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Abstract
Recently, there has been a surge of interest
in reading comprehension-based (RC) ques-
tion answering (QA). However, current ap-
proaches suffer from an impractical assump-
tion that every question has a valid answer in
the associated passage. A practical QA system
must possess the ability to determine whether
a valid answer exists in a given text passage.
In this paper, we focus on developing QA sys-
tems that can extract an answer for a question
if and only if the associated passage contains
an answer. If the associated passage does not
contain any valid answer, the QA system will
correctly return Nil. We propose a nil-aware
answer span extraction framework that is ca-
pable of returning Nil or a text span from the
associated passage as an answer in a single
step. We show that our proposed framework
can be easily integrated with several recently
proposed QA models developed for reading
comprehension and can be trained in an end-
to-end fashion. Our proposed nil-aware an-
swer extraction neural network decomposes
pieces of evidence into relevant and irrelevant
parts and then combines them to infer the ex-
istence of any answer. Experiments on the
NewsQA dataset show that the integration of
our proposed framework significantly outper-
forms several strong baseline systems that use
pipeline or threshold-based approaches.

1 Introduction

Machine comprehension (MC) systems mimic the
process of reading comprehension (RC) by an-
swering questions after understanding natural lan-
guage text. Several datasets and resources have
been developed recently. Richardson et al. (2013)
developed a small-scale multiple-choice question
answering (QA) dataset. Hermann et al. (2015)
created a large cloze-style MC dataset based on
CNN and Daily Mail news article summaries.
However, Chen et al. (2016) reported that the

task is not challenging enough and hence, ad-
vanced models had to be evaluated on more real-
istic datasets. Subsequently, SQuAD (Rajpurkar
et al., 2016) was released, where, unlike previ-
ous datasets, the answers to different questions can
vary in length.

In previous datasets, questions and answers are
formulated given text passages. Hence, a valid an-
swer can always be found in the associated pas-
sage for every question created. Trischler et al.
(2017) proposed a more challenging and realis-
tic dataset, NewsQA, where the questions were
formed using CNN article summaries without ac-
cessing the original full texts. As such, some ques-
tions have no valid answers in the associated pas-
sages (referred to as nil questions).

Recently, several neural models for answer span
extraction have been proposed (Wang and Jiang,
2017; Seo et al., 2017; Yang et al., 2017; Xiong
et al., 2017; Weissenborn et al., 2017; Wang et al.,
2017; Shen et al., 2017b; Chen et al., 2017; Kundu
and Ng, 2018). However, none of the models
considered nil questions, although it is crucial for
a practical QA system to be able to determine
whether a text passage contains a valid answer for
a question. In this paper, we focus on develop-
ing QA systems that extract an answer for a ques-
tion if and only if the associated passage contains
a valid answer. Otherwise, they are expected to re-
turn Nil as answer. We propose a nil-aware answer
extraction framework which returns Nil or a span
of text as answer, when integrated with end-to-
end neural MC models. Our proposed framework
is based on evidence decomposition-aggregation,
where the evidence vectors derived by a higher
level encoding layer are first decomposed into rel-
evant and irrelevant components and later aggre-
gated to infer the existence of a valid answer. In
addition, we develop several baseline models with
pipeline and threshold-based approaches. In a
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pipeline model, detection of nil questions is car-
ried out separately before answer span extraction.
In a threshold-based model, the answer span ex-
traction model is entirely trained on questions that
have valid answers, and Nil is returned based on a
confidence threshold.

The contributions of this paper are as follows:
(1) We propose a nil-aware answer span extraction
framework to return Nil or an exact answer span to
a question, in a single step, depending on the exis-
tence of a valid answer. (2) Our proposed frame-
work can be readily integrated with many recently
proposed neural machine comprehension models.
In this paper, we extend four machine comprehen-
sion models, namely BiDAF (Seo et al., 2017), R-
Net (Wang et al., 2017), DrQA (Chen et al., 2017),
and AMANDA (Kundu and Ng, 2018), with our
proposed framework, and show that they achieve
significantly better results compared to the corre-
sponding pipeline and threshold-based models on
the NewsQA dataset.

2 Task Definition

Given a passage and a question, we propose mod-
els that can extract an answer if and only if the
passage contains an answer. When the passage
does not contain any answer, the models return
Nil as the answer. A valid answer is denoted as
two pointers in the passage, representing the start
and end tokens of the answer span. Let P be a
passage with tokens (P1,P2, . . . ,PT ) and Q be a
question with tokens (Q1,Q2, . . . ,QU ), where T
and U are the length of the passage and question
respectively. A system needs to determine whether
the answer is Nil or comprises two pointers, b and
e, such that 1 ≤ b ≤ e ≤ T .

3 Proposed Framework

In this section, we first describe our proposed ev-
idence decomposition-aggregation framework for
nil-aware answer extraction. Then, we provide a
detailed description of how we extend a state-of-
the-art model AMANDA (Kundu and Ng, 2018)
to NAMANDA1 (nil-aware AMANDA). We also
provide brief descriptions of how we integrate our
proposed framework with the other three models.

1Our source code is available at https://github.
com/nusnlp/namanda

3.1 Nil-Aware Answer Extraction

Decomposition of lexical semantics over sen-
tences has been successfully used in the past for
sentence similarity learning (Wang et al., 2016).
Most of the recently proposed machine reading
comprehension models can be generalized based
on a common pattern observed in their network ar-
chitecture. They have a question-passage joint en-
coding layer (also known as question-aware pas-
sage encoding layer) followed by an evidence en-
coding layer. In this work, we decompose the
evidence vectors for each passage word obtained
from the evidence encoding layer with respect to
question-passage joint encoding vectors to derive
semantically relevant and irrelevant components.
We decompose the evidence vectors for each pas-
sage word, because passage vectors can be par-
tially supported by the corresponding question-
passage joint encoding vectors, and based on the
level of support, it either increases or decreases the
chance of finding a valid answer. When we aggre-
gate the orthogonally decomposed evidence vec-
tors, it combines both the supportive and unsup-
portive pieces of evidence for a particular passage
word. To obtain the most impactful portions, we
perform a max-pooling operation over all the ag-
gregated vectors. The resulting vector is denoted
as the Nil vector. As the training set contains both
nil questions (with no valid answers) and non-nil
questions (with valid answers), the model auto-
matically learns when to pool unsupportive (for nil
questions) and supportive (for non-nil questions)
portions to construct the Nil vector. In this way,
the model is able to induce a strong bias towards
the nil pointer when there is no answer present due
to the dominance of unsupportive components in
the nil vector.

The proposed method in Wang et al. (2016) was
developed for sentence similarity learning tasks,
such as answer sentence selection. They decom-
pose an answer sentence with respect to a ques-
tion and vice versa. The decomposed vectors are
then aggregated to obtain a single vector which is
used to derive the similarity score. Although our
proposed method (developed for the more com-
plex task of answer span extraction) is inspired
from the idea of lexical decomposition and com-
position, one major difference is that we decom-
pose the evidence vectors with respect to question-
passage joint encoding vectors. Another important
advance is how it is adopted to return nil or a span

https://github.com/nusnlp/namanda
https://github.com/nusnlp/namanda
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Figure 1: Overview of the architecture of Nil-aware AMANDA (NAMANDA).

of text from the passage in a single step.

3.2 Nil-Aware AMANDA
The architecture of Nil-aware AMANDA (NA-
MANDA) is given in Figure 1.

3.2.1 Embeddings
To obtain the embeddings, we concatenate word
and character-level embedding vectors. We use
pre-trained vectors from GloVe (Pennington et al.,
2014) for word-level embeddings. For character
embeddings, a trainable character-based lookup
table is used followed by a convolutional neural
network (CNN) and max-pooling (Kim, 2014).

3.2.2 Sequence Encoding
We use bi-directional LSTM (BiLSTM) (Hochre-
iter and Schmidhuber, 1997) on the embedding
vectors to incorporate contextual information. We
represent the outputs as D ∈ RT×H and Q ∈
RU×H for passage and question respectively. H
is the number of hidden units of the BiLSTMs.

3.2.3 Similarity Matrix
The similarity matrix is obtained by computing
the dot product of passage and question sequence-
level encoding vectors. The similarity matrix A ∈
RT×U can be expressed as A = D Q>, where
Ai,j is the similarity between the ith passage word
and the jth question word.

3.2.4 Question Formulation

To aggregate the most relevant parts of the ques-
tion, column-wise maximum values of A are nor-
malized using a softmax function to obtain k ∈
RU . Then, the question vectors in Q are aggre-
gated by qma = k Q. The question type informa-
tion is incorporated via qf ∈ R2H , by concatenat-
ing the sequence-level question encoding vectors
of the first wh-word qtwh

and its following word
qtwh+1. It can be given as qf = qtwh

|| qtwh+1,
where || denotes the concatenation operation. The
set of wh-words we used is {what, who, how,
when, which, where, why}. The final question rep-
resentation, q̃ ∈ RH , is formulated by applying a
feed-forward neural network on the concatenated
representation of qma and qf .

3.2.5 Question-Passage Joint Encoding

In this step, we jointly encode the passage and
question. We apply a row-wise softmax func-
tion on A to obtain R ∈ RT×U . Now, for all
the passage words, the aggregated question rep-
resentation G ∈ RT×H is computed by G =
R Q. The aggregated question vectors corre-
sponding to the passage words are then concate-
nated with the sequence-level passage vectors to
obtain S ∈ RT×2H . We apply another BiLSTM to
obtain a combined representation V ∈ RT×H .
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3.2.6 Evidence Decomposition-Aggregation
First, multi-factor self-attentive encoding is ap-
plied to accumulate evidence from the entire pas-
sage. The use of multiple factors while calculating
self attention helps to obtain meaningful informa-
tion from a long context with fine-grained infer-
ence. Ifm represents the number of factors, multi-
factor attention F[1:m] ∈ RT×m×T is formulated
as:

F[1:m] = V W
[1:m]
f V> , (1)

where W
[1:m]
f ∈ RH×m×H is a 3-way tensor.

Now, to refine the evidence, a max-pooling oper-
ation is performed on F[1:m] over the number of
factors, resulting in the self-attention matrix F ∈
RT×T . We normalize F by applying a row-wise
softmax function, resulting in F̃ ∈ RT×T . Now
the self-attentive encoding M ∈ RT×H can be
given as M = F̃ V. The self-attentive encoding
vectors are then concatenated with the question-
dependent passage word encoding vectors (V),
and a feed-forward neural network-based gating is
applied to control the overall impact, resulting in
Y ∈ RT×2H .

Then we decompose the evidence vector for ev-
ery passage word with orthogonal decomposition.
Each row of Y, yt ∈ R2H , is decomposed into
its parallel and perpendicular components with re-
spect to the corresponding question-passage joint
encoding (S) vector, st ∈ R2H . The parallel com-
ponents represent the relevant parts of the accu-
mulated evidence and the orthogonal components
represent the irrelevant counterparts. If the paral-
lel component of yt is represented as y=

t ∈ R2H

and the perpendicular component is represented as
y⊥t ∈ R2H , then

y=
t =

yt s
>
t

st s>t
st (2)

y⊥t = yt − y=
t (3)

Similarly, we derive the parallel and orthogonal
vectors for all the passage words. We denote par-
allel components with Y= ∈ RT×2H and perpen-
dicular components with Y⊥ ∈ RT×2H .

In the aggregation step, the parallel and orthog-
onal components are fed to a feed-forward linear
layer. Ya ∈ RT×H denotes the output of the lin-
ear layer and ya

t ∈ RH is its tth row:

ya
t = tanh(y=

t Wa + y⊥t Wa + ba) , (4)

where Wa ∈ R2H×H and ba ∈ RH are the weight
matrix and bias vector respectively. Then we ap-
ply a max-pooling operation over all the words
to obtain the Nil vector representation denoted as
n̂. Now we derive the score for the Nil pointer
which will be shared for normalizing the begin-
ning and ending pointers later. The Nil pointer
score is given as:

ns = n̂w>n , (5)

where wn ∈ RH is a learnable weight vector.

3.2.7 Nil-Aware Pointing
Two stacked BiLSTMs are used on top of Y to de-
termine the beginning and ending pointers. Let the
hidden unit representations of these two BiLSTMs
be B ∈ RT×H and E ∈ RT×H . We measure the
similarity scores between the previously derived
question vector q̃ and the contextual encoding vec-
tors in B and E. If sb ∈ RT and se ∈ RT are the
scores for the beginning and ending pointers, then

sb = q̃ B> , se = q̃ E> (6)

We prepend the nil score ns to sb and se for shared
normalization. The updated scores ŝb ∈ RT+1 and
ŝe ∈ RT+1 can be represented as:

ŝb = [ns, sb] , ŝe = [ns, se] (7)

The beginning and ending pointer probability
distributions for a given passage P and a question
Q is given as:

Pr(b | P,Q) = softmax(ŝb)

Pr(e | P,Q) = softmax(ŝe) (8)

The joint probability distribution for answer a is
given as:

Pr(a | P,Q) = Pr(b | P,Q) Pr(e | P,Q) (9)

For training, we minimize the cross entropy loss
summing over all training instances. During pre-
diction, we select the locations in the passage for
which the product of Pr(b) and Pr(e) is maxi-
mized, where 1 ≤ b ≤ e ≤ T + 1. If the value of
b is 1, we assign the answer as Nil.

3.3 Nil-Aware DrQA
We extend DrQA (Chen et al., 2017) to NDrQA
by integrating our proposed nil-aware answer ex-
traction framework. In DrQA, the embeddings
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of passage tokens consist of pretrained word vec-
tors from Glove, several syntactic features, and
passage-question joint embedding (aligned ques-
tion embedding). The syntactic features include
exact match of passage words with question in sur-
face, lowercase, and lemma form. They also used
part-of-speech tags, named entity tags, and term
frequency values for each passage word. Sub-
sequently, a stack of BiLSTMs is used for en-
coding. The outputs of the stacked BilSTMs are
used as evidence vectors to help extract the an-
swer span. We decompose those stacked BiL-
STM output vectors with respect to the passage
embedding and generate the nil pointer score as
given in Eqs (2–5). The question vector formula-
tion in DrQA is performed by applying a stack of
BilSTMs on question embedding. The nil-aware
pointing mechanism is the same as that given in
Section 3.2.7 except an additional bi-linear term is
used for each sb and se in Eq (6).

3.4 Nil-Aware R-Net
In R-Net (Wang et al., 2017), after embedding
and encoding of the passage and question words,
a gated recurrent network is used to obtain the
question-passage joint representation. Subse-
quently, a self-matching attentive encoding is used
to accumulate evidence from the entire passage.
In the output layer, an answer recurrent pointer
network is used to predict the boundary of an an-
swer span. To extend R-Net to nil-aware R-Net
(NR-Net), we decompose the output vectors of the
self-matching layer with respect to the question-
passage joint encoding vectors, and then aggregate
them to obtain the nil pointer score as illustrated in
Eqs (2–5). In the output layer, we combine the nil
pointer score to the beginning and ending pointer
unnormalized scores, and jointly normalize them
using softmax function as given in Eqs (7–8).

3.5 Nil-Aware BiDAF
In BiDAF (Seo et al., 2017), an attention flow
layer is used to jointly encode the passage and
question. Then, a modeling layer is used to cap-
ture the interaction among the question-aware pas-
sage vectors. The output of the modeling layer
serves as evidence to help extract the answer span
in the output layer. To extend the BiDAF model to
nil-aware BiDAF (NBiDAF), we decompose the
output of the modeling layer with respect to the
question-passage joint encoding vectors, and then
aggregate them to derive the nil pointer score (sim-

ilar to Eqs (2–5). Similar to the other nil-aware
models, we concatenate the nil pointer score to
the start and end pointer unnormalized scores de-
rived in the output layer, and then jointly normal-
ize them.

4 Baseline Models

For comparison, we propose two types of baseline
approaches for nil-aware answer extraction.

4.1 Pipeline Approach

Here, two models are used in a pipeline:
Nil detector: Given a pair of passage and ques-

tion, a nil detector model determines whether a
valid answer is present in the passage.

Answer span extractor: If the nil detector
model predicts the presence of a valid answer, the
answer span extractor then extracts the answer.

For nil detection, we developed a logistic re-
gression (LR) model with manually defined fea-
tures and four neural models. For the LR model,
we extract four different features which capture
the similarity between a passage and a question.
Let P be the passage and Q be the question (con-
sisting of U ′ tokens excluding stop words). If
f(P, Qi) is the frequency of the ith question word
in passage P , then the first feature η is defined as:

η =
U ′∑
i=1

log(1 + f(P,Qi)) (10)

The second feature is the same as η, except that
the lemma form is considered for both passage and
question tokens instead of the surface form. Addi-
tionally, we include word overlap count features in
both surface and lemma forms.

We also develop several advanced neural net-
work architectures for nil detection. After em-
bedding (the same as Section 3.2.1), we apply
sequence-level encoding with either BiLSTM or
CNN. For CNN, we use equal numbers of un-
igram, bigram, and trigram filters and the out-
puts are concatenated to obtain the final encoding.
Next, we apply either global max-pooling (MP)
or attentive pooling (AP) over all the sequence
vectors to obtain an aggregated vector represen-
tation. Let the sequence encoding of a passage be
Pnd ∈ RT×H , and pnd

t be the tth row of Pnd.
The aggregated vector p̃nd ∈ RH for AP can be
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obtained as:

andt ∝ exp(pnd
t w>) (11)

p̃nd = andPnd , (12)

where w ∈ RH is a learnable vector. Similarly, we
derive the aggregated question vector q̃nd. For nil
detection, we compute the similarity score (snd)
between the aggregated vectors:

snd = sigmoid(p̃nd q̃
>
nd) (13)

We experimented with four state-of-the-art an-
swer span extractor models, namely BiDAF (Seo
et al., 2017), R-Net (Wang et al., 2017), DrQA
(Chen et al., 2017), and AMANDA (Kundu and
Ng, 2018). Note that the answer extraction mod-
els are trained entirely on passage-question pairs
which always have valid answers.

4.2 Threshold-Based Approach
Here, we do not use any nil questions to train the
neural answer span extraction model. This ap-
proach assumes that when there is a valid answer,
the probability distributions of the beginning and
ending pointers will have lower entropy. This re-
sults in a higher maximum joint probability of the
beginning and ending pointers. In contrast, when
an answer is not present in the associated passage,
the output probability distributions have higher en-
tropy, resulting in a lower value of maximum joint
probability. We set the maximum joint probabil-
ity threshold based on the best Nil F1 score on the
nil questions in the development set. Now, for a
given test passage and question, we first compute
the maximum of all the joint probabilities associ-
ated with all the answer spans. Let aspan be the
answer span with highest joint probability pmax.
We assign the final answer as follows:

answer =

{
Nil, if pmax ≤ threshold
aspan, otherwise

(14)

5 Experiments

5.1 Experimental Settings
We use the NewsQA dataset with nil questions
(Trischler et al., 2017) in our experiments. Its
training, development, and test sets consist of
10,938, 638, and 632 passages respectively and
every passage is associated with some questions.
In each subset, there are some questions which

Dataset #Passages #Questions

Train NewsQA 10,938 92,549
+Nil Qs 107,673

Dev NewsQA 638 5,166
+Nil Qs 5,988

Test NewsQA 632 5,126
+Nil Qs 5,971

Table 1: Statistics of the NewsQA dataset.

have no answers in the corresponding associated
passages (i.e., the nil questions). The detailed
statistics of the dataset are given in Table 1.

We compute exact match (EM) and F1 score for
questions with valid answers. For questions with-
out any valid answers, we compute Nil precision,
recall, and F1 scores as follows:

Nil precision = #Correctly predicted Nil
#predicted Nil (15)

Nil recall = #Correctly predicted Nil
#Nil questions (16)

Nil F1 = 2× Nil precision ×Nil recall
Nil precision+Nil recall (17)

To compute the overall EM and F1 scores, we con-
sider Nil as correct for the questions which do not
have any valid answers. All evaluation scores re-
ported in this paper are in %.

All the neural network models are implemented
in PyTorch2. We use the default hyper-parameters
for all the answer span extractor models. We use
the open source implementation of DrQA3. We
use a third party implementation of R-Net4 whose
performance is very similar to the original scores.
We reimplemented BiDAF5 and AMANDA6 to
easily integrate our proposed nil-aware answer ex-
traction framework and make the training faster.
We integrate the nil-aware answer span extraction
framework with each model keeping all the hyper-
parameters unchanged. For nil-detection models,
we use the same settings as (N)AMANDA. We
use 300 hidden units for BiLSTMs and a total of
300 filters for the CNN-based models. We use
dropout (Srivastava et al., 2014) with probability
0.3 for every trainable layer. We use binary cross-
entropy loss and the Adam optimizer (Kingma and
Ba, 2015) for training the nil-detection models.

2http://pytorch.org
3https://github.com/facebookresearch/DrQA
4https://github.com/HKUST-KnowComp/

MnemonicReader/blob/master/r_net.py
5Our implementation gives 3% lower F1 score compared

to the reported results in Seo et al. (2017) on the SQuAD
development set.

6Our implementation gives 0.5% higher F1 score com-
pared to the reported scores in Kundu and Ng (2018) on the
NewsQA test set.

https://github.com/HKUST-KnowComp/MnemonicReader/blob/master/r_net.py
https://github.com/HKUST-KnowComp/MnemonicReader/blob/master/r_net.py
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Answer
Extractor

Nil
Detector

Test Set
(w/o Nil Questions)

Test Set
(with Nil Questions)

EM F1 Nil
Precision

Nil
Recall

Nil
F1

Overall
EM

Overall
F1

BiDAF

- 42.5 57.5 - - - 36.5 49.4
LR 39.6 53.2 33.1 28.9 30.9 38.1 49.7
MP-BiLSTM 40.1 54.2 52.5 48.3 50.3 41.3 53.4
MP-CNN 42.3 57.2 73.8 15.0 24.9 38.4 51.2
AP-BiLSTM 40.5 54.7 55.3 47.5 51.1 41.5 53.7
AP-CNN 40.1 54.3 50.8 39.9 44.7 40.1 52.3

NBiDAF 40.8 54.7 48.0 59.6 53.2 43.5 55.4

R-Net

- 49.9 64.0 - - - 42.8 54.8
LR 46.4 58.8 33.1 28.9 30.9 43.9 54.6
MP-BiLSTM 47.3 60.3 52.5 48.3 50.3 47.5 58.6
MP-CNN 49.7 63.6 73.8 15.0 24.9 44.8 56.7
AP-BiLSTM 47.6 60.7 55.3 47.5 51.1 47.6 58.8
AP-CNN 47.2 60.4 50.8 39.9 44.7 46.2 57.5

NR-Net 47.0 60.8 53.6 57.6 55.5 48.5 60.3

DrQA

- 50.0 64.0 - - - 42.9 54.8
LR 46.3 58.8 33.1 28.9 30.9 43.8 54.6
MP-BiLSTM 47.1 60.2 52.5 48.3 50.3 47.3 58.5
MP-CNN 49.6 63.5 73.8 15.0 24.9 44.7 56.7
AP-BiLSTM 47.4 60.6 55.3 47.5 51.1 47.4 58.8
AP-CNN 47.0 60.2 50.8 39.9 44.7 46.0 57.3

NDrQA 48.5 61.8 53.5 57.2 55.3 49.8 61.1

AMANDA

- 49.2 64.2 - - - 42.2 55.1
LR 45.4 58.8 33.1 28.9 30.9 43.1 54.5
MP-BiLSTM 46.2 60.2 52.5 48.3 50.3 46.5 58.5
MP-CNN 48.3 63.3 73.8 15.0 24.9 43.6 56.5
AP-BiLSTM 46.3 60.6 55.3 47.5 51.1 46.5 58.7
AP-CNN 45.9 60.0 50.8 39.9 44.7 45.1 57.1

NAMANDA 48.6 62.2 57.1 56.7 56.9 49.7 61.5

Table 2: Performance Comparison with pipeline approaches on the NewsQA test set.

5.2 Results

Tables 2 and 3 compare results of the nil-aware an-
swer span extractor models with several pipeline
and threshold-based models, respectively. We also
include the results of four standalone answer span
extraction models on the test set without nil ques-
tions. Table 2 shows that the end-to-end nil-aware
models achieve the highest overall EM and F1
scores compared to all the corresponding pipeline
systems. Note that the MP-BiLSTM nil detection
model achieves higher Nil F1 scores compared
to LR and MP-CNN. This is because BiLSTM
is able to capture long-range contextual informa-
tion to infer the existence of valid answers. Fur-
thermore, AP-based models perform better com-
pared to MP-based models as the attention mech-
anism used in AP-based models inherently iden-
tifies important contextual information. Due to
this, the performance gap between AP-CNN and
AP-BiLSTM is lower than the performance gap
between MP-CNN and MP-BiLSTM. In addition
to achieving higher Nil F1 score than the strong
nil detection baseline systems, nil-aware models

manage to achieve competitive scores compared to
the corresponding standalone answer span extrac-
tors on the test set where there are no nil questions.

Table 3 shows that the nil-aware models outper-
form the corresponding threshold-based models.
Note that all four answer span extraction models,
when used in a threshold-based approach for nil
detection, produce low Nil precision and relatively
higher Nil recall. The low precision significantly
degrades performance on the test set without nil
questions. These models often return Nil since it
is critical to find suitable values for the required
threshold. This is because NewsQA passages are
often very long and as a result, probability distri-
butions with higher entropy for answer pointer se-
lection lead to irregular maximum joint probabil-
ity threshold values.

We perform statistical significance tests using
paired t-test and bootstrap resampling. Perfor-
mances of all the nil-aware models (in terms of
overall EM and F1) are significantly better (p <
0.01) than the corresponding best pipeline models
and threshold-based approaches.
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Answer
Extractor

Nil Answer
Handling

Test Set
(w/o Nil Questions)

Test Set
(with Nil Questions)

EM F1 Nil
Precision

Nil
Recall

Nil
F1

Overall
EM

Overall
F1

BiDAF No 42.5 57.5 - - - 36.5 49.4
Yes 37.9 48.3 25.8 60.2 36.1 41.0 50.0

NBiDAF 40.8 54.7 48.0 59.6 53.2 43.5 55.4

R-Net No 49.9 64.0 - - - 42.8 54.8
Yes 45.3 54.7 25.5 53.6 34.6 46.5 54.5

NR-Net 47.0 60.8 53.6 57.6 55.5 48.5 60.3

DrQA No 50.0 64.0 - - - 42.9 54.8
Yes 40.8 48.1 23.1 68.0 34.5 44.6 51.0

NDrQA 48.5 61.8 53.5 57.2 55.3 49.8 61.1

AMANDA No 49.2 64.2 - - - 42.2 55.1
Yes 42.2 51.3 24.0 59.5 34.2 44.6 52.5

NAMANDA 48.6 62.2 57.1 56.7 56.9 49.7 61.5

Table 3: Performance comparison with threshold-based approaches on the NewsQA test set.

5.3 Analysis
For better understanding, we present further ex-
periments and analysis of one of the proposed
models, NAMANDA.

In addition to linear aggregation, we experiment
with BiLSTM-based and CNN-based aggregation
models. When we use BiLSTM aggregation, Eq.
(4) is modified to ya

t = h=
t + h⊥t , where

h=
t = BiLSTM(y=

t ,h
=
t−1,h

=
t+1) (18)

h⊥t = BiLSTM(y⊥t ,h
⊥
t−1,h

⊥
t+1)

We use equal numbers of unigram, bigram, and tri-
gram filters for CNN-based aggregation. Similar
to BiLSTM-based aggregation, we add the CNN
outputs for Y= and Y⊥. Table 4 shows that linear
aggregation achieves the highest overall F1 score
despite using the least number of parameters.

Table 5 shows the results of NAMANDA on the
NewsQA development set when different compo-
nents are removed such as character embeddings,
question-passage joint encoding, and the second
LSTM for the answer-ending pointer. When
question-passage joint encoding is removed, self-
attentive encoding is formed as well as decom-
posed with respect to sequence-level passage en-
coding. When we remove the second LSTM for
the answer-ending pointer, a feed-forward net-
work is used instead. It is clear from Table 5
that question-passage joint encoding has the high-
est impact.

Figure 2(a) and Figure 2(b) show the results of
NAMANDA on different question (excluding the
stop words) and passage lengths respectively on
the NewsQA development set. With increasing
question length, the Nil F1 score also improves.

Aggregation
Model

w/o Nil with Nil
EM
(F1)

Nil Prec/
Rec (F1)

Overall
EM (F1)

BiLSTM 47.6
(60.9)

56.5/53.5
(55.0)

48.4
(59.9)

CNN 46.2
(60.0)

52.7/54.5
(53.6)

47.3
(59.2)

Linear
(NAMANDA)

47.8
(60.5)

51.2/57.2
(54.0)

49.1
(60.0)

Table 4: Effect of different aggregation models on
the NewsQA dev set.

Model w/o Nil with Nil
EM
(F1)

Nil Prec/
Rec (F1)

Overall
EM (F1)

– character
embeddings

46.3
(59.2)

51.9/54.1
(53.0)

47.4
(58.5)

– q-passage
joint encoding

32.5
(43.9)

41.4/58.8
(48.6)

36.1
(45.9)

– second
LSTM

47.6
(60.3)

56.7/51.0
(53.7)

48.0
(59.0)

NAMANDA 47.8
(60.5)

51.2/57.2
(54.0)

49.1
(60.0)

Table 5: Ablation studies on the NewsQA dev set.

This is because with more information in a ques-
tion, it becomes easier to detect whether the asso-
ciated passage contains a valid answer. Increasing
Nil F1 scores also help to improve the overall F1
scores. However, the overall F1 score degrades
with increasing length of the associated passage.
When the associated passage is long, it is difficult
for the answer span extractor to extract an answer
for a question which has a valid answer, due to the
increasing amount of potentially distracting infor-
mation. The Nil F1 scores remain similar for pas-
sages consisting of not more than 1,200 tokens.
Beyond that, the Nil F1 score degrades a little
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(a) (b)

Figure 2: Results for different (a) question and (b)
passage lengths on NewsQA dev set.

as it becomes very challenging to infer the exis-
tence of a valid answer accurately with increas-
ing amount of potentially distracting information
present in the passage.

Nil detection is itself a very challenging task.
Performances of the nil-aware models are worse
than the corresponding answer extractor models
on the test set without nil questions as Nil pre-
cision is lower than 100%. We carried out an
experiment to evaluate the performance of NA-
MANDA on development sets with varying num-
ber of nil questions. As the proportion of nil ques-
tions in a set increases, NAMANDA outperforms
AMANDA by a larger margin on overall scores.

6 Related Work

In some years of the question answering track
at the Text Retrieval Conference (TREC)7, some
questions were considered as nil questions for
which no valid answers could be found in the en-
tire corpus. Participating teams were required to
return Nil as answer for those questions. Many
teams used threshold-based methods to determine
whether any of the retrieved answers for a given
question was valid or not. If none of the answers
had high confidence, Nil was returned as answer.
To evaluate the performance on the nil questions,
TREC used Nil precision, recall and F1 scores.

In recent years, research on question answering
has witnessed substantial progress with rapid ad-
vances in neural network architectures. For exam-
ple, on the answer sentence selection task, where a
system has to choose the correct answer sentence
from a pool of candidate sentences for a given
question, the introduction of attention-based neu-
ral models has rapidly advanced the state of the
art (Tan et al., 2015; Yang et al., 2016; dos Santos
et al., 2016; Wang et al., 2016; Bian et al., 2017;

7https://trec.nist.gov/data/qa.html

Shen et al., 2017a).
However, in the answer sentence selection task,

the answer is always a full sentence. Rajpurkar
et al. (2016) released a reading comprehension-
based QA dataset SQuAD, where given a pas-
sage and a question, a system needs to find the
exact answer span rather than a sentence. Al-
though SQuAD became very popular and served
as a good test set to develop advanced end-to-
end neural network architectures, it does not in-
clude any nil questions. In practical QA, it is crit-
ical to decide whether or not a passage contains a
valid answer for a given question. Subsequently,
the NewsQA (Trischler et al., 2017) dataset has
been released which attempts to overcome this de-
ficiency. However, all the proposed models for
NewsQA so far have excluded nil questions dur-
ing evaluation. Contrary to prior work, we focus
on developing models for nil-aware answer span
extraction. Very recently, Rajpurkar et al. (2018)
released the SQUADRUN dataset by augmenting
the SQuAD dataset with unanswerable questions.
The unanswerable questions are written adversar-
ially by crowdworkers to look similar to the an-
swerable ones.

7 Conclusion

In this paper, we have focused on nil-aware answer
span extraction for RC-based QA. A nil-aware QA
system only extracts a span of text from the as-
sociated passage as an answer to a given ques-
tion if and only if the passage contains a valid an-
swer. We have proposed a nil-aware answer span
extraction framework based on evidence decom-
position and aggregation that can be easily inte-
grated with several recently proposed neural an-
swer span extraction models. We have also de-
veloped several pipeline and threshold-based mod-
els using advanced neural architectures for com-
parison. Experiments on the NewsQA dataset
show that our proposed framework, when inte-
grated with the answer span extraction models,
achieves better performance compared to all the
corresponding pipeline and threshold-based mod-
els. Employing such a nil-aware answer span ex-
tractor in practical IR-style QA tasks will be inter-
esting future work.
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