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Abstract

Active learning (AL) is a widely-used train-
ing strategy for maximizing predictive perfor-
mance subject to a fixed annotation budget. In
AL one iteratively selects training examples
for annotation, often those for which the cur-
rent model is most uncertain (by some mea-
sure). The hope is that active sampling leads
to better performance than would be achieved
under independent and identically distributed
(i.i.d.) random samples. While AL has
shown promise in retrospective evaluations,
these studies often ignore practical obstacles
to its use. In this paper we show that while
AL may provide benefits when used with spe-
cific models and for particular domains, the
benefits of current approaches do not general-
ize reliably across models and tasks. This is
problematic because in practice one does not
have the opportunity to explore and compare
alternative AL strategies. Moreover, AL cou-
ples the training dataset with the model used
to guide its acquisition. We find that sub-
sequently training a successor model with an
actively-acquired dataset does not consistently
outperform training on i.i.d. sampled data.
Our findings raise the question of whether the
downsides inherent to AL are worth the mod-
est and inconsistent performance gains it tends
to afford.

1 Introduction

Although deep learning now achieves state-of-
the-art results on a number of supervised learn-
ing tasks (Johnson and Zhang, 2016; Ghaddar
and Langlais, 2018), realizing these gains requires
large annotated datasets (Shen et al., 2018). This
data dependence is problematic because labels are
expensive. Several lines of research seek to reduce

the amount of supervision required to achieve ac-
ceptable predictive performance, including semi-
supervised (Chapelle et al., 2009), transfer (Pan
and Yang, 2010), and active learning (AL) (Cohn
et al., 1996; Settles, 2012).

In AL, rather than training on a set of labeled
data sampled at i.i.d. random from some larger
population, the learner engages the annotator in
a cycle of learning, iteratively selecting training
data for annotation and updating its model. Pool-
based AL (the variant we consider) proceeds in
rounds. In each, the learner applies a heuristic
to score unlabeled instances, selecting the highest
scoring instances for annotation.1 Intuitively, by
selecting training data cleverly, an active learner
might achieve greater predictive performance than
it would by choosing examples at random.

The more informative samples come at the cost
of violating the standard i.i.d. assumption upon
which supervised machine learning typically re-
lies. In other words, the training and test data no
longer reflect the same underlying data distribu-
tion. Empirically, AL has been found to work well
with a variety of tasks and models (Settles, 2012;
Ramirez-Loaiza et al., 2017; Gal et al., 2017a;
Zhang et al., 2017; Shen et al., 2018). However,
academic investigations of AL typically omit key
real-world considerations that might overestimate
its utility. For example, once a dataset is actively
acquired with one model, it is seldom investigated
whether this training sample will confer benefits if
used to train a second model (vs i.i.d. data). Given
that datasets often outlive learning algorithms, this
is an important practical consideration.

1This may be done either deterministically, by selecting
the top-k instances, or stochastically, selecting instances with
probabilities proportional to heuristic scores.



22

5 10 15 20 25
training set size (percentage of pool)

0.02

0.01

0.00

0.01

0.02
 (a

cc
ur

ac
y)

Movie reviews
Subjectivity
TREC
Customer reviews

(a) Performance of AL relative to i.i.d. across corpora.
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(b) Transferring actively acquired training sets.

Figure 1: We highlight practical issues in the use of AL. (a) AL yields inconsistent gains, relative to a baseline of
i.i.d. sampling, across corpora. (b) Training a BiLSTM with training sets actively acquired based on the uncertainty
of other models tends to result in worse performance than training on i.i.d. samples.

In contrast to experimental (retrospective) stud-
ies, in a real-world setting, an AL practitioner is
not afforded the opportunity to retrospectively an-
alyze or alter their scoring function. One would
instead need to expend significant resources to val-
idate that a given scoring function performs as in-
tended for a particular model and task. This would
require i.i.d. sampled data to evaluate the com-
parative effectiveness of different AL strategies.
However, collection of such additional data would
defeat the purpose of AL, i.e., obviating the need
for a large amount of supervision. To confidently
use AL in practice, one must have a reasonable be-
lief that a given AL scoring (or acquisition) func-
tion will produce the desired results before they de-
ploy it (Attenberg and Provost, 2011).

Most AL research does not explicitly character-
ize the circumstances under which AL may be ex-
pected to perform well. Practitioners must there-
fore make the implicit assumption that a given ac-
tive acquisition strategy is likely to perform well
under any circumstances. Our empirical findings
suggest that this assumption is not well founded
and, in fact, common AL algorithms behave in-
consistently across model types and datasets, of-
ten performing no better than random (i.i.d.) sam-
pling (1a). Further, while there is typically some
AL strategy which outperforms i.i.d. random sam-
ples for a given dataset, which heuristic varies.

Contributions. We highlight important but of-
ten overlooked issues in the use of AL in practice.
We report an extensive set of experimental results
on classification and sequence tagging tasks that

suggest AL typically affords only marginal per-
formance gains at the somewhat high cost of non-
i.i.d. training samples, which do not consistently
transfer well to subsequent models.

2 The (Potential) Trouble with AL

We illustrate inconsistent comparative perfor-
mance using AL. Consider Figure 1a, in which
we plot the relative gains (∆) achieved by a
BiLSTM model using a maximum-entropy active
sampling strategy, as compared to the same model
trained with randomly sampled data. Positive val-
ues on the y-axis correspond to cases in which
AL achieves better performance than random sam-
pling, 0 (dotted line) indicates no difference be-
tween the two, and negative values correspond to
cases in which random sampling performs better
than AL. Across the four datasets shown, results
are decidedly mixed.

And yet realizing these equivocal gains using
AL brings inherent drawbacks. For example, ac-
quisition functions generally depend on the under-
lying model being trained (Settles, 2009, 2012),
which we will refer to as the acquisition model.
Consequently, the collected training data and the
acquisition model are coupled. This coupling is
problematic because manually labeled data tends
to have a longer shelf life than models, largely be-
cause it is expensive to acquire. However, progress
in machine learning is fast. Consequently, in many
settings, an actively acquired dataset may remain
in use (much) longer than the source model used
to acquire it. In these cases, a few natural ques-
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tions arise: How does a successor model S fare,
when trained on data collected via an acquisition
model A? How does this compare to training S on
natively acquired data? How does it compare to
training S on i.i.d. data?

For example, if we use uncertainty sampling un-
der a support vector machine (SVM) to acquire a
training set D, and subsequently train a Convolu-
tional Neural Network (CNN) using D, will the
CNN perform better than it would have if trained
on a dataset acquired via i.i.d. random sampling?
And how does it perform compared to using a
training corpus actively acquired using the CNN?

Figure 1b shows results for a text classifica-
tion example using the Subjectivity corpus (Pang
and Lee, 2004). We consider three models: a
Bidirectional Long Short-Term Memory Network
(BiLSTM) (Hochreiter and Schmidhuber, 1997),
a Convolutional Neural Network (CNN) (Kim,
2014; Zhang and Wallace, 2015), and a Support
Vector Machine (SVM) (Joachims, 1998). Train-
ing the LSTM with a dataset actively acquired us-
ing either of the other models yields predictive
performance that is worse than that achieved under
i.i.d. sampling. Given that datasets tend to outlast
models, these results raise questions regarding the
benefits of using AL in practice.

We note that in prior work, Tomanek and Morik
(2011) also explored the transferability of actively
acquired datasets, although their work did not con-
sider modern deep learning models or share our
broader focus on practical issues in AL.

3 Experimental Questions and Setup

We seek to answer two questions empirically: (1)
How reliably does AL yield gains over sampling
i.i.d.? And, (2) What happens when we use a
dataset actively acquired using one model to train
a different (successor) model? To answer these
questions, we consider two tasks for which AL
has previously been shown to confer considerable
benefits: text classification and sequence tagging
(specifically NER).2

To build intuition, our experiments address both
linear models and deep networks more representa-
tive of the current state-of-the-art for these tasks.
We investigate the standard strategy of acquiring
data and training using a single model, and also

2Recent works have shown that AL is effective for these
tasks even when using modern, neural architectures (Zhang
et al., 2017; Shen et al., 2018), but do not address our primary
concerns regarding replicability and transferability.

the case of acquiring data using one model and
subsequently using it to train a second model.
Our experiments consider all possible (acquisi-
tion, successor) pairs among the considered mod-
els, such that the standard AL scheme corresponds
to the setting in which the acquisition and succes-
sor models are same. For each pair (A,S), we
first simulate iterative active data acquisition with
model A to label a training dataset DA. We then
train the successor model S using DA.

In our evaluation, we compare the relative per-
formance (accuracy or F1, as appropriate for the
task) of the successor model trained with corpus
DA to the scores achieved by training on compara-
ble amounts of native and i.i.d. sampled data. We
simulate pool-based AL using labeled benchmark
datasets by withholding document labels from the
models. This induces a pool of unlabeled data
U . In AL, it is common to warm-start the ac-
quisition model, training on some modest amount
of i.i.d. labeled data Dw before using the model
to score candidates in U (Settles, 2009) and com-
mencing the AL process. We follow this conven-
tion throughout.

Once we have trained the acquisition model on
the warm-start data, we begin the simulated AL
loop, iteratively selecting instances for labeling
and adding them to the dataset. We denote the
dataset acquired by model A at iteration t by Dt

A;
D0

A is initialized to Dw for all models (i.e., all val-
ues of A). At each iteration, the acquisition model
is trained with Dt

A. It then scores the remaining
unlabeled documents in U \ Dt

A according to a
standard uncertainty AL heuristic. The top n can-
didates CtA are selected for (simulated) annotation.
Their labels are revealed and they are added to the
training set: Dt+1

A ← Dt
A ∪ CtA. At the experi-

ment’s conclusion (time step T ), each acquisition
model A will have selected a (typically distinct)
subset of U for training.

Once we have acquired datasets from each ac-
quisition model DA, we evaluate the performance
of each possible successor model when trained on
DA. Specifically, we train each successor model
S on the acquired data Dt

A for all t in the range
[0, T ], evaluating its performance on a held-out
test set (distinct from U). We compare the perfor-
mance achieved in this case to that obtained using
an i.i.d. training set of the same size.

We run this experiment ten times, averaging re-
sults to create summary learning curves, as shown
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in Figure 1. All reported results, including i.i.d.
baselines, are averages of ten experiments, each
conducted with a distinct Dw. These learning
curves quantify the comparative performance of a
particular model achieved using the same amount
of supervision, but elicited under different acqui-
sition models. For each model, we compare the
learning curves of each acquisition strategy, in-
cluding active acquisition using a foreign model
and subsequent transfer, active acquisition without
changing models (i.e., typical AL), and the base-
line strategy of i.i.d. sampling.

4 Tasks

We now briefly describe the models, datasets, ac-
quisition functions, and implementation details for
the experiments we conduct with active learners
for text classification (4.1) and NER (4.2).

4.1 Text Classification
Models We consider three standard models for
text classification: Support Vector Machines
(SVMs), Convolutional Neural Networks (CNNs)
(Kim, 2014; Zhang and Wallace, 2015), and Bidi-
rectional Long Short-Term Memory (BiLSTM)
networks (Hochreiter and Schmidhuber, 1997).
For SVM, we represent texts via sparse, TF-IDF
bag-of-words (BoW) vectors. For neural models
(CNN and BiLSTM), we represent each document
as a sequence of word embeddings, stacked into an
l × d matrix where l is the length of the sentence
and d is the dimensionality of the word embed-
dings. We initialize all word embeddings with pre-
trained GloVe vectors (Pennington et al., 2014).

We initialize vector representations for all
words for which we do not have pre-trained em-
beddings uniformly at random. For the CNN,
we impose a maximum sentence length of 120
words, truncating sentences exceeding this length
and padding shorter sentences. We used filter sizes
of 3, 4, and 5, with 128 filters per size. For BiL-
STMs, we selected the maximum sentence length
such that 90% of sentences in Dt would be of
equal or lesser length.3 We trained all neural mod-
els using the Adam optimizer (Kingma and Ba,
2014), with a learning rate of 0.001, β1 = 0.9,
β1 = 0.999, and ε = 10−8.

Datasets We perform text classification experi-
ments using four benchmark datasets. We reserve

3Passing longer sentences to the BiLSTM degraded per-
formance in preliminary experiments.

20% of each dataset (sampled at i.i.d. random) as
test data, and use the remaining 80% as the pool of
unlabeled data U . We sample 2.5% of the remain-
ing documents randomly from U for each Dw. All
models receive the same Dw for any given experi-
ment.

• Movie Reviews: This corpus consists of sen-
tences drawn from movie reviews. The task is
to classify sentences as expressing positive or
negative sentiment (Pang and Lee, 2005).

• Subjectivity: This dataset consists of state-
ments labeled as either objective or subjective
(Pang and Lee, 2004).

• TREC: This task entails categorizing questions
into 1 of 6 categories based on the subject of
the question (e.g., questions about people, lo-
cations, and so on) (Li and Roth, 2002). The
TREC dataset defines standard train/test splits,
but we generate our own for consistency in
train/validation/test proportions across corpora.

• Customer Reviews: This dataset is composed
of product reviews. The task is to categorize
them as positive or negative (Hu and Liu, 2004).

4.2 Named Entity Recognition
Models We consider transfer between two NER
models: Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) and Bidirectional LSTM-CNNs
(BiLSTM-CNNs) (Chiu and Nichols, 2015).

For the CRF model we use a set of fea-
tures including word-level and character-based
embeddings, word suffix, capitalization, digit con-
tents, and part-of-speech tags. The BiLSTM-
CNN model4 initializes word vectors to pre-
trained GloVe vector embeddings (Pennington
et al., 2014). We learn all word and character
level features from scratch, initializing with ran-
dom embeddings.

Datasets We perform NER experiments on
the CoNLL-2003 and OntoNotes-5.0 English
datasets. We used the standard test sets for both
corpora, but merged training and validation sets to
form U . We initialize each Dw to 2.5% of U .

• CoNLL-2003: Sentences from Reuters news
with words tagged as person, location, organi-
zation, or miscellaneous entities using an IOB
4Implementation of BiLSTM-CNN is based on https:

//github.com/asiddhant/Active-NLP.

https://github.com/asiddhant/Active-NLP
https://github.com/asiddhant/Active-NLP
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(a) SVM on Movies dataset
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(b) CNN on Movies dataset
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(c) LSTM on Movies dataset
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(d) CRF on OntoNotes dataset
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Figure 2: Sample learning curves for the text classification task on the Movie Reviews dataset and the NER task on
the OntoNotes dataset using the maximum entropy acquisition function (we report learning curves for all models
and datasets in the Appendix). Individual plots correspond to successor models. Each line corresponds to an
acquisition model, with the blue line representing an i.i.d. baseline.

scheme (Tjong Kim Sang and De Meulder,
2003). The corpus contains 301,418 words.

• OntoNotes-5.0: A corpus of sentences drawn
from a variety of sources including newswire,
broadcast news, broadcast conversation, and
web data. Words are categorized using eigh-
teen entity categories annotated using the IOB
scheme (Weischedel et al., 2013). The corpus
contains 2,053,446 words.

4.3 Acquisition Functions
We evaluate these models using three common ac-
tive learning acquisition functions: classical un-
certainty sampling, query by committee (QBC),
and Bayesian active learning by disagreement
(BALD).

Uncertainty Sampling For text classification
we use the entropy variant of uncertainty sam-
pling, which is perhaps the most widely used AL
heuristic (Settles, 2009). Documents are selected
for annotation according to the function

argmax
x∈U

−
∑
j

P (yj |x) logP (yj |x),

where x are instances in the pool U , j indexes
potential labels of these (we have elided the in-

stance index here) and P (yj |x) is the predicted
probability that x belongs to class yj (this esti-
mate is implicitly conditioned on a model that can
provide such estimates). For SVM, the equivalent
form of this is to choose documents closest to the
decision boundary.

For the NER task we use maximized normal-
ized log-probability (MNLP) (Shen et al., 2018)
as our AL heuristic, which adapts the least confi-
dence heuristics to sequences by normalizing the
log probabilities of predicted tag sequence by the
sequence length. This avoids favoring selecting
longer sentences (owing to the lower probability
of getting the entire tag sequence right).

Documents are sorted in ascending order ac-
cording to the function

max
y1,...,yn

1

n

n∑
i=1

logP (yi|y1, ..., yn−1,x)

Where the max over y assignments denotes the
most likely set of tags for instance x and n is the
sequence length. Because explicitly calculating
the most likely tag sequence is computationally
expensive, we follow (Shen et al., 2018) in using a
greedy decoding (i.e., beam search with width 1)
to determine the model’s prediction.



26

Text classification
Acquisition model

10% of pool 20% of pool
Successor i.i.d. SVM CNN LSTM i.i.d. SVM CNN LSTM

Movie reviews

SVM 65.3 65.3 65.8 65.7 68.2 69.0 69.4 68.9
CNN 65.0 65.3 65.5 65.4 69.4 69.1 69.5 69.5
LSTM 63.0 62.0 62.5 63.1 67.2 65.1 65.8 67.0

Subjectivity

SVM 85.2 85.6 85.3 85.5 87.5 87.6 87.4 87.6
CNN 85.3 85.2 86.3 86.0 87.9 87.6 88.4 88.6
LSTM 82.9 82.7 82.7 84.1 86.7 86.3 85.8 87.6

TREC

SVM 68.5 68.3 66.8 68.5 74.1 74.7 73.2 74.3
CNN 70.9 70.5 69.0 70.0 76.1 77.7 77.3 78.0
LSTM 65.2 64.5 63.6 63.8 71.5 72.7 71.0 73.3

Customer reviews

SVM 68.8 70.5 70.3 68.5 73.6 74.2 72.9 71.1
CNN 70.6 70.9 71.7 68.2 74.1 74.5 74.8 71.5
LSTM 66.1 67.2 65.1 65.9 68.0 66.6 66.5 66.3

Table 1: Text classification accuracy, evaluated for each combination of acquisition and successor models using
uncertainty sampling. Accuracies are reported for training sets composed of 10% and 20% of the document
pool. Colors indicate performance relative to i.i.d. baselines: Blue indicates that a model fared better, red that it
performed worse, and black that it performed the same.

Named Entity Recognition
Acquisition Model

10% of pool 20% of pool
Successor i.i.d. CRF BiLSTM-CNN i.i.d. CRF BiLSTM-CNN

CoNLL

CRF 69.2 70.5 70.2 73.6 74.4 74.0
BiLSTM-CNN 87.4 87.4 87.8 89.1 89.6 89.6

OntoNotes

CRF 73.8 75.5 75.4 77.6 79.1 78.7
BiLSTM-CNN 82.6 83.1 83.1 84.6 85.2 84.9

Table 2: F1 measurements for the NER task, with training sets comprising 10% and 20% of the training pool.

Query by Committee For our QBC experi-
ments, we use the bagging variant of QBC
(Mamitsuka et al., 1998), in which a committee of
n models is assembled by sampling with replace-
ment n sets ofm documents from the training data
(Dt at each t). Each model is then trained using a
distinct resulting set, and the pool documents that

maximize their disagreement are selected. We use
10 as our committee size, and setm as equal to the
number of documents in Dt.

For the text classification task, we compute
disagreement using Kullback-Leibler divergence
(McCallum and Nigamy, 1998), selecting docu-
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Dataset # Classes # Documents Examples per Class

Movie Reviews 2 10662 5331, 5331
Subjectivity 2 10000 5000, 5000
TREC 6 5952 1300, 916, 95, 1288, 1344, 1009
Customer Reviews 2 3775 1368, 2407

Table 3: Text classification dataset statistics.

ments for annotation according to the function

argmax
x∈U

1

C

C∑
c=1

∑
j

Pc(yj |x) log
Pc(yj |x)

PC(yj |x)

where x are instances in the pool U , j in-
dexes potential labels of these instances, and C
is the committee size. Pc(yj |x) is the proba-
bility that x belongs to class yj as predicted by
committee member c. PC(yj |x) represents the
consensus probability that x belongs to class yj ,
1
C

∑C
c=1 Pc(yj |x).

For NER, we compute disagreement using the
average per word vote-entropy (Dagan and En-
gelson, 1995), selecting sequences for annotation
which maximize the function

− 1

n

n∑
i=1

∑
m

V (yi,m)

C
log

V (yi,m)

C

where n is the sequence length, C is the com-
mittee size, and V (yi,m) is the number of com-
mittee members who assign tag m to word i in
their most likely tag sequence. We do not apply
the QBC acquisition function to the OntoNotes
dataset, as training the committee for this larger
dataset becomes impractical.

Bayesian AL by Disagreement We use the
Monte Carlo variant of BALD, which exploits
an interpretation of dropout regularization as a
Bayesian approximation to a Gaussian process
(Gal et al., 2017b; Siddhant and Lipton, 2018).
This technique entails applying dropout at test
time, and then estimating uncertainty as the dis-
agreement between outputs realized via multiple
passes through the model. We use the acquisition
function proposed in (Siddhant and Lipton, 2018),
which selects for annotation those instances that
maximize the number of passes through the model
that disagree with the most popular choice:

argmax
x∈U

(1− count(mode(y1x, ..., y
T
x ))

T
)

where x are instances in the pool U , yix is the
class prediction of the ith model pass on instance
x, and T is the number of passes taken through
the model. Any ties are resolved using uncertainty
sampling over the mean predicted probabilities of
all T passes.

In the NER task, agreement is measured across
the entire sequence. Because this acquisition func-
tion relies on dropout, we do not consider it for
non-neural models (SVM and CRF).

5 Results

We compare transfer between all possible (acqui-
sition, successor) model pairs for each task. We
report the performance of each model under all ac-
quisition functions both in tables compiling results
(Table 1 and Table 2 for classification and NER,
respectively) and graphically via learning curves
that plot predictive performance as a function of
train set size (Figure 2).

We report additional results, including all learn-
ing curves (for all model pairs and for all tasks),
and tabular results (for all acquisition functions)
in the Appendix. We also provide in the Ap-
pendix plots resembling 1a for all (model, acqui-
sition function) pairs that report the difference be-
tween performance under standard AL (in which
acquisition and successor model are the same) and
that under commensurate i.i.d. data, which affords
further analysis of the gains offered by standard
AL. For text classification tasks, we report accura-
cies; for NER tasks, we report F1.

To compare the learning curves, we select in-
cremental points along the x-axis and report the
performance at these points. Specifically, we re-
port results with training sets containing 10% and
20% of the training pool.

6 Discussion

Results in Tables 1 and 2 demonstrate that stan-
dard AL — where the acquisition and successor
models are one and the same — performs incon-
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Successor
Movie Reiews Subjectivity TREC Customer Reviews

Acquisition Model CNN LSTM CNN LSTM CNN LSTM CNN LSTM

CNN – 0.961 – 0.968 – 0.988 – 0.973
LSTM 0.989 – 0.996 – 0.992 – 0.980 –
SVM 0.991 0.961 0.997 0.970 0.990 0.987 0.991 0.974

Table 4: Average Spearman’s rank correlation coefficients (over five runs) of cosine distances between test set
representations learned with native active learning and distances between those learned with transferred actively
acquired datasets, at the end of the AL process. Uncertainty is used as the acquisition function in all cases.

sistently across text classification datasets. In 75%
of all combinations of model, dataset, and training
set size, there exists some acquisition function that
outperforms i.i.d. data. This is consistent with the
prior literature indicating the effectiveness of AL.
However, when implementing AL in a real, live
setting, a practitioner would choose a single acqui-
sition function ahead of time. To accurately reflect
this scenario, we must consider the performance
of individual acquisition functions across multiple
datasets. Results for individual AL strategies are
more equivocal. In our reported classification dat-
apoints, standard AL outperforms i.i.d. sampling
in only a slight majority (60.9%) of cases.

AL thus seems to yield modest (though incon-
sistent) improvements over i.i.d. random sam-
pling, but our results further suggest that this
comes at an additional cost: the acquired dataset
may not generalize well to new learners. Specifi-
cally, models trained on foreign actively acquired
datasets tend to underperform those trained on
i.i.d. datasets. We observe this most clearly in
the classification task, where only a handful of
(acquisition, successor, acquisition function) com-
binations lead to performance greater than that
achieved using i.i.d. data. Specifically, only
37.5% of the tabulated data points representing
dataset transfer (in which acquisition and succes-
sor models differ) outperform the i.i.d. baseline.

Results for NER are more favorable for AL. For
this task we observe consistent improved perfor-
mance versus the i.i.d. baseline in both standard
AL data points and transfer data points. These
results are consistent with previous findings on
transferring actively acquired datasets for NER
(Tomanek and Morik, 2011).

In standard AL for text classification, the only
(model, acquisition function) pairs that we observe
to produce better than i.i.d. results with any reg-
ularity are uncertainty with SVM or CNN, and

BALD with CNN. When transferring actively ac-
quired datasets, we do not observe consistently
better than i.i.d. results with any combination of
acquisition model, successor model, and acqui-
sition function. The success of AL appears to
depend very much on the dataset. For example,
AL methods – both in the standard and acquisi-
tion/successor settings – perform much more reli-
ably on the Subjectivity dataset than any other. In
contrast, AL performs consistently poorly on the
TREC dataset.

Our findings suggest that AL is brittle. Dur-
ing experimentation, we also found that perfor-
mance often depends on factors that one may think
are minor design decisions. For example, our
setup largely resembles that of Siddhant and Lip-
ton (2018), yet initially we observed large dis-
crepancies in results. Digging into this revealed
that much of the difference was due to our use of
word2vec (Mikolov et al., 2013) rather than GloVe
(Pennington et al., 2014) for word embedding ini-
tializations. That small decisions like this can re-
sult in relatively pronounced performance differ-
ences for AL strategies is disconcerting.

A key advantage afforded by neural models is
representation learning. A natural question here
is therefore whether the representations induced
by the neural models differs as a function of the
acquisition strategy. To investigate this, we mea-
sure pairwise distances between instances in the
learned feature space after training. Specifically,
for each test instance we calculate its cosine sim-
ilarity to all other test instances, inducing a rank-
ing. We do this in the three different feature spaces
learned by the CNN and LSTM models, respec-
tively, after sampling under the three acquisition
models.

We quantify dissimilarities between the rank-
ings induced under different representations via
Spearman’s rank correlation coefficients. We re-
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peat this for all instances in the test set, and aver-
age over these coefficients to derive an overall sim-
ilarity measure, which may be viewed as quantify-
ing the similarity between learned feature spaces
via average pairwise similarities within them. As
reported in Table 4, despite the aforementioned
differences in predictive performance, the learned
representations seem to be similar. In other words,
sampling under foreign acquisition models does
not lead to notably different representations.

7 Conclusions

We extensively evaluated standard AL methods
under varying model, domain, and acquisition
function combinations for two standard NLP tasks
(text classification and sequence tagging). We also
assessed performance achieved when transferring
an actively sampled training dataset from an acqui-
sition model to a distinct successor model. Given
the longevity and value of training sets and the
frequency at which new ML models advance the
state-of-the-art, this should be an anticipated sce-
nario: Annotated data often outlives models.

Our findings indicate that AL performs unreli-
ably. While a specific acquisition function and
model applied to a particular task and domain may
be quite effective, it is not clear that this can be
predicted ahead of time. Indeed, there is no way
to retrospectively determine the relative success of
AL without collecting a relatively large quantity
of i.i.d. sampled data, and this would undermine
the purpose of AL in the first place. Further, even
if such an i.i.d. sample were taken as a diagnos-
tic tool early in the active learning cycle, relative
success early in the AL cycle is not necessarily in-
dicative of relative success later in the cycle, as
illustrated by Figure 1a.

Problematically, even in successful cases, an ac-
tively sampled training set is linked to the model
used to acquire it. We have found that training
successor models with this set will often result
in performance worse than that attained using an
equivalently sized i.i.d. sample. Results are more
favorable to AL for NER, as compared to text
classification, which is consistent with prior work
(Tomanek and Morik, 2011).

In short, the relative performance of individ-
ual active acquisition functions varies consider-
ably over datasets and domains. While AL of-
ten does yield gains over i.i.d. sampling, these
tend to be marginal and inconsistent. Moreover,

this comes at a relatively steep cost: The acquired
dataset may be disadvantageous for training sub-
sequent models. Together these findings raise seri-
ous concerns regarding the efficacy of active learn-
ing in practice.
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