NORP 0.95 0.96 0.89 0.60
FAC 0.95 0.86 0.59 0.42
ORG 1.00 1.00 1.00 0.94
GPE 1.00 1.00 1.00 0.94
LOC 0.80 0.76 0.70 0.67
DAT 1.00 1.00 0.82 0.56

LANG 1.00 0.98 0.81 0.52

Table 4: The performance of our full method on differ-
ent categories on Google Web 1T.

of-the-art entity set expansion method–SetExpan,
which is a non-bootstrapping method on the APR
and Wik (see Table 3). From Table 3, we can
see that our method outperforms SetExpan on both
datasets: on the APR, our method achieves 6% im-
provement in MAP@10 and 2% improvement in
MAP@50 ; on the Wiki, our method can achieve
2% improvement in MAP@10 and 4% improve-
ment in MAP@50. The above results further con-
firm that our method can improve the performance
of bootstrapping for Entity Set Expansion.

5.3 Detailed Analysis

Comparison with the Ours-MCTS method and
the Ours-PMSN method. From Table 2, we can
also see that if we replace the Monte Carlo Tree
Search by selecting top-n patterns, the perfor-
mance decreases by 19% in P@100 and 17% in
P@200; if we replace the PMSN with word em-
bedding, the performance decreases by 34% in

P@100 and 27% in P@200. The results show
that both the PMSN and the MCTS algorithm are
critical for our model’s performance. Remarkably,
the PMSN and the MCTS algorithms can enhance
each other in that the PMSN can learn a better rep-
resentation by combing with the MCTS algorithm,
and the MCTS can in turn effectively estimate de-
layed feedback using the PMSN.

Performance of our full method on differ-
ent categories of Google Web 1T. From Table
4, We can see that our method achieves high per-
formance in most categories except for ELE, TTL
and FAC entities. The lesser performance of our
method on ELE entities is likely caused by the data
sparseness — there are fewer than 150 elements of
the ELE entities in total. The lower performance
on TTL and FAC entities is likely due to the fact
that the context patterns of TTL and FAC entities
are similar to those of person and location names
respectively, which makes them easily be regarded
as special person names and location names re-
spectively.

Influence of the number of context patterns.
Figure 4 shows the performance of our full method
under different context pattern numbers. It can be
seen that the number of context patterns used to
embed entity and entity set heavily influences the
performance. Comparing with the settings using
fewer context patterns (e.g., 10 and 20, 50), using
more context patterns, i.e., 100, in the PMSN has
superior performance since it can provide more
context information to compare two entities. Be-
sides, further adding context patterns in the PMSN
causes the performance decrease for 3%, which is
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Iters Patterns selected by Oursfull Patterns selected by Ours-MCTS Patterns selected by Ours-PMSN

1 Embassy of Sweden in * held a meeting in * * and New York in
2 Embassy of Belgium in * * meeting was held on in New York or *
3 ’s capital city of * * Meeting to be held between New York and *
4 * is the capital city * held its first meeting * hotel reservations with discount
5 * was the capital of * meeting to be held * is a great city

Table 5: The top patterns selected by different methods when expanding capital entities in the first 5 iterations.

10 20 50 100 200
# patterns

0.6

0.7

0.8

0.9

M
AP

0.69

0.75

0.82

0.87
0.84

MAP vs Context Pattern Amount

Figure 4: Performance of our full method using differ-
ent context patterns in the PMSN.

likely due to the case that noises can be included
when considering too many patterns.

Top patterns selected by different methods.
To demonstrate the effectiveness of delayed feed-
back in our method, we illustrate the top 1 pattern
in the first five iterations of three methods in Table
5. From Table 5, we can see that the top patterns
by our full method are more related to seed enti-
ties than other two baselines. Besides, we can see
that without the MCTS algorithm or the PMSN,
most top patterns are less related and easily se-
mantically drifted to other categories.

6 Related Work
Entity set expansion (ESE) is a weakly supervised
task, which is often given seed entities as super-
vision and tries to expand new entities related to
them. According to the used corpus, there are
two types of ESE: limited corpus (Shi et al., 2014;
Shen et al., 2017) and large open corpus, e.g. mak-
ing use of a search engine for the web search
(Wang and Cohen, 2007).

Weakly supervised methods for information ex-
traction (IE) are often provided insufficient super-
vision signals, such as knowledge base facts as
distant supervision (Mintz et al., 2009; Hoffmann
et al., 2011; Zeng et al., 2015; Han and Sun, 2016),
and light amount of supervision samples in boot-
strapping(Riloff and Jones, 1999). As a classical
technique, bootstrapping usually exploits pattern
(Curran et al., 2007), document (Liao and Grish-

man, 2010) or syntactic and semantic contextual
features (He and Grishman, 2015) to extract and
classify new instances.

Limited to the sparse supervision, previous
work estimate patterns mainly based on its di-
rect extraction features, e.g., the matching statis-
tics with known entities (Riloff and Jones, 1999;
Agichtein and Gravano, 2000), which often suf-
fers from the semantic drift problem. To avoid se-
mantic drift, most existing approaches exploit ex-
tra constraints, such as parallel multiple categories
(Thelen and Riloff, 2002; Yangarber, 2003; McIn-
tosh, 2010), coupling constraints (Carlson et al.,
2010), and mutual exclusion bootstrapping (Cur-
ran et al., 2007; McIntosh and Curran, 2008). Be-
sides, graph-based methods (Li et al., 2011; Tao
et al., 2015) and the probability-based method (Shi
et al., 2014) are also used to improve the boot-
strapping performance.

To address the sparse supervision problem,
many previous studies score entities by leveraging
lexical and statistical features (Yangarber et al.,
2000; Stevenson and Greenwood, 2005; Pantel
and Pennacchiotti, 2006; Paşca, 2007; Pantel et al.,
2009), which, despite the promising effectiveness,
could often fail since the sparse statistical features
provide little semantic information to evaluate en-
tities. Recently word embedding based methods
(Batista et al., 2015; Gupta and Manning, 2015)
use fixed word embedding learned on external re-
sources and evaluate entities by their similarity to
seeds. Recently, Berger et al. (2018) propose to
learn custom embeddings at each bootstrapping it-
eration, to trade efficiency for effectiveness.

7 Conclusions
In this paper, we propose a deep similarity
network-based model combined with the MCTS
algorithm to bootstrap Entity Set Expansion.
Specifically, we leverage the Monte Carlo Tree
Search (MCTS) algorithm to efficiently estimate
the delayed feedback of each pattern in the boot-
strapping; we propose a Pattern Mover Similar-
ity Network (PMSN) to uniformly embed entities
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and patterns using a distribution on context pat-
tern embeddings; we combine the MCTS and the
PMSN to adaptively learn a better embedding for
evaluating both patterns and entities. Experimen-
tal results confirm the superior performance of our
PMSN combined with the MCTS algorithm.
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