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Abstract

We present a three-part toolkit for developing
morphological analyzers for languages with-
out natural word boundaries. The first part is
a lattice-based morphological analysis library
that uses a combination of linear and recurrent
neural net language models for analysis. The
other parts are a tool for exposing problems
in the trained model and a partial annotation
tool. Our morphological analyzer for Japanese
achieves new SOTA on Jumandic-based cor-
pora while being 250 times faster than the
previous one. We also perform a small ex-
periment and quantitive analysis of using our
toolkit.

1 Introduction

Processing scriptio continua natural languages, or
languages without natural word boundaries, like
space in English, frequently requires performing
tokenization into morphemes in the natural lan-
guage processing pipeline. Usually, tokenization
is done together with part of speech (POS) tag-
ging, pronunciation estimation or other subtasks.
This process is usually referred to as morphologi-
cal analysis.

A morphological analyzer is useful from a prac-
tical point of view only if it is fast as well as highly
accurate in its analysis. Because morphological
analysis is very important to languages without
word boundaries (like Japanese), there already ex-
ist many approaches and tools for performing it.
Morphological analyzers usually use two kinds
of resources: a dictionary which defines possible
morphemes and an annotated corpus which is used
to train an analysis model for connecting mor-
phemes together.

Modern morphological analyzers achieve high
accuracy (a segmentation F1 score of > .99 for
Japanese) on established domains like newspaper.
However, when using them on out-of-domain or

open domain data (like web texts) the accuracy de-
creases, and it is difficult to improve that accuracy
without creating costly annotations by trained ex-
perts.

The Juman++ Japanese morphological analyzer
(Morita et al. 2015, referred to also as V1), which
uses a combination of a linear model and a neu-
ral network-based language model (RNNLM) to
compute a semantic plausibility of a segmentation.
Juman++ has achieved state-of-the-art analysis ac-
curacy on Jumandic (the JUMAN dictionary and
segmentation standard (Kurohashi and Kawahara,
2012)) based corpora, and drastically reduced the
number of intolerable analysis errors. Unfortu-
nately, its execution speed was extremely slow and
this has limited the practical usage of Juman++.

We have developed a morphological analysis
toolkit consisting of three components: a morpho-
logical analyzer and two support tools which help
with the development of analysis models. The an-
alyzer is a complete rewrite of core ideas of Ju-
man++, released as Juman++ V21 (Tolmachev and
Kurohashi, 2018). Our reimplementation is more
than 250 times faster than V1, reaching the speed
of traditional analyzers, at the same time achieving
better accuracy than V1.

We have also developed a tool which uses raw,
unannotated data and gives an insight into prob-
lematic dictionary and grammar points, together
with finding sentences which contain situations
not present in training data by exploiting differ-
ences in the analysis that arise from using different
beam search configurations. It is bundled with V2.
Also, we have developed a partial annotation tool
which makes it easy to review problematic sen-
tences and create partial annotation data for im-
proving the analysis2. To the best of our knowl-

1https://github.com/ku-nlp/jumanpp
2https://github.com/eiennohito/

nlp-tools-demo

https://github.com/ku-nlp/jumanpp
https://github.com/eiennohito/nlp-tools-demo
https://github.com/eiennohito/nlp-tools-demo
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edge, a similar set of tools has never been devel-
oped before. Juman++ V2 and the development
tools are language and segmentation standard in-
dependent and are released under the permissive
Apache 2 open source license.

2 Related Work

KyTea (Neubig et al., 2011) is a similar tool that
can perform morphological analysis for languages
with the continuous script. It can also be trained
using partial annotation data and output point-wise
confidence scores for the analysis result which
were used for creating partially annotated data in
an active learning scenario. Still, by using a point-
wise approach and estimating auxiliary tags (like
POS) after computing segmentation, KyTea trades
off accuracy for simplicity. Juman++ is faster, has
better accuracy, does tag estimation jointly with
segmentation, uses an online learning approach
and can use longer contexts in forms of RNNLM
and trigram features.

3 Juman++ Morphological Analyzer V2

Juman++ V2 is implemented with modern C++,
with the intention to be used not only as a pro-
gram, but also as an embeddable library, usable in
a multi-threaded environment. Additionally, V2 is
not hardwired to a particular dictionary and can
use partially annotated data for training.

Juman++ is a lattice-based analyzer. For an in-
put sentence, it looks up all possible morphemes
from a dictionary, makes a lattice from them, and
assigns a score s to each path going through the
lattice. The path with the highest score is consid-
ered to be the analysis result. The score s consists
of two components: a feature-based linear model
score sl and an RNNLM score sRNN, which are
combined as

s = sl + α(sRNN + β),

where α and β are scale and bias hyperparam-
eters respectively. The RNNLM score is a log-
probability score from the language model.

The linear score is defined as

sl =
∑
t∈p

f(t, p)w,

where f(t, p) is an indicator vector which contains
features, extracted for a node t in a path p, and w
is a model weight vector. Features use dictionary

information of the node t and at most two previous
nodes and their surface surroundings. Weights are
learned using the Soft Confidence Weighted algo-
rithm (Wang et al., 2016).

In practice, it is intractable to compute scores
for all paths through the lattice. Instead, we use
beam search. Additionally, because the RNNLM
is computationally-heavy, we compute the RNN
score only for the paths which remain in the beam
of the special end-of-string token. The overall de-
sign is to cut off improbable analysis results with
a simple model and then re-rank by RNNLM.

3.1 Search Space Trimming

One of important optimizations of V2 is the re-
duction of search space by changing the beam
search operation mode. Because the Juman++ lin-
ear model uses up to 3-gram features, the beam
searching procedure has to deal with combinato-
rial explosion caused by higher order n-gram fea-
tures. V1 uses local beams of width j, meaning
that each lattice node keeps j incoming paths with
top scores. The rest of the paths are discarded. The
problem is that paths are discarded after evaluating
their scores and the number of evaluations is still
large. Most of the sentences have several bound-
aries which have 20-30 both left and right nodes.
Because almost all these paths are useless, we do
not want to consider them in the analysis at all.

The first improvement is to use only paths end-
ing on left nodes with top k scores instead of using
all left paths. Connections for the remaining paths
are not considered. We refer to this process as left
global beam. The application of the left global
beam is shown in Figure 1a.

The second improvement is the right global
beam, displayed in Figure 1b. As the first sub-
step, we use top l(≤ k) paths ending at left nodes
to compute scores of right nodes. After that, we
evaluate the connections from the remaining k− l
left paths to the top-scoredm right nodes. The rest
of connections are not considered.

We call search using local beams as full beam.
In comparison to that, a combination of left and
right global beams is referred to as trimmed beam
because it uses significantly smaller search space.

3.2 Partially Annotated Data

Juman++ V2 supports both training with partially
annotated data and soft-constrainted analysis us-
ing partially annotated data as constraints.
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(a) Left global beam. k = 2. Top left paths are displayed
in orange. Remaining left paths are displayed in solid gray.
Non-considered paths are displayed as dashed blue arrows.
Considered paths are solid blue.
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(b) Right global beam. l = m = 1. A top left path and a
top right node are displayed in green. Orange paths via the
boundary were used for scoring right nodes. Solid blue path
via the boundary connects the remaining k− l top left paths
the top right nodes. Dashed blue paths are not considered.

Figure 1: Trimming the search space using the global beams

There exist three types of annotations: bound-
ary (break here), non-boundary (no break here)
and word. A word annotation means that a se-
quence of characters must not contain boundaries
inside it; additionally, the word can have tags at-
tached to it, meaning that the analysis result also
must have these tags.

For training, we need to provide sets of correct
and incorrect features for the training algorithm. A
feature computed from the correct path would be
correct, and a feature containing any lattice node
that is not contained in the correct path would be
incorrect.

When using the fully annotated data, there ex-
ist only a single correct path. However, for partial
annotated data, there could exist multiple allowed
paths through the lattice. Because of this, when
training using the partially annotated data, we use
several highly-scored candidates which do not vi-
olate annotation requirements instead of the only
correct path as in the case of fully annotated data.

3.3 Performance Comparison

We compare both speed and accuracy of five
different Japanese morphological analyzers: JU-
MAN3, MeCab4, KyTea, Juman++ (V1) and Ju-
man++ (V2). For both versions of Juman++ we
report results both using and not using RNNLM
(noRNN).

Analysis speed We used a desktop computer
with Intel i7-6850K CPU, 64GB of RAM and
Ubuntu 16.04 Linux for analysis speed compar-
ison. The models were trained from scratch us-

3http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JUMAN

4http://taku910.github.io/mecab/

Analyzer Speed (sents/s) Ratio

JUMAN 8,802 1.00
MeCab 52,410 0.17
KyTea (Jumandic) 4,892 1.79
KyTea (Unidic) 1,995 4.41
V1 noRNN 27 328.82
V1 RNN 16 535.72
V2 noRNN 7,422 1.18
V2 RNN 4,803 1.83

Table 1: Morphological analysis speed comparison

ing the same Juman++ dictionary, the Kyoto Uni-
versity5 (KU) and KWDLC6 corpora for all mor-
phological analyzers except JUMAN, which is not
trainable. For KyTea we also report the throughput
using the Unidic-based models, which are avail-
able for download from the KyTea website. A
Jumandic-based model for KyTea was learned us-
ing default parameters. V1 uses the full beam of
width j = 5. V2 uses trimmed beam with param-
eters j = 5, k = 6, l = 1, m = 5. All analyzers
were using only a single thread.

Table 1 shows the analysis speed of the consid-
ered morphological analyzers and speed ratio as
compared to JUMAN. The speed was measured by
analyzing 50k sentences from a web corpus. Each
analyzer was launched five times and the median
time was used for computing the analysis speed.
V2 noRNN is only 20% slower than JUMAN
while having a considerably complex model. V2

5 http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?Kyoto University Text Corpus

6 http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?KWDLC

http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
http://taku910.github.io/mecab/
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?Kyoto%20University%20Text%20Corpus
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?Kyoto%20University%20Text%20Corpus
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KWDLC
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KWDLC


57

KU KWDLC
Analyzer Seg +Pos Seg +Pos

JUMAN 98.41 97.20 98.10 97.01
KyTea 99.12 98.16 98.00 96.75
MeCab 99.14 98.58 98.28 97.61
V1 noRNN 98.94 98.42 97.66 96.95
V1 RNN 99.38 98.95 98.41 97.87
V2 noRNN 99.44 98.98 98.44 97.79
V2 RNN 99.51 99.05 98.67 98.02

Table 2: F1 scores of morphological analyzers on
Jumandic-based corpora. Seg is segmentation;
+Pos is correctly guessing the POS-tags after seg-
mentation.

RNN has 1.8 times the execution speed of JU-
MAN and is more than 250 times faster than V1.

Accuracy Table 2 shows F1 scores for both the
KU and KWDLC corpora. A concatenation of
training sections of both corpora was used to train
a combined model; the reported scores are for
the test sections. MeCab and V2 have hyperpa-
rameters optimized using Spearmint (Snoek et al.,
2012).

V2 RNN achieves a higher F1 score than the
previous SOTA of V1 RNN. Even the scores of
V2 noRNN are higher in some cases than those of
V1 RNN. Note that the scores of V1 noRNN are
one of the lowest, and thus we hypothesize that
the number of training iterations of the V1 linear
model was not sufficient. However, it was difficult
to increase it because of very slow analysis speed.

With V2, we could find an optimal number of it-
erations for learning the linear model with the best
accuracy. The other reason for the improved ac-
curacy for V2 is that it uses surface character and
character type features.

4 Beam Search Diffs as Active Learning

We compared the accuracy of the trimmed beam
search to the full configuration in the in-domain
setting. For this experiment, we trained the model
using 1 pass of full beam search followed by 4
passes of trimmed beam search for the optimal
number of iterations for different trimmed beam
parameters. Figure 2 shows the F1 score average
on 10-fold cross-validation over the KU corpus. It
can be seen that the accuracy of the models does
not fall even if using very small global beam sizes.
Nevertheless, we noticed that there exist sentences

1 2 3 4 5 6
test 

98.4

98.6

98.8

99.0

99.2

train =1
train =2
train =3
train =4
train =5
train =6

Figure 2: Cross-validation test F1 score average on
the KU corpus for POS tags when using different
global beam parameters k = m = ρ, l = 1. Red
dotted line at the top is F1 score of a model without
global beams.

when the full and trimmed search configurations
do not agree on the top-scoring path when analyz-
ing random web sentences and produce diffs.

To get a better picture, we analyzed a large
number of sentences from a raw Japanese cor-
pus, crawled from the web. On average,
0.38% (1969/510595) of sentences were diffs, a
relatively small number. In contrary to our expec-
tations, the full beam analysis was correct only in
around 50% of the cases. The rest of sentences
had both of analysis variants incorrect either be-
cause the dictionary did not support the language
phenomena (20%) or lack of coverage by the train-
ing data (10%); the trimmed beam analysis was
the correct one (10%); and other situations that
were difficult to decide or impossible to analyze
correctly like typos.

Based on these insights, we believe that the diffs
can be treated as a result of selection by the Query-
by-Committee active learning algorithm with two
committee members (Settles and Craven, 2008;
Seung et al., 1992). We think that diffs actually
reveal problems not only with a training corpus
(the goal of active learning) but also with an anal-
ysis dictionary as well. Note that we are using
exactly the same model in both beam modes and
the only difference is beam configuration. So, a
diff can form only if trimmed beam ranking was
not learned correctly either because the model ca-
pacity was not enough, features were not strong
enough, or the situation was not present in the
training data.

When the beam size at training is very small,
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the model does not learn to rank for the trimmed
case well enough, lowering the accuracy on larger
beam sizes. Increasing the beam size above three
makes the trimmed beam score indistinguishable
with the full beam. On the other hand, the model
loses accuracy on smaller beam sizes at test time,
because the trimmed ranking fails in those situ-
ations. Thus we believe that the model capacity
and the feature set should be enough to capture
the ranking and the diffs are caused mostly by the
lack of training data. The fact that the diffs in-
clude situations when it is impossible to produce
the correct analysis at all, namely lack of dictio-
nary words and typos, confirms our belief.

On the other hand, we also believe that the cor-
rections of places pointed by diffs are not going
to significantly improve benchmark scores exactly
because of the same reason. The benchmark cor-
pus will usually be relatively in-domain and not
contain dictionary or grammar problems, because
they would be fixed when creating the corpus. So
we hope that this method would be useful to im-
prove real world morphological analysis accuracy
and for domain adaptation.

5 Partial Annotation Tool

Because the diffs must be reviewed by human an-
notators to be useful as training data, we have de-
veloped a partial annotation tool based on a simple
idea: to allow annotators to select a correct anal-
ysis from two candidates. The output of the tool
can be used as partially annotated training data.

5.1 Tool Description

The tool is a web application, implemented in
Scala. As an input, it uses sentences with some
parts being diffs, which are produced by a tool
bundled with the Juman++ V2 distribution. For
each sentence, annotators are asked to select a cor-
rect variant, correct an analysis if both are not cor-
rect, or report if it is impossible to select a correct
analysis or there is a problem with the sentence
itself.

A sentence diff view is shown in Figure 3. The
annotation targets are diffs: we want annotators to
choose a correct analysis from the possible vari-
ants, which are displayed side-by-side. A sen-
tence can contain more than one annotation target
in general and each variant can contain more than
one morpheme. Non-diff parts form contexts and
are displayed in grey. The tool shows diffs in an

Analysis 
variant 1

Context

Context

Analysis 
variant 2

Special Tags

Figure 3: Annotation tool: diff view. UI explana-
tions are in blue. Variant 1 is selected.

unspecified order. In the shown example, the left
variant is selected as the correct one. The area in
the middle of the target section contains a button
which activates an interactive analysis mode and
buttons for assigning special tags in the case when
the mistake in the target part is due to a typo or a
phenomenon that we do not want to support in the
automatic analysis, such as netspeak.

In the case when both analyses are incorrect, an
annotator can use the interactive analysis mode,
shown in Figure 4, which performs constrained
morphological analysis. Constraint nodes are
shown in blue. A full beam analysis becomes ini-
tial constraints.

The interactive analysis mode uses lattice infor-
mation from the Juman++ to provide morpheme
candidates for constraints. It is possible to show
either all morphemes containing a focused charac-
ter or morphemes spanning exactly selected char-
acters. The corrected analysis replaces the closest
diff variant which was not selected by any annota-
tor yet, or creates a new variant if replacing is not
possible. Finally, if there are no variants, annota-
tors can select a character span and report that it is
impossible to choose a correct morpheme in this
sentence for that span.

5.2 Annotation Experiment

We performed a small scale annotation experiment
using the developed annotation tool. For the ex-
periment, we trained a model on the concatenation
of the training and test data from both benchmark
corpora and the copy of data augmented by re-
moving “ga”, “ha” and “wo” case markers, which
are often omitted in the spoken language so that
the model would be more robust to case marker
omission. Using this model we have collected sen-
tences which contained diffs, as described in Sec-
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Figure 4: Annotation tool: interactive analysis.
Constraint nodes background is blue. Other anal-
ysis variants for the last constraint node are dis-
played after the gray indent. The “CL” button re-
moves a constraint.

tion 4. We asked two annotators to work for three
hours each.

During the allocated time, the two annotators
could review 111 and 112 sentences each. Both
the annotators started annotating rather slowly,
while gradually increasing their annotation speed.
An inter-annotator agreement was 0.819. The an-
notators have selected at least one of analysis can-
didates in most (82%) cases; the rest were special
tags.

We also checked sentences where the annotators
did not agree on the correct analysis, but both the
annotations were analysis results (9 in total). Each
of them was difficult to decide even for us. We be-
lieve that the relatively large number of sentences
which caused annotators to spend a long time on
annotation is caused by the fact that the diff ex-
tractor selects difficult cases.

6 Conclusion and Future Work

We present Juman++ V2: a morphological anal-
ysis and tokenization toolkit for languages with
the continuous script. Our current implementa-
tion focuses on Japanese and the Jumandic-based
segmentation standard, but the core library is lan-
guage independent. Juman++ V2 achieves a new

state-of-the-art accuracy for both the Kyoto Uni-
versity and KWDLC corpora while drastically re-
ducing the analysis time compared to Juman++
V1. Juman++ V2 can be used as a library and
can use both fully and partially annotated data for
training.

We also release a morphological analysis devel-
oper tool which reveals problematic places of a
dictionary and segmentation standard using only
unannotated data by comparing the analysis re-
sults in the two different beam search configura-
tions. Also, we release the partial annotation tool
for easily viewing and fixing these problems.

We plan to create a Unidic version of Ju-
man++ V2 and use it to annotate readings of
the Jumandic-based corpora, which are currently
rather arbitrary, enabling the Jumandic-based
models to estimate correct readings as well. We
also plan to continue collecting partially annotated
data and release a partially annotated web corpus.
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