
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 139–144
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

139

OpenKE: An Open Toolkit for Knowledge Embedding

Xu Han1,2,3∗ Shulin Cao2,3,4,5∗ Xin Lv1,4 Yankai Lin1,2,3

Zhiyuan Liu1,2,3† Maosong Sun1,2,3 Juanzi Li1,4
1Department of Computer Science and Technology, Tsinghua University, Beijing, China

2Institute for Artificial Intelligence, Tsinghua University, Beijing, China
3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China

4Knowledge Engineering Laboratory, Tsinghua University, Beijing, China
5College of Information Science and Technology, Beijing Normal University, Beijing, China

Abstract
We release an open toolkit for knowledge em-
bedding (OpenKE), which provides a unified
framework and various fundamental models
to embed knowledge graphs into a continu-
ous low-dimensional space. OpenKE prior-
itizes operational efficiency to support quick
model validation and large-scale knowledge
representation learning. Meanwhile, OpenKE
maintains sufficient modularity and extensibil-
ity to easily incorporate new models into the
framework. Besides the toolkit, the embed-
dings of some existing large-scale knowledge
graphs pre-trained by OpenKE are also avail-
able, which can be directly applied for many
applications including information retrieval,
personalized recommendation and question
answering. The toolkit, documentation, and
pre-trained embeddings are all released on
http://openke.thunlp.org/.

1 Introduction

People construct various large-scale knowledge
graphs (KGs) to organize structured knowledge
about the world, such as WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008) and Wikidata
(Vrandečić and Krötzsch, 2014). Most KGs are
typically organized in the form of triples (h, r,
t), with h and t indicating head and tail entities,
and r indicating the relation between h and t, e.g.,
(Mark Twain, PlaceOfBirth, Florida). Abun-
dant structured information in KGs is widely used
to enhance various knowledge-driven NLP appli-
cations (e.g., information retrieval, question an-
swering and dialogue system) with the ongoing ef-
fective construction of KGs.

Limited by the scale and sparsity of KGs, we
have to represent KGs with corresponding dis-
tributed representations. Therefore, a variety of

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

knowledge embedding (KE) approaches have been
proposed to embed both entities and relations in
KGs into a continuous low-dimensional space,
such as linear models (Bordes et al., 2011, 2012,
2014), latent factor models (Sutskever et al., 2009;
Jenatton et al., 2012; Yang et al., 2015; Liu et al.,
2017), neural models (Socher et al., 2013; Dong
et al., 2014), matrix factorization models (Nickel
et al., 2011, 2012, 2016; Trouillon et al., 2016),
and translation models (Bordes et al., 2013; Wang
et al., 2014; Lin et al., 2015; Ji et al., 2015).

These models have achieved great performance
on benchmark datasets. However, there exist two
main issues which may lead to difficulty in full
utilization and further development. On the one
hand, the existing implementations are scattered
and unsystematic to some extent. For example,
the interfaces of these model implementations are
inconsistent with each other. On the other hand,
these model implementations mainly focus on
model validation and are often time-consuming,
which makes it difficult to apply them for real-
world applications. Hence, it becomes urgent to
develop an efficient and effective open toolkit for
KE, which will definitely benefit both the commu-
nities in academia and industry. For this purpose,
we develop an open KE toolkit named “OpenKE“.
The toolkit provides a flexible framework and uni-
fied interfaces for developing KE models. While
taking in some training and computing optimiza-
tion methods, OpenKE makes KE models efficient
and capable of embedding large-scale KGs. The
features of OpenKE are threefold:

(1) At the data and memory level, the unified
framework of OpenKE manages data and mem-
ory for KE models. Model developments based on
OpenKE no longer require complicated data pro-
cessing and memory allocation.

(2) At the algorithm level, OpenKE unifies the
mathematical forms of various specific models to

http://openke.thunlp.org/

140

Model Scoring Function Parameters Loss Function

RESCAL (Nickel et al., 2011) h>Mrt Mr ∈ Rk×k,h ∈ Rk, t ∈ Rk margin-based loss

TransE (Bordes et al., 2013) −‖h+ r− t‖L1/L2
r ∈ Rk,h ∈ Rk, t ∈ Rk margin-based loss

TransH (Wang et al., 2014) −‖(h− w>r hwr) + r− (t− w>r twr)‖L1/L2 wr ∈ Rk, r ∈ Rk,h ∈ Rk, t ∈ Rk margin-based loss

TransR (Lin et al., 2015) −‖Mrh+ r−Mrt‖L1/L2
Mr ∈ Rkr×ke , r ∈ Rkr ,h ∈ Rke , t ∈ Rke margin-based loss

TransD (Ji et al., 2015) −‖(rph>p + I)h+ r− (rpt
>
p + I)t‖L1/L2

rp ∈ Rkr ,hp ∈ Rke , tp ∈ Rke , I ∈ Rkr×ke ,
r ∈ Rkr ,h ∈ Rke , t ∈ Rke margin-based loss

DistMult (Yang et al., 2015) < h, r, t > r ∈ Rk,h ∈ Rk, t ∈ Rk logistic loss

HolE (Nickel et al., 2016) r>
(
F−1

(
F(h)�F(t)

))
r ∈ Rk,h ∈ Rk, t ∈ Rk logistic loss

ComplEx (Trouillon et al., 2016) <(< h, r, t >) r ∈ Ck,h ∈ Ck, t ∈ Ck logistic loss

Table 1: The brief introduction of some typical KE models. For most models, k is the dimension of both
entities and relations. For some other models, Ke is the dimension of entities and kr is the dimension of
relations. F denotes the Fourier transform. � denotes the element-wise product. < a, b, c > denotes the
element-wise multi-linear dot product.

implement them under the unified framework. We
also propose a novel negative sampling strategy
for further acceleration.

(3) At the computation level, OpenKE can sep-
arate a large-scale KG into several parts and adapt
KE models for parallel training. Based on the
underlying management of data and memory, we
also adopt TensorFlow (Abadi et al., 2016) and Py-
Torch (Paszke et al., 2017) to build a convenient
platform to run models on GPUs.

Besides the toolkit, we also provide the pre-
trained embeddings of several well-known large-
scale KGs, which can be used directly for other
relevant works without repeatedly spending much
time for embedding KGs. In this paper, we mainly
present the architecture design and implementa-
tion of OpenKE, as well as the benchmark eval-
uation results of some typical KE models im-
plemented with OpenKE. Other related resources
and details can be found on http://openke.
thunlp.org/.

2 Background

For a typical KG G, it expresses data as a directed
graph G = {E ,R, T }, where E ,R and T indicate
the sets of entities, relations and facts respectively.
Each triple (h, r, t) ∈ T indicates there is a re-
lation r ∈ R between h ∈ E and t ∈ E . For the
entities h, t ∈ E and the relation r ∈ R, we use the
bold face h, t, r to indicate their low-dimensional
vectors respectively.

For any entity pair (h, t) ∈ E × E and any re-
lation r ∈ R, we can determine whether there is
a fact (h, r, t) ∈ T via their low-dimensional em-
beddings learned by KE models. These embed-
dings greatly facilitate understanding and mining
knowledge in KGs. In practice, the KE models

define a scoring function S(h, r, t) for each triple
(h, r, t). In most cases, there are only true triples
in KGs and non-existing triples can be either false
or missing. Local closed world assumption (Dong
et al., 2014) has been proposed to solve this prob-
lem, which requires existing triples to have higher
scores than those non-existing ones. Hence, the
scoring function S(h, r, t) returns a higher score
if (h, r, t) is true, vice versa.

Based on the above-mentioned scoring func-
tions, some KE models formalize a margin-based
loss as the training objective to learn embeddings
of the entities and relations:

L =
∑
t∈T

∑
t′∈T ′

[
γ + S(t′)− S(t)

]
+
. (1)

Here [x]+ indicates keeping the positive part of x
and γ > 0 is a margin. T ′ denotes the set of non-
existing triples, which is constructed by corrupting
entities and relations in existing triples,

T ′ = E ×R× E − T . (2)

Some other KE models cast the training objec-
tive as a classification task. The embeddings of the
entities and relations can be learned by minimizing
the regularized logistic loss,

L =
∑
t∈T

log(1 + exp(−S(t))) +
∑
t′∈T ′

log(1 + exp(S(t′))).

(3)

The main difference among various KE models
is scoring functions. Hence, we briefly introduce
several typical models and their scoring functions
in Table 1. These models are state-of-the-art and
widely introduced in many works. We systemati-
cally incorporate all of them into our OpenKE.

http://openke.thunlp.org/
http://openke.thunlp.org/

141

3 Design Goals

Before introducing the concrete toolkit implemen-
tations, we report the design goals and features of
OpenKE, including system encapsulation, opera-
tional efficiency, and model extensibility.

3.1 Encapsulation

Developers tend to maximize the reuse of code to
avoid unnecessary redundant development in prac-
tice. For KE, its task is fixed, and its experimen-
tal settings and model parameters are also sim-
ilar. However, previous model implementations
are scattered and lack of necessary interface en-
capsulation. Thus, developers have to spend extra
time reading obscure open-source code and writ-
ing glue code for data processing when they con-
struct models. In view of this issue, we build a uni-
fied underlying platform in OpenKE and encap-
sulate various data and memory processing which
is independent of model implementations. As
is shown in Figure 1, the system encapsulation
makes it easy to train and test KE models. Thus,
we just need to set hyperparameters via interfaces
of the platform to construct KE models.

3.2 Efficiency

Previous model implementations focus on model
validation and enhancing experimental results
rather than improving time and space efficiency.
In fact, as real-world KGs can be very large, train-
ing efficiency is an important concern. Hence,
OpenKE integrates efficient computing power,
training methods, and various acceleration strate-
gies to support KE models. We adopt TensorFlow
and PyTorch to implement the model training and
test modules based on the interfaces of underly-
ing platform. These machine learning frameworks
enable models to be run on GPU, with just few
minutes needed for training and testing models
on benchmark datasets. In order to train existing
large-scale KGs, we also implement lightweight
C/C++ versions for quick deployment and multi-
threading acceleration of KE models, in which
some models (e.g. TransE) can embed more than
100M triples in a few hours on ordinary devices.

3.3 Extensibility

Since different KE models have different design
solutions, we make OpenKE fully extensible to
future variants. For the underlying platform, we
encapsulate data processing and memory manage-

import config, Models, os
os.environ['CUDA_VISIBLE_DEVICES']='0'
con = config.Config()
con.set_in_path('./FB15K/')

con.set_work_threads(8)
con.set_train_times(1000)
con.set_alpha(0.001)
con.set_margin(1.0)
con.set_dimension(100)
con.set_opt_method('SGD')

con.init()
con.set_model(models.TransE)
con.run()

 Datasets Memory

Underlying Management

Model

Parameters

Training

Strategies

Model Settings

Training Evaluation

Traning and Evaluation

Code OpenKE

Figure 1: An example for training a KE model
(TransE) via OpenKE.

import numpy as np
import tensorflow as tf
from Model import *
class TransE(Model):
 def _calc(self, h, t, r):
 return abs(h + r - t)
 def embedding_def(self):
 config = self.get_config()
 self.ent_embeddings = tf.get_variable('ent_embeddings',
 [config.entTotal, config.hidden_size])
 self.rel_embeddings = tf.get_variable('rel_embeddings',
 [config.relTotal, config.hidden_size])
 ...
 def loss_def(self):
 config = self.get_config()
 pos_h, pos_t, pos_r = self.get_positive_instance(in_batch = True)
 neg_h, neg_t, neg_r = self.get_negative_instance(in_batch = True)
 p_h = tf.nn.embedding_lookup(self.ent_embeddings, pos_h)
 p_t = tf.nn.embedding_lookup(self.ent_embeddings, pos_t)
 p_r = tf.nn.embedding_lookup(self.rel_embeddings, pos_r)
 n_h = tf.nn.embedding_lookup(self.ent_embeddings, neg_h)
 n_t = tf.nn.embedding_lookup(self.ent_embeddings, neg_t)
 n_r = tf.nn.embedding_lookup(self.rel_embeddings, neg_r)
 _p_score = self._calc(p_h, p_t, p_r)
 _n_score = self._calc(n_h, n_t, n_r)
 p_score = tf.reduce_sum(tf.reduce_mean(_p_score, 1, keep_dims = False),

1, keep_dims = True)
 n_score = tf.reduce_sum(tf.reduce_mean(_n_score, 1, keep_dims = False),

1, keep_dims = True)
 self.loss = tf.reduce_sum(tf.maximum(p_score - n_score + config.margin, 0))
 ...

Embeddings

Model

DistMult TransE

Loss

DistMult

Figure 2: An example for implementing a KE
model (TransE) via OpenKE.

ment, and then provide various data sampling in-
terfaces. For the training modules, we provide
enough interfaces for possible training methods.
For the construction of KE models, we unify their
mathematical forms and encapsulate them into a
base class. These framework designs can greatly
meet the needs of current and future models, and
customized interfaces to meet individual require-
ments are also available in OpenKE. As shown in
Figure 2, all specific models are implemented by
inheriting the base class with designing their own
scoring functions and loss functions. In addition,
models in OpenKE can be placed into the frame-
work of TensorFlow and PyTorch to interact with
other machine learning models.

4 Implementations

In this section, we mainly present the implemen-
tations of acceleration modules and special sam-
pling algorithm in OpenKE. OpenKE has been
available to the public on GitHub 1 and is open-
source under the MIT license.

1http://github.com/thunlp/OpenKE

http://github.com/thunlp/OpenKE

142

Algorithm 1 Parallel Learning
Require: Entity and relation sets E and R, training triples
T = {(h, r, t)}.

1: Initialize all model embeddings and parameters.
2: for i← 1 to epoches do
3: In each thread:
4: for j ← 1 to batches/threads do
5: Sample a positive triple (h, r, t)
6: Sample a corrupted triple (h′, r′, t′)
7: Compute the loss function L
8: Update the gradient∇L
9: end for

10: end for
11: Return all embeddings and parameters

4.1 GPU Learning

GPUs are widely used in machine learning tasks to
speed up model training in recent years. In order
to accelerate KE models, we integrate GPU learn-
ing mechanisms into OpenKE. We build the GPU
learning platform based on TensorFlow (branch
master) and PyTorch (branch OpenKE-PyTorch).
Both TensorFlow and PyTorch are machine learn-
ing libraries, providing effective hardware opti-
mizations and abundant arithmetic operators for
convenient model constructions, especially the
stable environments for GPU learning. The auto-
grad packages also bring additional convenience.
TensorFlow and PyTorch enable us to coustruct
models without manual back propagation imple-
mentations, further reducing the programming
complexity for GPU Learning. We develop nec-
essary encapsulation modules aligning to Tensor-
Flow and PyTorch so that the development and de-
ployment of KE models can be faster and further
convenient. Models can be deployed easily on a
variety of devices without implementing compli-
cated device setting code, even for multiple GPUs.

4.2 Parallel Learning

Abundant computing resources (e.g Servers with
multiple GPUs) do not exist all the time. In fact,
we often rely on simple personal computers for
model validation. Hence, we enable OpenKE to
adapt models for parallel learning on CPU 2 be-
sides employing GPU learning, which allow users
to make full use of all available computing re-
sources. The parallel learning method is shown
in Algorithm 1. The main idea of parallel learning
method is based on data parallelism mechanism,
which divides training triples into several parts and
trains each part of triples with a corresponding

2https://github.com/thunlp/Fast-TransX

(h, r, t1) (h, r, f -1[rand(0, |E| - 3)])

h

t1

t2

t3

r

r

r

 t1

 t 0 |E|

0 t1 |E|-3f [t] ×

t1-1 t1+1

t1-1

Figure 3: An example for the offset-based negative
sampling algorithm.

thread. In parallel learning, there are two strate-
gies implemented to update gradients. One of the
methods is the lock-free strategy, which means
all threads share the unified embedding space and
update embeddings directly without synchronized
operations. We also implement a central syn-
chronized method, where each thread calculates
its own gradient and results will be updated after
summing up the gradients from all threads.

4.3 Offset-based Negative Sampling
All KE models learn their parameters by minimiz-
ing the margin-based loss function Eq. (1) or the
regularized logistic loss Eq. (3). Both of these loss
functions need to construct non-existing triples as
negative samples. We have empirically found that
the corrupted triples have great influence on final
performance. Randomly replacing entities or rela-
tions with any other ones may make the negative
triple set T ′ contain some positive triples in T ,
which would weaken the performance of KE mod-
els. The original sampling algorithm will spend
much time checking whether generated triples are
in T and filtering them out. In OpenKE, we pro-
pose an offset-based negative sampling algorithm
to generate negative triples. As shown in Figure 3,
we renumber all entities with new serial numbers.
Each entity’s new number is obtained by adding an
offset to its original ID, and the offset is the total
number of positive entities which have lower IDs.
Our algorithm first randomly sample a new num-
ber and then map the new number back to its corre-
sponding entity. This algorithm can directly gen-
erate negative triples without any checking. Since
the relation set is very small, we still directly re-
place positive relations for relation corruption.

5 Evaluations

Link prediction has been widely used for evalu-
ating KE models, which needs to predict the tail
entity when given a triple (h, r, ?) or predict the

https://github.com/thunlp/Fast-TransX

143

Dataset Rel Ent Train Valid Test

FB15K 1,345 14,951 483,142 50,000 59,071
WN18 18 40,943 141,442 5,000 5,000

Table 2: Statistics of FB15K and WN18.

Datasets FB15K
Models TF PT MT

TransE 75.6(+28.5) 75.4(+28.3) 74.3(+27.2)
TransH 72.8(+14.3) 72.7(+14.2) 74.8(+16.3)
TransR 74.9(+6.2) 75.7(+7.0) 75.6(+6.9)
TransD 74.3(+0.1) 74.2(+0.0) 75.2(+1.0)
RESCAL 49.1(+5.0) 57.2(+13.1) -
DistMult 73.4(+15.7) 75.4(+17.4) -
HolE 70.4(−3.5) - -
ComplEx 72.3(−11.7) 80.5(−3.5) -

Table 3: Experimental results of link prediction on
FB15K (%).

head entity when given a triple (?, r, t). In order to
evaluate OpenKE, we implement various KE mod-
els with OpenKE, and compare their performance
with previous works on link prediction task.

Some datasets are usually used as benchmarks
for link prediction, such as FB15K and WN18.
FB15K is the relatively dense subgraph of Free-
base; WN18 is the subset of WordNet. These pub-
lic datasets are available online 3. Following pre-
vious works, We adopt them in our experiments.
The statistics of FB15K and WN18 are listed in
Table 2, including the number of entities, rela-
tions, and facts.

As mentioned above, OpenKE supports mod-
els with efficient learning on both CPU and GPU.
For CPU, the benchmarks are run on an Intel(R)
Core(TM) i7-6700K @ 3.70GHz, with 4 cores
and 8 threads. For GPU, the models in both
TensorFlow and PyTorch versions are trained by
GeForce GTX 1070 (Pascal), with CUDA v.8.0
(driver 384.111) and cuDNN v.6.5. To compare
with the previous works, we simply follow the pa-
rameter settings used before and traverse all train-
ing triples for 1000 rounds. Other detailed pa-
rameters and training strategies are shown in our
source code. We show these results in Table 3 and
Table 4. In these tables, the difference between
our implementations and the paper reported results
are listed in the parentheses. To demonstrate the
efficiency of OpenKE, we select TransE as a rep-
resentative and implement it with both OpenKE
and KB2E 4, and then compare their training time.
KB2E is a widely-used toolkit for KE models on
GitHub. These results can be found in Table 5.

3https://everest.hds.utc.fr/doku.php?
id=en:transe

4https://github.com/thunlp/KB2E

Datasets WN18
Models TF PT MT

TransE 90.5(+1.3) 90.0(+0.8) 83.3(−5.9)
TransH 94.6(+7.9) 94.4(+7.7) 92.5(+5.8)
TransR 93.8(+1.8) 94.4(+2.4) 94.6(+2.9)
TransD 94.2(+1.7) 94.3(+1.8) 91.9(−0.3)
RESCAL 80.2(+27.4) 80.2(+27.4) -
DistMult 93.6(−0.6) 93.6(−0.6) -
HolE 94.4(−0.5) - -
ComplEx 94.0(−0.7) 94.0(−0.7) -

Table 4: Experimental results of link prediction on
WN18 (%).

Models Time (s)

TransE (KB2E, CPU) 7124
TransE (OpenKE, CPU, 1-Thread) 386
TransE (OpenKE, CPU, 2-Thread) 206
TransE (OpenKE, CPU, 4-Thread) 118
TransE (OpenKE, CPU, 8-Thread) 76
TransE (OpenKE, GPU, TensorFlow) 178
TransE (OpenKE, GPU, PyTorch) 266

Table 5: Training time of different implementa-
tions of TransE on FB15K.

From the results in Table 3, Table 4 and Table
5, we observe that: (1) Models implemented with
OpenKE have the comparable accuracies com-
pared to the values reported in the original pa-
pers. These results are compatible with our ex-
pectations. For some models, their accuracies are
slightly higher due to OpenKE. These results in-
dicate our toolkit is effecive. (2) OpenKE signifi-
cantly accelerates the training process of the mod-
els trained both on CPU and GPU. As compared to
the model implemented with KB2E, all models in
OpenKE achieve more than 10× speedup. These
results show that our toolkit is efficient.

The evaluation results indicate that our toolkit
significantly handles the time-consuming problem
and can support existing models to learn large-
scale KGs. In fact, TransE based on OpenKE only
spends about 18 hours training the whole Wiki-
data for 10000 rounds and gets stable embeddings.
There are more than 40M entities and 100M facts
in Wikidata. We also evaluate the embeddings
learned on the whole Wikidata on the link pre-
diction task. Because the whole Wikidata is quite
huge, we emphasize link prediction of Wikidata
more on ranking a set of candidate entities rather
than requiring one best answer. Hence, we re-
port the proportion of correct entities in top-N
ranked entities (Hits@10, Hits@20, Hits@50 and
Hits@100) in Table 6. To our best knowledge, this
is the first time that adopting KE models to embed
an existing large-scale KG. The results shown in
Table 6 indicate that OpenKE enables models to
effectively and efficiently embed large-scale KGs.

https://everest.hds.utc.fr/doku.php?id=en:transe
https://everest.hds.utc.fr/doku.php?id=en:transe
https://github.com/thunlp/KB2E

144

Metric Hits@10 Hits@20 Hits@50 Hits@100

Head 29.6 36.2 46.7 56.3
Tail 66.8 75.2 84.9 90.6

Table 6: Experimental results of link prediction on
the whole Wikidata.

6 Conclusion

We propose an efficient open toolkit OpenKE for
knowledge embedding. OpenKE builds a unified
underlying platform to organize data and memory.
It also applies GPU learning and parallel learning
to speed up training. We also unify mathematical
forms for specific models and encapsulate them to
maintain enough modularity and extensibility. Ex-
perimental results demonstrate that the models im-
plemented by OpenKE are efficient and effective.
In the future, we will incorporate more knowledge
embedding models and maintain the stable embed-
dings of some large-scale knowledge graphs.

Acknowledgments

This work is supported by the 973 Program (No.
2014CB340501) and the National Natural Sci-
ence Foundation of China (NSFC No. 61572273,
61661146007) and Tsinghua University Initiative
Scientific Research Program (20151080406). This
research is part of the NExT++ project, supported
by the National Research Foundation, Prime Min-
isters Office, Singapore under its IRC@Singapore
Funding Initiative.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. 2016. Ten-
sorflow: A system for large-scale machine learning. In
Proceedings of OSDI.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,
and Jamie Taylor. 2008. Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In
Proceedings of KDD.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua
Bengio. 2012. Joint learning of words and meaning repre-
sentations for open-text semantic parsing. In Proceedings
of AISTATS.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua
Bengio. 2014. A semantic matching energy function for
learning with multi-relational data. Proceedings of ML.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Ja-
son Weston, and Oksana Yakhnenko. 2013. Translating
embeddings for modeling multi-relational data. In Pro-
ceedings of NIPS.

Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua
Bengio, et al. 2011. Learning structured embeddings of
knowledge bases. In Proceedings of AAAI.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun,
and Wei Zhang. 2014. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings
of KDD.

Rodolphe Jenatton, Nicolas L Roux, Antoine Bordes, and
Guillaume R Obozinski. 2012. A latent factor model for
highly multi-relational data. In Proceedings of NIPS.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao.
2015. Knowledge graph embedding via dynamic mapping
matrix. In Proceedings of ACL.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan
Zhu. 2015. Learning entity and relation embeddings for
knowledge graph completion. In Proceedings of AAAI.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analog-
ical inference for multi-relational embeddings. In Pro-
ceedings of ICML.

George A Miller. 1995. Wordnet: a lexical database for en-
glish. Communications of the ACM.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio.
2016. Holographic embeddings of knowledge graphs. In
Proceedings of AAAI.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
2011. A three-way model for collective learning on multi-
relational data. In Proceedings of ICML.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
2012. Factorizing yago: scalable machine learning for
linked data. In Proceedings of WWW.

Adam Paszke, Soumith Chintala, Ronan Collobert, Ko-
ray Kavukcuoglu, Clement Farabet, Samy Bengio, Iain
Melvin, Jason Weston, and Johnny Mariethoz. 2017. Py-
torch: Tensors and dynamic neural networks in python
with strong gpu acceleration.

Richard Socher, Danqi Chen, Christopher D Manning, and
Andrew Ng. 2013. Reasoning with neural tensor networks
for knowledge base completion. In Proceedings of NIPS.

Ilya Sutskever, Joshua B Tenenbaum, and Ruslan Salakhutdi-
nov. 2009. Modelling relational data using bayesian clus-
tered tensor factorization. In Proceedings of NIPS.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex em-
beddings for simple link prediction. In Proceedings of
ICML.

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a
free collaborative knowledgebase. Communications of the
ACM.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen.
2014. Knowledge graph embedding by translating on hy-
perplanes. In Proceedings of AAAI.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations for
learning and inference in knowledge bases. In Proceed-
ings of ICLR.

