
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4187–4195
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4187

Learning to Encode Text as Human-Readable Summaries using
Generative Adversarial Networks

Yau-Shian Wang
National Taiwan University
king6101@gmail.com

Hung-Yi Lee
National Taiwan University

tlkagkb93901106@gmail.com

Abstract

Auto-encoders compress input data into a
latent-space representation and reconstruct the
original data from the representation. This la-
tent representation is not easily interpreted by
humans. In this paper, we propose training
an auto-encoder that encodes input text into
human-readable sentences, and unpaired ab-
stractive summarization is thereby achieved.
The auto-encoder is composed of a generator
and a reconstructor. The generator encodes the
input text into a shorter word sequence, and
the reconstructor recovers the generator input
from the generator output. To make the gen-
erator output human-readable, a discriminator
restricts the output of the generator to resem-
ble human-written sentences. By taking the
generator output as the summary of the in-
put text, abstractive summarization is achieved
without document-summary pairs as training
data. Promising results are shown on both En-
glish and Chinese corpora.

1 Introduction
When it comes to learning data representations,
a popular approach involves the auto-encoder ar-
chitecture, which compresses the data into a la-
tent representation without supervision. In this
paper we focus on learning text representations.
Because text is a sequence of words, to encode a
sequence, a sequence-to-sequence (seq2seq) auto-
encoder (Li et al., 2015; Kiros et al., 2015) is usu-
ally used, in which a RNN is used to encode the
input sequence into a fixed-length representation,
after which another RNN is used to decode the
original input sequence given this representation.

Although the latent representation learned by
the seq2seq auto-encoder can be used in down-
stream applications, it is usually not human-
readable. A human-readable representation should
comply the rule of human grammar and can be
comprehended by human. Therefore, in this work,

we use comprehensible natural language as a la-
tent representation of the input source text in an
auto-encoder architecture. This human-readable
latent representation is shorter than the source text;
in order to reconstruct the source text, it must re-
flect the core idea of the source text. Intuitively,
the latent representation can be considered a sum-
mary of the text, so unpaired abstractive summa-
rization is thereby achieved.

The idea that using human comprehensible lan-
guage as a latent representation has been ex-
plored on text summarization, but only in a semi-
supervised scenario. Previous work (Miao and
Blunsom, 2016) uses a prior distribution from a
pre-trained language model to constrain the gen-
erated sequence to natural language. However,
to teach the compressor network to generate text
summaries, the model is trained using labeled
data. In contrast, in this work we need no labeled
data to learn the representation.

As shown in Fig. 1, the proposed model is com-
posed of three components: a generator, a discrim-
inator, and a reconstructor. Together, the generator
and reconstructor form a text auto-encoder. The
generator acts as an encoder in generating the la-
tent representation from the input text. Instead of
using a vector as latent representation, however,
the generator generates a word sequence much
shorter than the input text. From the shorter text,
the reconstructor reconstructs the original input
of the generator. By minimizing the reconstruc-
tion loss, the generator learns to generate short
text segments that contain the main information in
the original input. We use the seq2seq model in
modeling the generator and reconstructor because
both have input and output sequences with differ-
ent lengths.

However, it is very possible that the gener-
ator’s output word sequence can only be pro-
cessed and recognized by the reconstructor but is



4188

not readable by humans. Here, instead of reg-
ularizing the generator output with a pre-trained
language model (Miao and Blunsom, 2016), we
borrow from adversarial auto-encoders (Makhzani
et al., 2015) and cycle GAN (Zhu et al., 2017)
and introduce a third component – the discrimina-
tor – to regularize the generator’s output word se-
quence. The discriminator and the generator form
a generative adversarial network (GAN) (Good-
fellow et al., 2014). The discriminator discrim-
inates between the generator output and human-
written sentences, and the generator produces out-
put as similar as possible to human-written sen-
tences to confuse the discriminator. With the GAN
framework, the discriminator teaches the genera-
tor how to create human-like summary sentences
as a latent representation. However, due to the
non-differential property of discrete distributions,
generating discrete distributions by GAN is chal-
lenging. To tackle this problem, in this work, we
proposed a new kind of method on language gen-
eration by GAN.

By achieving unpaired abstractive text summa-
rization, machine is able to unsupervisedly extract
the core idea of the documents. This approach
has many potential applications. For example, the
output of the generator can be used for the down-
stream tasks like document classification and sen-
timent classification. In this study, we evaluate the
results on an abstractive text summarization task.
The output word sequence of the generator is re-
garded as the summaries of the input text. The
model is learned from a set of documents with-
out summaries. As most documents are not paired
with summaries, for example the movie reviews or
lecture recordings, this technique makes it possi-
ble to learn summarizer to generate summaries for
these documents. The results show that the gener-
ator generates summaries with reasonable quality
on both English and Chinese corpora.

2 Related Work
Abstractive Text Summarization
Recent model architectures for abstractive text
summarization basically use the sequence-to-
sequence (Sutskever et al., 2014) framework in
combination with various novel mechanisms. One
popular mechanism is attention (Bahdanau et al.,
2015), which has been shown helpful for summa-
rization (Nallapati et al., 2016; Rush et al., 2015;
Chopra et al., 2016). It is also possible to directly
optimize evaluation metrics such as ROUGE (Lin,

Figure 1: Proposed model. Given long text, the
generator produces a shorter text as a summary.
The generator is learned by minimizing the recon-
struction loss together with the reconstructor and
making discriminator regard its output as human-
written text.
2004) with reinforcement learning (Ranzato et al.,
2016; Paulus et al., 2017; Bahdanau et al., 2016).
The hybrid pointer-generator network (See et al.,
2017) selects words from the original text with a
pointer (Vinyals et al., 2015) or from the whole
vocabulary with a trained weight. In order to elim-
inate repetition, a coverage vector (Tu et al., 2016)
can be used to keep track of attended words, and
coverage loss (See et al., 2017) can be used to
encourage model focus on diverse words. While
most papers focus on supervised learning with
novel mechanisms, in this paper, we explore un-
supervised training models.

GAN for Language Generation
In this paper, we borrow the idea of GAN to make
the generator output human-readable. The major
challenge in applying GAN to sentence genera-
tion is the discrete nature of natural language. To
generate a word sequence, the generator usually
has non-differential parts such as argmax or other
sample functions which cause the original GAN to
fail.

In (Gulrajani et al., 2017), instead of feeding a
discrete word sequence, the authors directly feed
the generator output layer to the discriminator.
This method works because they use the earth
mover’s distance on GAN as proposed in (Ar-
jovsky et al., 2017), which is able to evaluate the
distance between a discrete and a continuous dis-
tribution. SeqGAN (Yu et al., 2017) tackles the
sequence generation problem with reinforcement
learning. Here, we refer to this approach as ad-
versarial REINFORCE. However, the discrimina-
tor only measures the quality of whole sequence,
and thus the rewards are extremely sparse and the
rewards assigned to all the generation steps are all
the same. MC search (Yu et al., 2017) is proposed
to evaluate the approximate reward at each time



4189

step, but this method suffers from high time com-
plexity. Following this idea, (Li et al., 2017) pro-
poses partial evaluation approach to evaluate the
expected reward at each time step. In this pa-
per, we propose the self-critical adversarial RE-
INFORCE algorithm as another way to evaluate
the expected reward at each time step. The per-
formance between original WGAN and proposed
adversarial REINFORCE is compared in experi-
ment.

3 Proposed Method
The overview of the proposed model is shown in
Fig. 2. The model is composed of three com-
ponents: generator G, discriminator D, and re-
constructor R. Both G and R are seq2seq hy-
brid pointer-generator networks (See et al., 2017)
which can decide to copy words from encoder in-
put text via pointing or generate from vocabulary.
They both take a word sequence as input and out-
put a sequence of word distributions. Discrimina-
tor D, on the other hand, takes a sequence as input
and outputs a scalar. The model is learned from a
set of documents x and human-written sentences
yreal.

To train the model, a training document
x = {x1, x2, ..., xt, ..., xT }, where xt rep-
resents a word, is fed to G, which outputs
a sequence of word distributions G(x) =
{y1, y2, ..., yn, ..., yN}, where yn is a distribution
over all words in the lexicon. Then we randomly
sample a word ysn from each distribution yn, and
a word sequence ys = {ys1, ys2, ..., ysN} is obtained
according to G(x). We feed the sampled word se-
quence ys to reconstructor R, which outputs an-
other sequence of word distributions x̂. The re-
constructor R reconstructs the original text x from
ys. That is, we seek an output of reconstructor
x̂ that is as close to the original text x as possible;
hence the loss for training the reconstructor, Rloss,
is defined as

Rloss =
K�

k=1

ls(x, x̂), (1)

where the reconstruction loss ls(x, x̂) is the cross-
entropy loss computed between the reconstructor
output sequence x̂ and the source text x, or the
negative conditional log-likelihood of source text
x given word sequence ys sampled from G(x).
The reconstructor output sequence x̂ is teacher-
forced by source text x. The subscript s in ls(x, x̂)

indicates that x̂ is reconstructed from ys. K is the
number of training documents, and (1) is the sum-
mation of the cross-entropy loss over all the train-
ing documents x.

In the proposed model, the generator G and re-
constructor R form an auto-encoder. However, the
reconstructor R does not directly take the genera-
tor output distribution G(x) as input 1. Instead, the
reconstructor takes a sampled discrete sequence ys

as input. Due to the non-differentiable property of
discrete sequences, we apply the REINFORCE al-
gorithm, which is described in Section 4.

In addition to reconstruction, we need the dis-
criminator D to discriminate between the real se-
quence yreal and the generated sequence ys to reg-
ularize the generated sequence satisfying the sum-
mary distribution. D learns to give yreal higher
scores while giving ys lower scores. The loss for
training the discriminator D is denoted as Dloss;
this is further described in Section 5.
G learns to minimize the reconstruction loss

Rloss, while maximizing the loss of the discrimi-
nator D by generating a summary sequence ys that
cannot be differentiated by D from the real thing.
The loss for the generator Gloss is

Gloss = αRloss −D�
loss (2)

where D�
loss is highly related to Dloss – but not

necessary the same2 – and α is a hyper-parameter.
After obtaining the optimal generator by minimiz-
ing (2), we use it to generate summaries.

Generator G and discriminator D together form
a GAN. We use two different adversarial training
methods to train D and G; as shown in Fig. 2,
these two methods have their own discriminators
1 and 2. Discriminator 1 takes the generator out-
put layer G(x) as input, whereas discriminator 2
takes the sampled discrete word sequence ys as
input. The two methods are described respectively
in Sections 5.1 and 5.2.

4 Minimizing Reconstruction Loss
Because discrete sequences are non-differentiable,
we use the REINFORCE algorithm. The gener-
ator is seen as an agent whose reward given the
source text x is −ls(x, x̂). Maximizing the re-
ward is equivalent to minimizing the reconstruc-
tion loss Rloss in (1). However, the reconstruction

1We found that if the reconstructor R directly takes G(x)
as input, the generator G learns to put the information about
the input text in the distribution of G(x), making it difficult
to sample meaningful sentences from G(x).

2D�
loss has different formulations in different approaches.

This will be clear in Sections 5.1 and 5.2.



4190

Figure 2: Architecture of proposed model. The generator network and reconstructor network are a
seq2seq hybrid pointer-generator network, but for simplicity, we omit the pointer and the attention parts.
loss varies widely from sample to sample, and thus
the rewards to the generator are not stable either.
Hence we add a baseline to reduce their difference.
We apply self-critical sequence training (Rennie
et al., 2017); the modified reward rR(x, x̂) from
reconstructor R with the baseline for the genera-
tor is

rR(x, x̂) = −ls(x, x̂)− (−la(x, x̂)− b) (3)

where −la(x, x̂) − b is the baseline. la(x, x̂)
is also the same cross-entropy reconstruction
loss as ls(x, x̂), except that x̂ is obtained from
ya instead of ys. ya is a word sequence
{ya1 , ya2 , ..., yan, ..., yaN}, where yan is selected using
the argmax function from the output distribution
of generator yn. As in the early training stage,
the sequence ys barely yields higher reward than
sequence ya, to encourage exploration we intro-
duce the second baseline score b, which gradu-
ally decreases to zero. Then, the generator is up-
dated using the REINFORCE algorithm with re-
ward rR(x, x̂) to minimize Rloss.

5 GAN Training
With adversarial training, the generator learns to
produce sentences as similar to the human-written
sentences as possible. Here, we conduct experi-
ments on two kinds of methods of language gen-
eration with GAN. In Section 5.1 we directly
feed the generator output probability distributions
to the discriminator and use a Wasserstein GAN
(WGAN) with a gradient penalty. In Section 5.2,
we explore adversarial REINFORCE, which feeds
sampled discrete word sequences to the discrim-
inator and evaluates the quality of the sequence

from the discriminator for use as a reward signal
to the generator.

5.1 Method 1: Wasserstein GAN

In the lower left of Fig. 2, the discriminator model
of this method is shown as discriminator1 D1.
D1 is a deep CNN with residual blocks, which
takes a sequence of word distributions as input and
outputs a score. The discriminator loss Dloss is

Dloss =
1

K

K�

k=1

D1(G(x(k)))− 1

K

K�

k=1

D1(y
real(k))

+β1
1

K

K�

k=1

(Δyi(k)D1(y
i(k))− 1)2,

where K denotes the number of training exam-
ples in a batch, and k denotes the k-th exam-
ple. The last term is the gradient penalty (Gul-
rajani et al., 2017). We interpolate the genera-
tor output layer G(x) and the real sample yreal,
and apply the gradient penalty to the interpolated
sequence yi. β1 determines the gradient penalty
scale. In Equation (2), for WGAN, the generator
maximizes D�

loss:

D�
loss =

1

K

K�

k=1

D1(G(x(k))). (4)

5.2 Method 2: Self-Critic Adversarial
REINFORCE

In this section, we describe in detail the pro-
posed adversarial REINFORCE method. The core
idea is we use the LSTM discriminator to evalu-
ate the current quality of the generated sequence



4191

{ys1, ys2, ..., ysi } at each time step i. The generator
knows that compared to the last time step, as the
generated sentence either improves or worsens, it
can easily find the problematic generation step in
a long sequence, and thus fix the problem easily.

5.2.1 Discriminator 2
As shown in Fig. 2, the discriminator2 D2 is a
unidirectional LSTM network which takes a dis-
crete word sequence as input. At time step i,
given input word ysi it predicts the current score si
based on the sequence {y1, y2, ..., yi}. The score is
viewed as the quality of the current sequence. An
example of discriminator regularized by weight
clipping(Arjovsky et al., 2017) is shown in Fig. 3.

Figure 3: When the second arrested appears, as the
sentence becomes ungrammatical, the discrimina-
tor determines that this example comes from the
generator. Hence, after this time-step, it outputs
low scores.

In order to compute the discriminator loss
Dloss, we sum the scores {s1, s2, ..., sN} of the
whole sequence ys to yield

D2(y
s) =

1

N

N�

n=1

sn.

where N denotes the generated sequence length.
Then, the loss of discriminator is

Dloss =
1

K

K�

k=1

D2(y
s(k))− 1

K

K�

k=1

D2(y
real(k))

+β2
1

K

K�

k=1

(Δyi(k)D2(y
i(k))− 1)2,

Similar to previous section, the last term is gra-
dient penalty term. With the loss mentioned
above, the discriminator attempts to quickly deter-
mine whether the current sequence is real or fake.
The earlier the timestep discriminator determines
whether the current sequence is real or fake, the
lower its loss.

5.2.2 Self-Critical Generator
Since we feed a discrete sequence ys to the dis-
criminator, the gradient from the discriminator
cannot directly back-propagate to the generator.
Here, we use the policy gradient method. At

timestep i, we use the i − 1 timestep score si−1

from the discriminator as its self-critical baseline.
The reward rDi evaluates whether the quality of se-
quence in timestep i is better or worse than that in
timestep i− 1. The generator reward rDi from D2

is

rDi =

�
si if i = 1

si − si−1 otherwise.

However, some sentences may be judged as bad
sentences at the previous timestep, but at later
timesteps judged as good sentences, and vice
versa. Hence we use the discounted expected re-
ward d with discount factor γ to calculate the dis-
counted reward di at time step i as

di =

N�

j=i

γj−irDj .

To maximize the expected discounted reward di,
the loss of generator is:

G�
loss = −Eysi∼pG(ysi |ys1,...,ysi−1,x)

[di]. (5)

We use the likelihood ratio trick to approximate
the gradient to minimize (5).

6 Experiment
Our model was evaluated on the English/Chinese
Gigaword datasets and CNN/Daily Mail dataset.
In Section 6.1,6.2 and 6.4, the experiments were
conducted on English Gigaword, while the experi-
ments were conducted on CNN/Daily Mail dataset
and Chinese Gigaword dataset respectively in Sec-
tions 6.3 and 6.6. We used ROUGE(Lin, 2004) as
our evaluation metric.3 During testing, when us-
ing the generator to generate summaries, we used
beam search with beam size=5, and we eliminated
repetition. We provide the details of the imple-
mentation and corpus re-processing respectively
in Appendix A and B.

Before jointly training the whole model, we
pre-trained the three major components – gener-
ator, discriminator, and reconstructor – separately.
First, we pre-trained the generator in an unsuper-
vised manner so that the generator would be able
to somewhat grasp the semantic meaning of the
source text. The details of the pre-training are
in Appendix C. We pre-trained the discriminator
and reconstructor respectively with the pre-trained
generator’s output to ensure that these two critic
networks provide good feedback to the generator.

3We used pyrouge package with option -m -n 2 -w 1.2 to
compute ROUGE score for all experiments.



4192

Task Labeled Methods R-1 R-2 R-L

(A)Supervised 3.8M

(A-1)Supervised training on generator 33.19 14.21 30.50
(A-2) (Rush et al., 2015)✝ 29.76 11.88 26.96

(A-3) (Chopra et al., 2016)✝ 33.78 15.97 31.15
(A-4) (Zhou et al., 2017)✝ 36.15 17.54 33.63

(B) Trivial baseline 0 (B-1) Lead-8 21.86 7.66 20.45

(C) Unpaired 0
(C-1) Pre-trained generator 21.26 5.60 18.89

(C-2) WGAN 28.09 9.88 25.06
(C-3) Adversarial REINFORCE 28.11 9.97 25.41

(D) Semi-supervised

10K
(D-1) WGAN 29.17 10.54 26.72

(D-2) Adversarial REINFORCE 30.01 11.57 27.61

500K
(D-3)(Miao and Blunsom, 2016)✝ 30.14 12.05 27.99

(D-4) WGAN 32.50 13.65 29.67
(D-5) Adversarial REINFORCE 33.33 14.18 30.48

1M
(D-6)(Miao and Blunsom, 2016)✝ 31.09 12.79 28.97

(D-7) WGAN 33.18 14.19 30.69
(D-8) Adversarial REINFORCE 34.21 15.16 31.64

0
(E-1) Pre-trained generator 21.49 6.28 19.34

(E) Transfer learning (E-2) WGAN 25.11 7.94 23.05
(E-3) Adversarial REINFORCE 27.15 9.09 24.11

Table 1: Average F1 ROUGE scores on English Gigaword. R-1, R-2 and R-L refers to ROUGE 1,
ROUGE 2 and ROUGE L respectively. Results marked with ✝ are obtained from corresponding papers.
In part (A), the model was trained supervisedly. In row (B-1), we select the article’s first eight words
as its summary. Part (C) are the results obtained without paired data. In part (D), we trained our model
with few labeled data. In part (E), we pre-trained generator on CNN/Diary and used the summaries from
CNN/Diary as real data for the discriminator.

6.1 English Gigaword
The English Gigaword is a sentence summariza-
tion dataset which contains the first sentence of
each article and its corresponding headlines. The
preprocessed corpus contains 3.8M training pairs
and 400K validation pairs. We trained our model
on part of or fully unparalleled data on 3.8M train-
ing set. To have fair comparison with previous
works, the following experiments were evaluated
on the 2K testing set same as (Rush et al., 2015;
Miao and Blunsom, 2016). We used the sentences
in article headlines as real data for discriminator4.
As shown in the following experiments, the head-
lines can even come from another set of docu-
ments not related to the training documents.

The results on English Gigaword are shown in
Table 1. WGAN and adversarial REINFORCE
refer to the adversarial training methods men-
tioned in Sections 5.1 and 5.2 respectively. Re-
sults trained by full labeled data are in part (A).
In row (A-1), We trained our generator by su-

4Instead of using general sentences as real data for dis-
criminator, we chose sentences from headlines because they
have their own unique distribution.

pervised training. Compared with the previous
work (Zhou et al., 2017), we used simpler model
and smaller vocabulary size. We did not try to
achieve the state-of-the-art results because the fo-
cus of this work is unsupervised learning, and the
proposed approach is independent to the summa-
rization models used. In row (B-1), we simply
took the first eight words in a document as its sum-
mary.

The results for the pre-trained generator with
method mentioned in Appendix.C is shown in row
(C-1). In part (C), we directly took the sentences
in the summaries of Gigaword as the training data
of discriminator. Compared with the pre-trained
generator and the trivial baseline , the proposed
approach (rows (C-2) and (C-3)) showed good im-
provement. In Fig. 4, we provide a real example.
More examples can be found in the Appendix.D.

6.2 Semi-Supervised Learning
In semi-supervised training, generator was pre-
trained with few available labeled data. During
training, we conducted teacher-forcing with la-
beled data on generator after several updates with-
out labeled data. With 10K, 500K and 1M la-



4193

beled data, the teacher-forcing was conducted ev-
ery 25, 5 and 3 updates without paired data, re-
spectively. In teacher-forcing, given source text
as input, the generator was teacher-forced to pre-
dict the human-written summary of source text.
Teacher-forcing can be regarded as regularization
of unpaired training that prevents generator from
producing unreasonable summaries of source text.
We found that if we teacher-forced generator too
frequently, generator would overfit on training
data since we only used very few labeled data on
semi-supervised training.

The performance of semi-supervised model in
English Gigaword regarding available labeled data
is shown in Table 1 part (D). We compared our
results with (Miao and Blunsom, 2016) which
was the previous state-of-the-art method on semi-
supervised summarization task under the same
amount of labeled data. With both 500K and 1M
labeled data, our method performed better. Fur-
thermore, with only 1M labeled data, using ad-
versarial REINFORCE even outperformed super-
vised training in Table 1 (A-1) with the whole
3.8M labeled data.

Figure 4: Real examples with methods referred in
Table 1. The proposed methods generated sum-
maries that grasped the core idea of the articles.

6.3 CNN/Daily Mail dataset
The CNN/Daily Mail dataset is a long text sum-
marization dataset which is composed of news ar-
ticles paired with summaries. We evaluated our
model on this dataset because it’s a popular bench-
mark dataset, and we want to know whether the
proposed model works on long input and long
output sequences. The details of corpus pre-
processing can be found in Appendix.B . In un-
paired training, to prevent the model from directly

matching the input articles to its corresponding
summaries, we split the training pairs into two
equal sets, one set only supplied articles and the
other set only supplied summaries.

The results are shown in Table 2. For super-
vised approaches in part (A), although our seq2seq
model was similar to (See et al., 2017), due to
the smaller vocabulary size (we didn’t tackle out-
of-vocabulary words), simpler model architecture,
shorter output length of generated summaries,
there was a performance gap between our model
and the scores reported in (See et al., 2017). Com-
pared to the lead-3 baseline in part (B) which took
the first three sentences of articles as summaries,
the seq2seq models fell behind. That was be-
cause news writers often put the most important
information in the first few sentences, and thus
even the best abstractive summarization model
only slightly beat the lead-3 baseline on ROUGE
scores. However, during pre-training or training
we didn’t make assumption that the most impor-
tant sentences are in first few sentences.

We observed that our unpaired model yielded
decent ROUGE-1 score, but it yielded lower
ROUGE-2 and ROUGE-L score. That was proba-
bly because the length of our generated sequence
was shorter than ground truth, and our vocabu-
lary size was small. Another reason was that the
generator was good at selecting the most impor-
tant words from the articles, but sometimes failed
to combine them into reasonable sentences be-
cause it’s still difficult for GAN to generate long
sequence. In addition, since the reconstructor
only evaluated the reconstruction loss of whole se-
quence, as the generated sequence became long,
the reconstruction reward for generator became
extremely sparse. However, compared to pre-
trained generator (rows (C-2), (C-3) v.s. (C-1)),
our model still enhanced the ROUGE score. An
real example of generated summary can be found
at Appendix.D Fig.11 .

6.4 Transfer Learning
The experiments conducted up to this point re-
quired headlines unpaired to the documents but
in the same domain to train discriminator. In
this subsection, we generated the summaries from
English Gigaword (target domain), but the sum-
maries for discriminator were from CNN/Daily
Mail dataset (source domain).

The results of transfer learning are shown in Ta-
ble. 1 part (E). Table 1 (E-1) is the result of pre-



4194

Methods R-1 R-2 R-L

(A)Supervised
(A-1)Supervised training on our generator 38.89 13.74 29.42
(A-2) (See et al., 2017)✝ 39.53 17.28 36.38

(B)Lead-3 baseline (See et al., 2017)✝ 40.34 17.70 36.57

(C) Unpaired
(C-1) Pre-trained generator 29.86 5.14 14.66
(C-2) WGAN 35.14 9.43 21.04
(C-3) Adversarial REINFORCE 35.51 9.38 20.98

Table 2: F1 ROUGE scores on CNN/Diary Mail dataset. In row (B), the first three sentences were taken as
summaries. Part (C) are the results obtained without paired data. The results with symbol ✝ are directly
obtained from corresponding papers.

Methods R-1 R-2 R-L
(A) Training with paired data (supervised) 49.62 34.10 46.42
(B)Lead-15 baseline 30.08 18.24 27.74

(C) Unpaired
(C-1) Pre-trained generator 28.36 16.73 26.48
(C-2) WGAN 38.15 24.60 35.27
(C-3) Adversarial REINFORCE 41.25 26.54 37.76

Table 3: F1 ROUGE scores on Chinese Gigaword. In row (B), we selected the article’s first fifteen words
as its summary. Part (C) are the results obtained without paired data.

trained generator and the poor pre-training result
indicates that the data distributions of two datasets
are quite different. We find that using sentences
from another dataset yields lower ROUGE scores
on the target testing set (parts (E) v.s. (C)) due to
the mismatch word distributions between the sum-
maries of the source and target domains. How-
ever, the discriminator still regularizes the gener-
ated word sequence. After unpaired training, the
model enhanced the ROUGE scores of the pre-
trained model (rows (E-2), (E-3) v.s. (E-1)) and
it also surpassed the trivial baselines in part (B).

6.5 GAN Training
In this section, we discuss the performance of
two GAN training methods. As shown in the
Table 1, in English Gigaword, our proposed ad-
versarial REINFORCE method performed better
than WGAN. However, in Table 2, our proposed
method slightly outperformed by WGAN. In addi-
tion, we find that when training with WGAN, con-
vergence is faster. Because WGAN directly eval-
uates the distance between the continuous distri-
bution from generator and the discrete distribution
from real data, the distribution was sharpened at
an early stage in training. This caused generator to
converge to a relatively poor place. On the other
hand, when training with REINFORCE, genera-
tor keeps seeking the network parameters that can
better fool discriminator. We believe that training
GAN on language generation with this method is

worth exploring.
6.6 Chinese Gigaword
The Chinese Gigaword is a long text summariza-
tion dataset composed of paired headlines and
news. Unlike the input news in English Gigaword,
the news in Chinese Gigaword consists of sev-
eral sentences. The results are shown in Table 3.
Row (A) lists the results using 1.1M document-
summary pairs to directly train the generator with-
out the reconstructor and discriminator: this is the
upper bound of the proposed approach. In row (B),
we simply took the first fifteen words in a docu-
ment as its summary. The number of words was
chosen to optimize the evaluation metrics. Part
(C) are the results obtained in the scenario with-
out paired data. The discriminator took the sum-
maries in the training set as real data. We show
the results of the pre-trained generator in row (C-
1); rows (C-2) and (C-3) are the results for the
two GAN training methods respectively. We find
that despite the performance gap between the un-
paired and supervised methods (rows (C-2), (C-
3) v.s. (A)), the proposed method yielded much
better performance than the trivial baselines (rows
(C-2), (C-3) v.s. (B)).
7 Conclusion and Future Work
Using GAN, we propose a model that encodes
text as a human-readable summary, learned with-
out document-summary pairs. In future work, we
hope to use extra discriminators to control the style
and sentiment of the generated summaries.



4195

References
Martin Arjovsky, Soumith Chintala, and Lon Bot-

tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2016. An actor-critic
algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. HLT-NAAC.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial networks. arXiv preprint arXiv:1406.2661.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron Courville. 2017. Im-
proved training of wasserstein gans. arXiv preprint
arXiv:1704.00028.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
NIPS.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. ACL.

Jiwei Li, Will Monroe, Tianlin Shi, Sbastien Jean, Alan
Ritter, and Dan Jurafsky. 2017. Adversarial learn-
ing for neural dialogue generation. arXiv preprint
arXiv:1701.06547.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: ACL workshop.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
Ian Goodfellow, and Brendan Frey. 2015. Adversar-
ial autoencoders. arXiv preprint arXiv:1511.05644.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. EMNLP.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. EMNLP.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. ICLR.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jarret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. CVPR.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. EMNLP.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. NIPS.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. ACL.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. NIPS.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. AAAI.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou.
2017. Selective encoding for abstractive sentence
summarization. ACL.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and
Alexei A. Efros. 2017. Unpaired image-to-image
translation using cycle-consistent adversarial net-
works. arXiv preprint arXiv:1703.10593.


