
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 151–156
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

151

PizzaPal: Conversational Pizza Ordering using a High-Density
Conversational AI Platform

Antoine Raux, Yi Ma, Paul Yang, and Felicia Wong
b4.ai / botbotbotbot, Inc.

3225 Ash Street
Palo Alto, CA, USA

{antoine,yi,paul,felicia}@b4.ai

Abstract

This paper describes PizzaPal, a voice-only
agent for ordering pizza, as well as the Conver-
sational AI architecture built at b4.ai. Based
on the principles of high-density conversa-
tional AI, it supports natural and flexible in-
teractions through neural conversational lan-
guage understanding, robust dialog state track-
ing, and hierarchical task decomposition.

1 High-Density Conversational AI

Following the recent rise to prominence of smart
speakers, as well as the continuous improvement
of core technologies for speech recognition and
natural language understanding, voice-only inter-
active applications, whether in the home or in car,
have attracted increasing attention and investment
from the industry. Such applications generally fall
under two broad categories: assistants and bots.
Voice assistants, pioneered by Siri in 2010, aim at
providing a broad range of information and ser-
vices across many domains, primarily by lever-
aging natural language’s evocative power, i.e. its
ability to summon any intent, concept or entity at
any point in a conversation. On the other hand,
bots (also known as skills on Alexa and action on
Google Assistant) are much narrower in scope, of-
ten providing a voice interface to a single brand,
service, or API.

While technological progresses are undeniable,
these applications have only met limited suc-
cess1, and largely fail to sustain even simple task-
oriented conversations with humans. We believe
this relatively poor user experience stems from
the fact that neither assistants nor bots are able
to cover the space of possible (or even reason-
able) conversations with enough density. In other

1According to Smith (2017), the retention rate after two
weeks for Alexa skills was only 6% in September 2017.

words, while a given set of user intents are rec-
ognized and supported, even small variations over
those are not properly handled. There are several
root causes to these limitations. While platforms
such as Google’s DialogFlow or Facebook’s wit.ai
provide a simple way of building a relatively small
set of distinct intents to a large developer commu-
nity, these alone cannot support truly natural, sus-
tained, interaction. Therefore, companies (typi-
cally startups) that develop bots might not have the
necessary resources or knowledge to build truly
compelling conversational experiences. On the
other hand, some of the largest tech companies
are behind most voice assistants (Apple, Google,
Amazon) have plenty of resources, financial, hu-
man, and intellectual, but they are typically fo-
cused on expanding the breadth of their applica-
tions, to the expense of its density. Figure 1 gives
an example of the contrast between breadth and
density.

At b4.ai, we believe that only high-density con-
versational AI can deliver the seamless, natural ex-
perience that matches users’ expectations of Ar-
tificial Intelligence and leads to truly successful
conversational consumer products. The following
sections describe how we are tackling this chal-
lenge by first focusing on domain-specific appli-
cations in the form of Alexa skills and Google Ac-
tions.

2 The PizzaPal Conversational Ordering
System

The PizzaPal system is a voice-only conversa-
tional agent that supports ordering pizza, drinks
and side dishes for delivery or pickup. It runs ei-
ther as an Alexa skill or a Google Assistant ac-
tion and is connected to the Domino’s Pizza API.
While there exist other conversational agents (as-
sistants, skills or actions) that support pizza or-

152

Figure 1: Leveraging Natural Conversation for Breadth vs Density

dering or similar e-commerce tasks, PizzaPal is
unique in the naturalness and flexibility of its in-
teractions, as shown in the example of Figure 2.

P: (...) What will you be having?
U: Can I get a large spinach pizza?
P: One large spinach pizza. Can I get you
anything else?

U: I’ll also take a pepperoni pizza.
P: One pepperoni pizza. Do you want
that in large as well?*

U: How much was the spinach pizza?
P: A large spinach pizza is $18.49. Let’s
continue with the pepperoni pizza.**

Should I make that a large as well?
U: Do you have anything smaller?***

P: Medium is smaller. It is 12 inches.
Shall I order it for you?

U: Sure.
P: Sure. Can I get you anything else?

Figure 2: Example dialogue with PizzaPal.2

The italicized sentences show instances of natu-
2The video of this dialog is available at https://

youtu.be/BQrzgJk4-yI

ral conversational behavior exhibited by PizzaPal:

∗ PizzaPal proactively suggests sizes and items
based on the dialog history when possible.

∗∗ While the system can drive the conversation
to completion by asking the user direct ques-
tions, it also allows the user to take the initia-
tive at any time.

∗ ∗ ∗ The user can express constraints and in-
tents freely, including using contextual ex-
pressions.

These are a few examples of features character-
istic of high-density AI, which are implemented
in PizzaPal. In the remainder of the paper, we
will describe the b4.ai framework architecture and
components that support the PizzaPal system.

3 Architecture

3.1 Overview
At a high level, the b4.ai framework is composed
of three main services that run on top of a front
end platform such as Amazon Alexa or Google
Assistant. As illustrated in Figure 3, the front
end controls application launch, voice recognition

https://youtu.be/BQrzgJk4-yI
https://youtu.be/BQrzgJk4-yI

153

Figure 3: Overview of the b4.ai dialog framework.

and voice synthesis. The front end sends the tran-
scription of each user input to the core dialog ser-
vice, which first calls the NLU service to extract
non-contextual semantic information, and inter-
acts with the knowledge backend, before return-
ing the bot response to the front end as a string to
be spoken back to the user. All three services are
implemented as REST APIs hosted on AWS EC2
instances.

3.2 Knowledge Service

The role of the Knowledge Service is to retrieve
domain knowledge (e.g. menus, restaurant ad-
dresses, as well as user prefererences), help re-
solve references (e.g. when the user says ”add
chicken to my pizza”, ”chicken” might match to
different possible toppings like ”BBQ Chicken”,
”Garlic Chicken” or ”Teriyaki Chicken”), and ex-
ecute transactions with 3rd party services (e.g.
placing the order for delivery). Even for a sin-
gle domain application such as pizza ordering, this
requires access to a variety of databases, APIs
and services. The Knowledge Service abstracts
away these different source schemas and allows
unified access from the dialog service. In gen-
eral, the Knowledge Service supports a variety of
queries, both structured (e.g. getting the menu of
a given store given its store ID) and unstructured
(e.g. finding menu items matching certain key-
words and key phrases), which are performed via
an API defined in terms of questions about enti-
ties and properties (e.g. ”get the available toppings
for menu item X”, ”resolve ingredient named N
for dish type T”). The initial implementation of
the Knowledge Service relies on 3rd party REST

APIs, and our own PostGres and ElasticSearch
databases to access restaurant and menu informa-
tion.

3.3 Natural Language Generation

The NLG service takes the semantic output gener-
ated by the Dialog service and converts it to natu-
ral language. We have implemented a simple, scal-
able template based approach to NLG, that allows
to control the language used by the system with
some amount of variation. The templates incor-
porate some conditionals so that entities such as
menu items or ingredients can be rendered differ-
ently based on entity properties and context.

4 Natural Language Understanding

The Natural Language Understanding (NLU) ser-
vice of PizzaPal converts the surface text of a
user’s request (taken from Alexa or Google As-
sistant’s APIs) into a structured semantic repre-
sentation that serves as the input for the Dialog
Manager. The output of the NLU follows a food
ordering schema that defines what a MenuItem
consists of.

Conventional task-oriented dialog systems use
intent detection and slot filling to identify user’s
intention and extract semantic constituents from
the natural language query. This intent-slot con-
figuration might suffice when the backend task is
outlined as a database lookup operation where the
extracted slots are used as constraints and the re-
trieved information is presented to the user by pop-
ulating fixed language templates. However, it is
not sufficient for building a genuinely natural con-
versational system that requires frequent elaborate

154

high-density actions. Consider the following user
input:

“I want three large pizzas, the Honolulu
Hawaiian, and two with cheese and chicken.”

The NLU should identify three separate enti-
ties (in bold) in order to resolve the ambiguity that
the user requested two kinds of pizzas with differ-
ent quantities instead of three Honolulu Hawaiian
with extra chicken, which is inferred by the entity
model. The Subsection 4.1.1 and 4.1.2 describe
the intent and slot model; with Subsection 4.1.3
explains the entity model.

4.1 Model Description
All the neural networks for our NLU service are
trained and run using the Python deep learning li-
brary Keras (Chollet et al., 2015), with a Tensor-
Flow backend (Abadi et al., 2015).

4.1.1 Intent Model
The intent model learns a Convolutional Neural
Networks (CNN) with multiple filters and fixed
kernel size from an n × k representation of sen-
tence using GloVe word embeddings (Pennington
et al., 2014). Random word vectors were gen-
erated for Out-of-vocabulary (OOV) words be-
fore training. In addition to the word embed-
ding features, we are adding a few more dimen-
sions to the word representation with additional
one-hot encoding categorical features based on
whether the word appears in different sets of col-
lections of phrases that specify ingredients, dish
names, or portion sizes etc. At the time of writ-
ing, there are 26 intents in the current model.
A few example intents include RequestItem,
GivePortionSize, and AddToppings etc.

4.1.2 Slot Model
Slot model is independent of the intent model,
which allows different intents to share the same
set of slots. The input for learning the slot model
is identical to that for learning the intent model.
The slot model learns a Bidirectional Long Short-
Term Memory (LSTM) Networks with dropout
and emits a slot label for each token in the
word sequence. Currently, the slot model pre-
dicts a label from a total of 21 slots. Example
slots include dish name, portion size, and
ingredient etc.

4.1.3 Entity Model
Similar to the slot model, the entity model learns
a Bidirectional LSTM Networks with dropout that

emits one of the B, I, O labels for each token in the
word sequence to indicate the boundaries of sep-
arate entities. Usually an entity corresponds to a
MenuItem in the schema. As shown in the ex-
ample user request below, each underlined chunk
of text represents an entity.

“I’d like two large hand tossed Hawaiian and a
medium cheese pizza with double pepperoni.”

In addition to the word embedding and categor-
ical features as used for learning the intent and slot
model, the input for learning the entity model ad-
ditionally contains the one-hot encoding of the slot
label information. The ground truth slot labels are
used for training the entity model, while during
prediction the output of the slot model is used as
features.

4.2 Data Collection

In order to bootstrap our NLU models before we
obtain real user data from the released product, we
have been leveraging crowdsourcing to generate
reasonable sentences for the various intents, slots
and entities. We have collected both freeform sen-
tences by giving crowdworkers a general scenario
and asking them what they would say to PizzaPal,
as well as paraphrases, for which we provide a tar-
get sentence with known annotation and ask work-
ers to provide variations with the same meaning.
The first approach has proven useful to uncover
intents, slots and ways to formulate queries, while
the paraphrase approach allows us to rapidly col-
lect data for specific intents and scenarios.

5 Dialog Management

5.1 Overview

Once the NLU service has extracted intents, slots
and entities from a user utterance, the Dialog ser-
vice first updates the persistent state of the dia-
log based on the new input, and second decides
what response to give to the user. Recent work on
dialog management has focused on Deep Learn-
ing based approaches (Liu et al., 2018), show-
ing great promise when large amounts of train-
ing dialog data are available. We also believe that
such data-driven approaches are part of the solu-
tion to scale high-density AI. However, in order to
bootstrap an initial system that displays our target
flexibility and naturalness, we opted for an engi-
neered solution based on data structures and al-
gorithms inspired by computational linguistics re-
search. Specifically, the two core components of

155

Figure 4: Example of Dialog Flow

our dialog state are:

• A topic stack which tracks the hierarchical
topic structure of the conversation and al-
lows switching to new topics and coming
back to previous topics. This is inspired by
the RavenClaw architecture (Bohus and Rud-
nicky, 2009). Practically speaking, the stack
contains modules, each in charge of a partic-
ular subdialog.

• An entity reference set that can be retrieved
by content as well as recency to match refer-
ring expressions provided by the user such as
”my pizza”, ”the large one”, ”the pepperoni”,
etc.

In the current implementation, the domain logic
within each module is implemented in Python
code. We are also exploring ways of implementing
modules as Deep Networks trained on example di-
alogs for both state tracking and decision making.

5.2 Example Runtime Flow
Initially, the stack contains the root module. Af-
ter each user input, the stack is traversed from top
to bottom and each module attempts to interpret
the NLU according to its own context to update
the dialog state. As soon as a module does so,
the iteration stops and the decision making phase
starts, where the module at the top of the stack
can either output a prompt to the user, push an-
other module, or pop itself from the stack, indi-
cating that it has completed its intended subtask.
For example, one module might be in charge of
handling the specification of one item from the
menu (HandleItem). When executing this mod-
ule, it might decide (e.g. based on information
from the backend about the given item) that it
needs to enquire about the size of the item, and

push another module specialized in this subtask
AskSize. If, instead of answering the ques-
tion by providing a size, the user asks a question
(e.g. ”How big is a large?”), the corresponding
module is pushed on top of the stack and han-
dles the question (ProvideSizeInfo). Once
it is done (presumably by providing the answer),
ProvideSizeInfo pops itself from the stack
and AskSize is back on top and tries again to
obtain a size from the user. Figure 4 shows a sim-
plified example of a dialog flow and the evolution
of the stack.

Modules operate as asynchronous functions that
perform a task. Once a module is completed
(which could involve several turns of interactions
with the user), it returns the information that it was
able to obtain from the user to its calling module
via callback function. This asynchronous mecha-
nism allows the system to both lead the conversa-
tion to complete the task, while also leaving the
option of the user to switch topics and ask ques-
tions, without losing track of the main task.

6 Challenges

The ambitious goals of high-density AI outlined in
section 1 raise significant challenges on all com-
ponents of the system. First, of course, are speech
recognition errors, which, even given the high
quality of ASR provided by today’s voice plat-
forms, are still prominent for certain idiosyncratic
words or phrases. Since we do not control the
ASR module, there is little we can do here, though
we have observed that training the NLU on prop-
erly annotated ASR output help resolves the most
common issues (e.g. ”I want two pizzas” misrec-
ognized as ”I want to pizzas”).

Even when ASR faithfully transcribes the ut-
terances, some nuances that are essential to un-

156

derstanding the user intent are sometimes minute
such as the difference between ”I want a pepperoni
pizza” and ”I just want a pepperoni pizza” which,
in some contexts, means that the user wants to re-
move all other items from the order. This type
of small but crucial distinctions, characteristic of
high-density AI, point to the limitations of the tra-
ditional intent/slot approach where every nuance
must be captured by a different intent. In addition,
while it is more practical to implement NLU as
independent of context (and leave the contextual
interpretation to the Dialog service), the strong in-
fluence of context on interpretation makes NLU
labeling (both by human annotators, particularly
when crowdsourcing the task, and by the trained
DNNs) a challenging task. For these reasons, we
are exploring new approaches to conversational
NLU that avoid these pitfalls by integrating Dia-
log and NLU more tightly.

Finally, we found that project and product man-
agement tasks for high-density AI, while critical
to the development of a robust and useful prod-
uct, present some significant challenges too. Be-
cause dialog flows are never rigidly defined and
the user can always say anything at any point of
the conversation, representing different features of
the agent (e.g. ”supporting crust customization”)
for purposes of communication between product,
engineering and QA teams is a non trivial prob-
lem. Similarly, traditional metrics used for track-
ing progress toward milestones and product re-
leases often fail to capture the seemingly infinite
number of ways users can interact with each fea-
ture. We believe that new metrics, tools and pro-
cesses appropriate to high-density AI systems are
a critical requirement toward the development of
large scale successful conversational products and
we are actively working on building them.

7 Conclusion

In this paper, we present PizzaPal, a pizza ordering
bot that customers can interact with through Ama-
zon Alexa and Google Assistant using multi-turn
dialogs with natural language. It is based on a pro-
prietary dialog framework developed by b4.ai and
is the first implementation of High-Density Con-
versational AI (#highdensityai) as a commercially
viable product.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems.

Dan Bohus and Alexander I. Rudnicky. 2009. The
ravenclaw dialog management framework: Ar-
chitecture and systems. Comput. Speech Lang.,
23(3):332–361.

François Chollet et al. 2015. Keras. https://
keras.io.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. In NAACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Jessica Smith. 2017. The Voice Apps Report. Techni-
cal report, BI Intelligence.

https://keras.io
https://keras.io

