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Abstract

The web provides a rich, open-domain envi-
ronment with textual, structural, and spatial
properties. We propose a new task for ground-
ing language in this environment: given a nat-
ural language command (e.g., “click on the
second article”), choose the correct element on
the web page (e.g., a hyperlink or text box).
We collected a dataset of over 50,000 com-
mands that capture various phenomena such
as functional references (e.g. “find who made
this site”), relational reasoning (e.g. “article
by john”), and visual reasoning (e.g. “top-
most article”). We also implemented and an-
alyzed three baseline models that capture dif-
ferent phenomena present in the dataset.

1 Introduction

Web pages are complex documents containing
both structured properties (e.g., the internal tree
representation) and unstructured properties (e.g.,
text and images). Due to their diversity in content
and design, web pages provide a rich environment
for natural language grounding tasks.

In particular, we consider the task of mapping
natural language commands to web page elements
(e.g., links, buttons, and form inputs), as illus-
trated in Figure 1. While some commands refer
to an element’s text directly, many others require
more complex reasoning with the various aspects
of web pages: the text, attributes, styles, structural
data from the document object model (DOM), and
spatial data from the rendered web page.

Our task is inspired by the semantic parsing lit-
erature, which aims to map natural language utter-
ances into actions such as database queries and ob-
ject manipulation (Zelle and Mooney, 1996; Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Berant et al., 2013; Misra et al., 2015; Andreas and
Klein, 2015). While these actions usually act on
an environment with a fixed and known schema,
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1: click on apple deals 2: send them a tip
3: enter iphone 7 into search 4: follow on facebook
5: open most recent news update

Figure 1: Examples of natural language commands on
the web page appleinsider.com.

web pages contain a larger variety of structures,
making the task more open-ended. At the same
time, our task can be viewed as a reference game
(Golland et al., 2010; Smith et al., 2013; Andreas
and Klein, 2016), where the system has to select
an object given a natural language reference. The
diversity of attributes in web page elements, along
with the need to use context to interpret elements,
makes web pages particularly interesting.

Identifying elements via natural language has
several real-world applications. The main one is
providing a voice interface for interacting with
web pages, which is especially useful as an as-
sistive technology for the visually impaired (Za-
jicek et al., 1998; Ashok et al., 2014). Another
use case is browser automation: natural language
commands are less brittle than CSS or XPath se-
lectors (Hammoudi et al., 2016) and could gener-
alize across different websites.

We collected a dataset of over 50,000 natural
language commands. As seen in Figure 1, the
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Phenomenon Description Example Amount
substring match The command contains only a substring of

the element’s text (after stemming).
“view internships with energy.gov” → “Ca-
reers & Internship” link

7.0 %

paraphrase The command paraphrases the element’s
text.

“click sign in” → “Login” link 15.5 %

goal description The command describes an action or asks
a question.

“change language” → a clickable box with
text “English”

18.0 %

summarization The command summarizes the text in the
element.

“go to the article about the bengals trade”
→ the article title link

1.5 %

element description The command describes a property of the
element.

“click blue button” 2.0 %

relational reasoning The command requires reasoning with an-
other element or its surrounding context.

“show cookies info” → “More Info” in the
cookies warning bar, not in the news section

2.5 %

ordinal reasoning The command uses an ordinal. “click on the first article” 3.5 %
spatial reasoning The command describes the element’s po-

sition.
“click the three slashes at the top left of the
page”

2.0 %

image target The target is an image (no text). “select the favorites button” 11.5 %
form input target The target is an input (text box, check box,

drop-down list, etc.).
“in the search bar, type testing” 6.5 %

Table 1: Phenomena present in the commands in the dataset. Each example can have multiple phenomena.

commands contain many phenomena, such as re-
lational, visual, and functional reasoning, which
we analyze in greater depth in Section 2.2. We
also implemented three models for the task based
on retrieval, element embedding, and text align-
ment. Our experimental analysis shows that func-
tional references, relational references, and visual
reasoning are important for correctly identifying
elements from natural language commands.

2 Task

Given a web page w with elements e1, . . . , ek and
a command c, the task is to select the element e ∈
{e1, . . . , ek} described by the command c. The
training and test data contain (w, c, e) triples.

2.1 Dataset

We collected a dataset of 51,663 commands on
1,835 web pages. To collect the data, we first
archived home pages of the top 10,000 websites1

by rendering them in Google Chrome. After load-
ing the dynamic content, we recorded the DOM
trees and the geometry of each element, and stored
the rendered web pages. We filtered for web pages
in English that rendered correctly and did not con-
tain inappropriate content. Then we asked crowd-
workers to brainstorm different actions for each
web page, requiring each action to reference ex-
actly one element (of their choice) from the fil-
tered list of interactive elements (which include
visible links, inputs, and buttons). We encouraged

1
https://majestic.com/reports/majestic-million

the workers to avoid using the exact words of the
elements by granting a bonus for each command
that did not contain the exact wording of the se-
lected element. Finally, we split the data into 70%
training, 10% development, and 20% test data.
Web pages in the three sets do not overlap.

The collected web pages have an average of
1,051 elements, while the commands are 4.1 to-
kens long on average.

2.2 Phenomena present in the commands

Apart from referring to the exact text of the el-
ement, commands can refer to elements in a va-
riety of ways. We analyzed 200 examples from
the training data and broke down the phenomena
present in these commands (see Table 1).

Even when the command directly references the
element’s text, many other elements on the page
also have word overlap with the command. On av-
erage, commands have word overlap with 5.9 leaf
elements on the page (not counting stop words).

3 Models

3.1 Retrieval-based model

Many commands refer to the elements by their
text contents. As such, we first consider a simple
retrieval-based model that uses the command as a
search query to retrieve the most relevant element
based on its TF-IDF score.

Specifically, each element is represented as a
bag-of-tokens computed by (1) tokenizing and
stemming its text content, and (2) tokenizing the

https://majestic.com/reports/majestic-million
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attributes (id, class, placeholder, label, tooltip,
aria-text, name, src, href) at punctuation marks
and camel-case boundaries. When computing
term frequencies, we downweight the attribute to-
kens from (2) by a factor of α. We use α = 3
tuned on the development set for our experiments.

The document frequencies are computed over
the web pages in the training dataset. If multi-
ple elements have the same score, we heuristically
pick the most prominent element, i.e., the one that
appears earliest in the pre-order traversal of the
DOM hierarchy.

3.2 Embedding-based model
A common method for matching two pieces of
text is to embed them separately and then com-
pute a score from the two embeddings (Kiros et al.,
2015; Tai et al., 2015). For a command c and el-
ements e1, . . . , ek, we define the following condi-
tional distribution over the elements:

p (ei | c) ∝ exp [s(f(c), g(ei))]

where s is a scoring function, f(c) is the embed-
ding of c, and g(ei) is the embedding of ei, de-
scribed below. The model is trained to maximize
the log-likelihood of the correct element in the
training data.

Command embedding. To compute f(c), we
embed each token of c into a fixed-dimensional
vector and take an average2 over the token embed-
dings. (The token embeddings are initialized with
GloVe vectors.)

Element embedding. To compute g(e), we em-
bed the properties of e, concatenate the results, and
then apply a linear layer to obtain a vector of the
same length as f(c). Figure 2 shows an exam-
ple of the properties that the model receives. The
properties include:

• Text content. We apply the command embed-
der f on the text content of e. As the text of
most elements of interest (links, buttons, and
inputs) are short, we find it sufficient to limit
the text to the first 10 tokens to save memory.

• Text attributes. Several attributes (aria, ti-
tle, tooltip, placeholder, label, name) usually
contain natural language. We concatenate
their values and then apply the command em-
bedder f on the resulting string.

2We tried applying LSTM but found no improvement.

<a class="dd-head" id="tip-link"
href="submit_story/">Tip Us</a>

Text content: tip us
String attributes: tip link dd head
Visual features: location = (0.53, 0.08)

visible = true

Figure 2: Example of properties used to compute the
embedding g(e) of the element e.

• String attributes. We tokenize other string at-
tributes (tag, id, class) at punctuation marks
and camel-case boundaries. Then we embed
them with separate lookup tables and average
the resulting vectors.

• Visual features. We form a vector consisting
of the coordinates of the element’s center (as
fractions of the page width and height) and
visibility (as a boolean).

Scoring function. To compute the score
s(f(c), g(e)), we first let f̂(c) and ĝ(e) be the
results of normalizing the two embeddings to
unit norm. Then we apply a linear layer on
the concatenated vector [f̂(c); ĝ(e); f̂(c) ◦ ĝ(e)]
(where ◦ denotes the element-wise product).

Incorporating spatial context. Context is criti-
cal in certain cases; for example, selecting a text
box relies on knowing the neighboring label text,
and selecting an article based on the author re-
quires locating the author’s name nearby. Identi-
fying which related element should be considered
based on the command is a challenging task.

We experiment with adding spatial context to
the model. For each direction d ∈ {top, bottom,
left, right}, we use g to embed a neighboring ele-
ment nd(e) directly adjacent to e in that direction.
(If there are multiple such elements, sample one; if
there is no such element, use a zero vector.) After
normalizing the results to get ĝ(nd(e)), we con-
catenate ĝ(nd(e)) and f̂(c)◦ ĝ(nd(e)) to the linear
layer input in the scoring function.

3.3 Alignment-based model

One downside of the embedding-based model is
that the text tokens from c and e do not directly in-
teract. Previous works on sentence matching usu-
ally employ either unidirectional or bidirectional
attention to tackle this issue (Seo et al., 2016; Yin
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et al., 2016; Xiong et al., 2017; Yu et al., 2018).
We opt for a simple method based on a single
alignment matrix similar to Hu et al. (2014) as de-
scribed below.

Let t(e) be the concatenation of e’s text con-
tent and text attributes of e, trimmed to 10 tokens.
We construct a matrix A(c, e) where each entry
Aij(c, e) is the dot product between the embed-
dings of the ith token of c and the jth token of
t(e). Then we apply two convolutional layers of
size 3×3 on the matrix, apply a max-pooling layer
of size 2 × 2, concatenate a tag embedding, and
then apply a linear layer on the result to get a 10-
dimensional vector h(c, e).

We apply a final linear layer on h(c, e) to com-
pute a scalar score, and then train on the same
objective function as the encoding-based model.
To incorporate context, we simply concatenate the
four vectors h(c, nd(e)) of the neighbors nd(e) to
the final linear layer input.

4 Experiments

We evaluate the models on accuracy, the fraction
of examples that the model selects the correct el-
ement. We train the neural models using Adam
(Kingma and Ba, 2014) with initial learning rate
10−3, and apply early stopping based on the devel-
opment set. The models can choose any element
that is visible on the page at rendering time.

The experimental results are shown in Table 2.
Both neural models significantly outperform the
retrieval model.

4.1 Ablation analysis

To measure the importance of each type of infor-
mation in web pages, we perform an ablation study
where the model does not observe one of the fol-
lowing aspects of the elements: text contents, at-
tributes, and spatial context.

Unsurprisingly, the results in Table 2 show that
text contents are the most important input signal.
However, attributes also play an important role in
both the embedding and alignment models. Fi-
nally, while spatial context increases alignment
model performance, the gain is very small, sug-
gesting that incorporating appropriate contexts to
the model is a challenging task due to the variety
in the types of context, as well as the sparsity of
the signals.

Model Accuracy (%)
retrieval 36.55
embedding 56.05

no texts 23.62
no attributes 55.43
no spatial context 58.87

alignment 50.74
no texts 15.94
no attributes 48.51
no spatial context 50.66

Table 2: Accuracies of the models and their ablations.

Error Type Embed Align
Fail to match strings 26.8% 11.6%
Incorrectly match strings 3.8% 14.2%
Fail to understand paraphrases 8.9% 7.9%
Fail to understand descriptions 12.1% 17.4%
Fail to perform reasoning 15.9% 13.7 %
Select a less prominent element 19.8% 24.8%
Noisy annotation 12.7% 10.5%

Table 3: Error breakdowns of the embedding and
alignment models on 100 examples. The embedding
model handles implicit descriptions well, while the
alignment model excels at string matching.

4.2 Error analysis

To get a better picture of how the models han-
dle different phenomena, we analyze the pre-
dictions of the embedding-based and alignment-
based models on 100 development examples
where at least one model made an error. The er-
rors, summarized in Table 3, are elaborated below:

Fail to match strings. Many commands simply
specify the text content of the element (e.g., “click
customised garages” → the link with text “Cus-
tomised Garages, Canopies & Carports”). The en-
coding model, which encodes the whole command
as a single vector, occasionally fails to select the
element with partially matching texts. In contrast,
the alignment model explicitly models text match-
ing, and thus is better at this type of commands.

Incorrectly match strings. Due to its reliance
on text matching, the alignment model struggles
when many elements share substrings with the
command (e.g., “shop for knitwear” when many
elements contain the word “shop”), or when an el-
ement with a matching substring is not the correct
target (e.g., “get the program”→ the “Download”
link, not the “Microsoft developer program” link).

Fail to understand descriptions. As seen in Ta-
ble 1, many commands indirectly describe the el-
ements using paraphrases, goal descriptions, or
properties of the elements. The encoding model,
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which summarizes various properties of the ele-
ments as an embedding vector, is better at han-
dling these commands than the alignment model,
but still makes a few errors on harder examples
(e.g., “please close this notice for me”→ the “X”
button with hidden text “Hide“).

Fail to perform reasoning. For the most part,
the models fail to handle relational, ordinal, or
spatial reasoning. The most frequent error mode
is when the element is a text box, and the com-
mand uses nearby label as the reference. While
a few text boxes have semantic annotations which
the model can use (e.g., tooltip or aria attributes),
many web pages do not provide such annotations.
To handle these cases, a model would have to iden-
tify the label of the text box based on logical or
visual contexts.

Other errors. Apart from the annotation noise,
occasionally multiple elements on the web page
satisfy the given command (e.g., “log in” can
match any “Sign In” button on the web page). In
these cases, the annotation usually gives the most
prominent element among the possible candidates.
To provide a natural interface for users, the model
should arguably learn to predict such prominent
elements instead of more obscure ones.

5 Related work and discussion

Mapping natural language to actions. Previ-
ous work on semantic parsing learns to perform
actions described by natural language utterances
in various environments. Examples of such ac-
tions include API calls (Young et al., 2013; Su
et al., 2017; Bordes and Weston, 2017), database
queries (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2007; Berant et al., 2013; Yih et al.,
2015), navigation (Artzi and Zettlemoyer, 2013;
Janner et al., 2018), and object manipulation
(Tellex et al., 2011; Andreas and Klein, 2015; Guu
et al., 2017; Fried et al., 2018).

For web pages and graphical user interfaces,
there are previous works on using natural language
to perform computations on web tables (Pasupat
and Liang, 2015; Zhong et al., 2017) and submit
web forms (Shi et al., 2017). Our task is similar to
previous works on interpreting instructions on user
interfaces (Branavan et al., 2009, 2010; Liu et al.,
2018). While their works focuses on learning from
distant supervision, we consider shallower interac-
tions but on a much broader domain.

Previous work also explores the reverse prob-
lem of generating natural language description of
objects (Vinyals et al., 2014; Karpathy and Fei-
Fei, 2015; Zarriaiß and Schlangen, 2017). We
hope that our dataset could also be useful for ex-
ploring the reverse task of describing actions on
web pages.

Reference games. In a reference game, the sys-
tem has to select the correct object referenced by
the given utterance (Frank and Goodman, 2012).
Previous work on reference games focuses on a
small number of objects with similar properties,
and applies pragmatics to handle ambiguous utter-
ance (Golland et al., 2010; Smith et al., 2013; Çe-
likyilmaz et al., 2014; Andreas and Klein, 2016;
Yu et al., 2017). Our task can be viewed as a refer-
ence game with several challenges: higher number
of objects, diverse object properties, and the need
to interpret objects based on their contexts.

Interacting with web pages. Automated scripts
are used to interact with web elements. While
most scripts reference elements with logical selec-
tors (e.g., CSS and XPath), there have been several
alternatives such as images (Yeh et al., 2009) and
simple natural language utterances (Soh, 2017).
Some other interfaces for navigating web pages in-
clude keystrokes (Spalteholz et al., 2008), speech
(Ashok et al., 2014), haptics (Yu et al., 2005), and
eye gaze (Kumar et al., 2007).

6 Conclusion

We presented a new task of grounding natural
language commands on open-ended and semi-
structured web pages. With different methods of
referencing elements, mixtures of textual and non-
textual element attributes, and the need to prop-
erly incorporate context, our task offers a chal-
lenging environment for language understanding
with great potential for real-world applications.

Our dataset and code are available at https:

//github.com/stanfordnlp/phrasenode.
Reproducible experiments are available
on the CodaLab platform at https:

//worksheets.codalab.org/worksheets/

0x0097f249cd944284a81af331093c3579/.
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