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Abstract
In this paper, we propose a simple method
for refining pretrained word embeddings us-
ing layer-wise relevance propagation. Given
a target semantic representation one would
like word vectors to reflect, our method first
trains the mapping between the original word
vectors and the target representation using a
neural network. Estimated target values are
then propagated backward toward word vec-
tors, and a relevance score is computed for
each dimension of word vectors. Finally, the
relevance score vectors are used to refine the
original word vectors so that they are projected
into the subspace that reflects the information
relevant to the target representation. The eval-
uation experiment using binary classification
of word pairs demonstrates that the refined
vectors by our method achieve the higher per-
formance than the original vectors.

1 Introduction

The recent success of neural NLP is partially but
largely due to the development of word embedding
techniques (Goldberg, 2017). Although a consid-
erable number of studies have been made on train-
ing word embeddings from distributional informa-
tion of language (Mikolov et al., 2013; Penning-
ton et al., 2014; Bojanowski et al., 2017; Nickel
and Kiela, 2017), one recent research trend is to
refine or fine-tune pretrained word embeddings.
One promising approach is the use of other in-
formation such as multimodal information (Bruni
et al., 2014; Kiela et al., 2014; Kiela and Clark,
2015; Kiela et al., 2015a; Silberer et al., 2017) and
language resources (Faruqui et al., 2015; Faruqui
and Dyer, 2015; Kiela et al., 2015b; Rothe and
Schütze, 2017; Yu and Dredze, 2014). Other
refinement methods include task-specific embed-
dings (Bolukbasi et al., 2016; Yu et al., 2017) and
the selective use of multiple embeddings (Bolle-
gala et al., 2017; Kiela et al., 2018).

In this paper, we propose a different approach to
refining pretrained word embeddings so that word
vectors reflect the information relevant for a spe-
cific knowledge. Our method utilizes layer-wise
relevance propagation (Bach et al., 2015; Samek
et al., 2017), which has been proposed as a general
framework for decomposing predictions of mod-
ern AI systems, in particular deep learning sys-
tems. The basic idea of layer-wise relevance prop-
agation is to quantitatively measure the contribu-
tion of each fragment of an input vector (e.g., a
single pixel of an image) to the prediction as a rel-
evance score. Using relevance scores, our method
projects word vectors into the subspace that better
reflects the target knowledge. The assumption un-
derlying our approach is that the information for
any given target knowledge is contained in pre-
trained word embeddings. Our method attempts
to make the best use of the information contained
in word vectors by estimating the importance in
reflecting a target knowledge.

To the best of our knowledge, this paper is the
first to employ the technique of layer-wise rele-
vance propagation for refining word embeddings.
Our method can be applied to word vectors x
trained by any word embedding method. This im-
plies that our method does not compete with other
refinement methods, but they are complementary;
it can be used for word vectors refined by other
methods. In addition, our method can refine word
vectors for any target knowledge y, from a single
binary value to a structured representation, as long
as a function y = f(x) can be learned.

2 Method for Refining Word Vectors

Our method comprises the following three steps:
(1) it trains a prediction function from a pretrained
word vector to a target representation; (2) com-
putes a relevance score for each dimension of the
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word vector; and (3) projects word vectors into the
subspace using the relevance scores. In this sec-
tion, these three steps are explained in detail.

2.1 Training the Prediction Function

Given pairs of an input word vector x(i) to be re-
fined and a target knowledge representation y(i)

for a word w(i), the proposed method trains a func-
tion y(i) = f(x(i)). In this paper, we use a neural
network as a learning method, but other learning
methods such as linear transformation and SVM
can also be used. Note that a scalar value or a class
label can be used as a target representation y(i).

2.2 Computing Relevance Scores

This step derives an explanation of the predic-
tion in terms of input variables, namely the impor-
tance of each dimension of a word vector x(i) for
the prediction ŷ(i) = f(x(i)). In layer-wise rele-
vance propagation, the score of the correct predic-
tion ŷ

(i)
j is redistributed backward using relevance

propagation rules. By repeatedly applying prop-
agation rules, it assigns a relevance score r

(i,j)
k to

each dimension x
(i)
k of a word vector x(i). As a re-

sult, a relevance score vector r(i,j) is obtained for
each word vector x(i) and target dimension y

(i)
j .

Among a number of propagation rules (Bach
et al., 2015), we use the “alpha-beta” rule for mul-
tilayer neural networks. The relevance score R

(l)
i

of the i-th unit u(l)i in the l-th layer is a function of
upper-layer relevances R(l+1)

j defined by:

R
(l,l+1)
i←j = R

(l+1)
j ·

(
α

z+ij∑
i z

+
ij
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−
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(l)
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where x
(l)
i is an activation of the unit u(l)i , w(l,l+1)

ij

is a weight connecting u
(l)
i to u

(l+1)
j , and z+ij and

z−ij denote the positive and negative part of z(l,l+1)
ij .

As a result, relevance scores r(i,j)k of the word vec-
tor x(i) and the target dimension y

(i)
j are obtained

as relevance scores R
(1)
k of the input layer. The

parameters α and β denote the importance of pos-
itive and negative evidence for predicting a tar-
get representations and should be chosen such that
α + β = 1. In this paper, we assume that posi-

tive and negative evidence equally contributes to
the prediction and thus set α = β = 0.5.

2.3 Projecting Word Vectors into a Subspace
The basic idea of projection is that n-dimensional
word vectors are projected into m-dimensional
vectors whose relevance scores are more than or
equal to a threshold θR.

First, for a target dimension j of y, relevance
score vectors are averaged over words relevant to
the target dimension as follows:

r(j) = g2

(∑
wi∈Vj

g1(r
(i,j))

|Vj |

)
(4)

{g1(x)}i =

{
xi (xi ≥ θR1)

0 (otherwise)

{g2(x)}i =

{
xi

maxi xi
( xi
maxi xi

≥ θR2)

0 (otherwise)

where Vj is a set of words w(i) such that ŷ(i)j ≥ θT .
The functions g1 and g2 are used for downplay-
ing irrelevant dimensions. For example, the tar-
get knowledge is the property of Visually dark and
Vvisually dark is {chocolate, crow, night}. By aver-
aging relevance score vectors of these words, we
obtain the mean relevance vector r(visually dark)

that represents the importance of word vector di-
mension in predicting whether a given word has
the property of Visually dark.

Finally, using the mean relevance vector r(j),
word vectors xi is transformed into vectors z

(j)
i

of a subspace for the target dimension. This
is achieved by weighting xi by component-wise
multiplication of xi and r(j) and removing the di-
mensions of zero relevance. Formally, the projec-
tion is defined by the n by m projection matrix
T (j) as follows:

z
(j)
i = xiT

(j) (5)

T
(j)
ik =

r
(j)
i (r(j)i > 0 and it is the k-th

nonzero dimension of r(j))
0 (otherwise)

(6)

3 Evaluation Experiment

In order to justify the effectiveness of the proposed
method, we conducted an evaluation experiment
using binary classification of word pairs.

Corpus: All word vectors were trained on
the Corpus of Contemporary American English
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Domain Properties
Vision Vision, Bright, Dark, Color, Pattern, Large,

Small, Motion, Biomotion, Fast, Slow,
Shape, Complexity, Face, Body

Somatic Touch, Temperature, Texture, Weight, Pain
Audition Audition, Loud, Low, High, Sound, Music,

Speech
Gustation Taste
Olfaction Smell
Motor Head, UpperLimb, LowerLimb, Practice
Spatial Landmark, Path, Scene, Near, Toward, Away,

Number
Temporal Time, Duration, Long, Short
Causal Caused, Consequential
Social Social, Human, Communication, Self
Cognition Cognition
Emotion Benefit, Harm, Pleasant, Unpleasant, Happy,

Sad, Angry, Disgusted, Fearful, Surprised
Drive Drive, Needs
Attention Attention, Arousal

Table 1: 65 properties in Binder et al.’s (2016) dataset

(COCA), which includes 0.56G word tokens.
Words that occurred less than 30 times in the cor-
pus were ignored, resulting in the vocabulary of
108,230 words. Three context windows of size 3,
5, and 10 were used for training.

Word embedding: We used two representative
models, namely skip-gram with negative sampling
(SGNS) (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). We trained 100-, 200- and
300-dimensional word vectors from the corpus.

Target knowledge representation: We used
Binder et al.’s (2016) brain-based semantic vec-
tors of 535 words as a target representation. 1 This
representation comprises 65 properties in Table 1,
which are based entirely on functional divisions in
the human brain. Each word is represented as a
65-dimensional vector and each dimension corre-
sponds to one of these properties. Each value of
the brain-based vectors represents the salience of
the corresponding property, which is calculated as
a mean salience rating on a 7-point scale ranging
from 0 to 6. Because these properties are based on
not only perceptual properties but also a variety of
other properties such as affective, social, and cog-
nitive ones, this dataset is suitable for evaluation.

Refining word vectors: The prediction func-
tion f was trained using a three-layer neural net-
work comprising an input layer for n-dimensional
word vectors, one hidden layer with n/2 sigmoid
units, and a linear output layer. The parameters
θT , θR1 and θR2 for projection were estimated us-

1http://www.neuro.mcw.edu/semanticrepresentations.html

Bright, Dark, Color, Pattern, Large, Small, Motion,
Fast, Slow, Shape, Temperature, Texture, Weight, Loud,
Sound, Taste, Smell, Fearful

Table 2: 18 properties in CSLB dataset

ing 10-fold cross-validation and grid search. 2

Task: We used a binary classification task of
judging whether a pair of words is similar or not
with respect to each property of Table 1. For ex-
ample, night and chocolate should be judged as
similar with respect to the property of Dark, while
night and ice should be judged as dissimilar with
respect to that property. For each property, we
chose 10 words with the highest salience and 10
words with the lowest salience from the vocabu-
lary of brain-based vectors, and generated 45 high-
salience word pairs and 100 pairs of high-salience
and low-salience words. Note that we did not
consider low-score word pairs because it does not
make sense to ask whether words (e.g., peace and
wit) that do not have a property (e.g., Dark) are
similar with respect to that property.

To confirm the generality of our method, we
also generated another evaluation dataset for un-
trained words (i.e., words not included in Binder
et al.’s vocabulary) using CSLB concept property
norms of 638 words (Devereux et al., 2014). 3 Af-
ter removing words contained in Binder et al.’s vo-
cabulary, we chose properties that were closely re-
lated to Binder et al.’s properties and possessed by
at least 10 words. As a result, the generated dataset
contained 18 properties listed in Table 2, because
the property norm mainly includes perceptual and
functional properties.

Binary classification was carried out by com-
puting cosine similarity between vectors of paired
words and classifying the n highest pairs into sim-
ilar pairs. Hence, the classification performance
was measured by average precision.

4 Results

Table 3 shows mean average precisions across
65 properties for the original word embeddings
(Orig) and the refined embeddings by our method
(Refn). The asterisk indicates that the mean av-
erage precision of the refined vectors is signifi-

2The range in grid search was [3.0, 4.5] with a step size of
0.1 for θT , [0.0, 0.02n] with a step size of 0.001n for θR1 of
n hundred word vector dimension, and [0.0, 0.7] with a step
size of 0.05 for θR2 .

3https://cslb.psychol.cam.ac.uk/propnorms

http://www.neuro.mcw.edu/semanticrepresentations.html
https://cslb.psychol.cam.ac.uk/propnorms
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SGNS GloVe
win dim Orig Refn Orig Refn

10 300 75.3 78.6* 67.4 70.4*
10 200 75.9 79.3* 67.8 73.7*
10 100 76.1 77.0* 68.7 71.6*
5 300 75.4 78.8* 67.7 71.8*
5 200 75.6 79.4* 68.0 73.9*
5 100 77.2 78.3 68.9 70.1
3 300 75.5 79.3* 67.6 71.5*
3 200 76.5 77.9* 68.2 70.8*
3 100 77.4 79.0* 68.4 71.2*

Table 3: Mean average precision for Binder et al.’s
(2016) dataset

Figure 1: A scatterplot of average precision of the orig-
inal versus refined vectors for 65 properties in the case
of SGNS with win= 5 and dim= 200. The diagonal
reference line y = x indicates that the original and re-
fined vectors have equal precision.

cantly higher than that of the original vectors by
Wilcoxon signed-rank test (p< .05). For all word
embeddings, the refined vectors achieved higher
mean average precision than the original ones.
Furthermore, in almost all cases, the improvement
is statistically significant. This result demonstrates
that the proposed method is successful in refining
word embeddings so that vector similarity better
reflects the target knowledge.

Figure 1 depicts the difference of average pre-
cision between the original word vectors and the
refined vectors for each target property. Most of
the properties are plotted above the diagonal ref-
erence line, indicating that these properties are
better represented by the refined vectors. Note

SGNS GloVe
win dim Orig Refn Orig Refn

10 300 57.9 60.4* 56.8 58.5
10 200 58.0 59.3 56.3 56.6
10 100 58.8 58.3 55.9 56.0
5 300 58.8 61.1* 56.4 59.3*
5 200 58.5 62.6* 55.6 56.8
5 100 58.9 60.9 56.5 55.5
3 300 58.5 58.8 55.2 55.6
3 200 58.9 59.3 54.5 54.1
3 100 59.3 58.8 53.5 54.4

Table 4: Mean average precision for CSLB property
norm dataset

that properties plotted below the diagonal line, for
which refined word vectors yielded lower preci-
sion than the original vectors, are sensorimotor or
spatiotemporal properties. This result is consis-
tent with Utsumi’s (2018) finding that these kinds
of knowledge are less likely to be encoded in word
vectors.

Table 4 shows the result of binary classification
for CSLB property norm dataset. In most cases,
the refined vectors of untrained words also yielded
better performance than the original vectors. In
some cases, however, refinement did not improve
the performance. One of the reasons for this fail-
ure would be that a small set of vocabulary words
in Binder et al.’s (2016) dataset is not enough for
the subspace to generalize to untrained words.

To confirm whether the projected subspace bet-
ter reflects the target knowledge than the original
space, we visualize both spaces using MDS in Fig-
ure 2. Although all 535 words are embedded into
the two-dimensional space, Figure 2 only shows
words used in binary classification task, namely
words with the 10 highest salience (denoted by
red dots) and 20 lowest salience for a given prop-
erty. As shown in Figure 2, our method refines the
vectors of salient words to be more similar in the
subspace, while preserving the other similarity of
words.

5 Related Work

Prior work on word embedding refinement can
be classified into general purpose refinement and
specific target refinement. Many existing stud-
ies have attempted to refine word vectors to im-
prove the performance of general-purpose simi-
larity computation. These studies generally re-
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(a) Property Dark

(b) Property Time

(c) Property Pleasant

Figure 2: Two-dimensional MDS visualization of the
original space (trained by SGNS with win= 5 and
dim= 200) and the projected subspace (θT = 3.0,
θR1

= 0.026 and θR2
= 0.10). Left: Original space,

Right: Projected subspace

fine word vectors by solving an optimization prob-
lem whose objective function reflects the simi-
larity obtained by language resources, such as
WordNet (Faruqui et al., 2015; Yu and Dredze,
2014; Rothe and Schütze, 2017), Freebase (Rothe
and Schütze, 2017), Paraphrase Database (Faruqui
et al., 2015; Yu and Dredze, 2014), free associ-
ation norm (Kiela et al., 2015b), and dictionary
(Wang et al., 2015). Our method differs from them
in that it is proposed for specific target refinement.
In other words, the refined vectors by general pur-
pose refinement method can be further refined to
extract a specific knowledge by our method.

Most prior studies for specific purpose refine-
ment propose a method specialized for a specific
task such as sentiment analysis (Labutov and Lip-
son, 2013; Tang et al., 2016; Yu et al., 2017) and
lexical entailment (Mrkšić et al., 2016; Vulić and
Mrkšić, 2018). On the other hand, our method

refines word vectors for a specific knowledge or
task, but it is not specialized for a knowledge or
task.

Rothe et al. (2016) and Rothe and Schütze
(2016) are conceptually similar to our approach;
their method refines word vectors for a specific
knowledge but it is not specialized for a certain
task. The merit of our method is that any types of
representation can be used as a target, while their
method is limited to binary labels. Furthermore,
while their method learns an orthogonal transfor-
mation of pretrained word vectors by directly op-
timizing the objective function, our method can
project word vectors to a subspace independent of
training method for a prediction function.

6 Conclusion

In this paper, we propose a method for refin-
ing pretrained word vectors using layer-wise rele-
vance propagation. We demonstrated that the pro-
posed method can refine word vectors so that they
better reflect the target knowledge. One of our mo-
tivation is to make embeddings more interpretable
and useful. In other studies (Utsumi, 2015, 2018),
we have analyzed the internal knowledge encoded
in text-based word embeddings, while this study is
the first step toward a general method for utilizing
the internal knowledge of word embeddings.

In future work, we have to modify the refine-
ment method by relevance propagation to be more
effective by exploring the mechanism of how the
internal knowledge of word vectors is extracted by
multilayer neural networks and examining the ef-
fectiveness of other relevance propagation meth-
ods. It would also be vital for future work to ex-
plore efficient combinations with other refinement
methods using language resources.
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