Stylistic Chinese Poetry Generation via Unsupervised Style
Disentanglement

Cheng Yang"**, Maosong Sun'>**, Xiaoyuan Yi'*, Wenhao Li

+1,2,3

'Department of Computer Science and Technology, Tsinghua University
Institute for Artificial Intelligence, Tsinghua University
3State Key Lab on Intelligent Technology and Systems, Tsinghua University
4Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University
{cheng-yal4,yi-xyl6,1liwhl6}@mails.tsinghua.edu.cn
sms@tsinghua.edu.cn

Abstract

The ability to write diverse poems in differ-
ent styles under the same poetic imagery is an
important characteristic of human poetry writ-
ing. Most previous works on automatic Chi-
nese poetry generation focused on improving
the coherency among lines. Some work ex-
plored style transfer but suffered from expen-
sive expert labeling of poem styles. In this pa-
per, we target on stylistic poetry generation in
a fully unsupervised manner for the first time.
We propose a novel model which requires no
supervised style labeling by incorporating mu-
tual information, a concept in information the-
ory, into modeling. Experimental results show
that our model is able to generate stylistic po-
ems without losing fluency and coherency.

1 Introduction

Classical Chinese poetries are great heritages of
the history of Chinese culture. One of the most
popular genres of classical Chinese poems, i.e.
quatrains, contains four lines with five or seven
characters each and additional rhythm and tune re-
strictions. During 1,000 years history of quatrains,
various styles, e.g. pastoral, descriptive and ro-
mantic, have been developed to express different
feelings of poets. In human poetry writing, poets
are able to write completely different poems in di-
verse styles even given the same keyword or first
sentence. For example, as shown in Fig. 1, when
a poet mentioned “ H” (the moon), she/he may
write about the Great Wall in the battlefield style
or the sleepless feeling in the romantic style. Such
ability to write stylistic poems under the same po-
etic imagery is an important characteristic of hu-
man poetries.

Automatic poetry generation is one of the first
attempts towards computer writing. Chinese qua-
train generation has also attracted much atten-
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The age-old moon still shines over | Battlefield
the ancient Great Wall.
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}:] The sleepless feel sad to see the | Romantic
(moon) moon shed silken ray.
AR A
A speck of moon glides off the tips| Pastoral
of pines.

Figure 1: An example of poems in diverse styles under
the same keyword.

tion in recent years. Early works inspired by
statistical machine translation explored rule-based
and template-based methods (He et al., 2012;
Yan et al.,, 2013), while recent works (Zhang
and Lapata, 2014; Wang et al., 2016; Yan, 2016;
Zhang et al., 2017; Yang et al., 2017; Yi et al.,
2017) employed neural network based sequence-
to-sequence approaches which have shown their
effectiveness in neural machine translation for
poem generation. Most works target on improving
the coherency among all lines and the conformity
between the theme and subsequent lines by plan-
ning (Wang et al., 2016), polishing schema (Yan,
2016), poem block (Yi et al., 2017) and condi-
tional variational autoencoder (Yang et al., 2017).
Different from these previous works, we aim to
learn the ability of diverse stylistic poetry genera-
tion which can generate multiple outputs (poems)
in various styles under the same input (keywords
or the first sentence). This ability enables a poetry
generation system to be closer to a real poet and
allows the model to generate more expressive and
creative poems.

However, there is no explicit label about what
style or category a poem or a sentence is for
thousands of poems in the database. Therefore,
traditional supervised sequence-to-sequence mod-
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els (Zhang et al., 2017) are not capable to gener-
ate stylistic poems without expert labeling. To the
best of our knowledge, we are the first effort at
stylistic poetry generation in a fully unsupervised
manner.

In this paper, we propose a novel poetry gen-
eration model which can disentangle the poems
in different styles and generate style-specific out-
puts conditioned on the manually selected style
input. We employ sequence-to-sequence model
with attention mechanism (Bahdanau et al., 2014)
as our basis and maximize the mutual information
which measures the dependency between two ran-
dom variables in information theory to strengthen
the relationship between manually selected style
inputs and generated style-specific outputs. Exper-
imental results show that our model is able to gen-
erate poems in various styles without losing flu-
ency and coherency.

To summarize, our effort provides the following
three contributions:

o To the best of our knowledge, we are the first
effort at stylistic poetry generation which is an im-
portant characteristic of human poetries in a fully
unsupervised manner.

e We innovatively incorporate mutual infor-
mation, a measurement in information theory,
for unsupervised style disentanglement and style-
specific generation.

e Experimental results show that our model is
able to generate diverse poems in various styles
without losing fluency and coherency.

2 Related Works and Motivations

Poetry generation is a classic task in computer
writing (Gervas, 2001; Levy, 2001; Netzer et al.,
2009; Oliveira, 2012). Chinese poetry generation
has also attracted much attention during the last
decade. Early works are mostly rule-based and
template-based (Wu et al., 2009). (He et al., 2012)
employed statistical machine translation and (Yan
et al.,, 2013) adopted automatic summarization
techniques for classical poem generation.

As neural network based approaches have been
successfully applied in various applications such
as machine translation (Bahdanau et al., 2014),
people came up with the idea to apply sequence-
to-sequence models for poem generation. (Zhang
and Lapata, 2014) employed the Recurrent Neural
Network (RNN) as their basis and further consid-
ered the global context using Convolutional Neu-

ral Network (CNN). They also incorporated other
hand-crafted features into the model to improve
the coherency. (Yan, 2016) proposed an itera-
tive polishing schema based on two RNNs, which
can refine the generated poems for several times.
(Wang et al., 2016) generated poetries in a two-
stage process: planning the keywords of each line
first and then generating each line sequentially.
(Yi et al., 2017) proposed poem blocks to learn
semantic meaning within a single line and seman-
tic relevance among lines in a poem. (Yang et al.,
2017) employed a conditional variational autoen-
coder with augmented word2vec architecture to
enhance the conformity between the theme and
generated poems. All previous works above tar-
get on improving the coherency and conformity
of poetry generation while a recent work (Zhang
et al., 2017) was proposed to improve the nov-
elty of generated poems using external memories.
Their model can also transfer the style of a poem
into three predefined topics. However, they need
to manually label many poems in these three pre-
defined topics to learn the patterns.

Formally, a traditional sequence-to-sequence
model actually learns a conditional probability
distribution Pr(soutput|Sinput) Where soutput is the
generated poems and s;,,,¢ 1s the input keyword
or the first sentence. Different from machine
translation tasks where the output sentence Soutput
is rather certain and compact given input sen-
tence S;nput, the conditional probability distribu-
tion Pr(Soutput|Sinput) has strong uncertainty in
literary creation scenarios such as poem genera-
tion. To support this point, we further train a topic
model based on LDA (Blei et al., 2003) by treat-
ing each poem as a document. We train a 10-
topic and a 20-topic LDA model and then reana-
lyze the largest topic component of each sentence
in a poem. Surprisingly, we find that only 20%
and 10% consecutive sentences in a poem have
the same largest topic components respectively
though we assume that each poem is generated
by the same topic when training the LDA model.
The fact indicates that even given the former sen-
tence, the style of the latter one could still be di-
verse and flexible. Intuitively, poets will choose
a style or topic in their minds and then write the
next sentence based on the style they choose in
poetry creation. Therefore, we propose to learn a
stylistic poetry generation model which can disen-
tangle the poems in different styles and generate
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style-specific outputs as real human poets could
do. Note that no explicit style labels are given to
the training data and thus previous supervised al-
gorithms cannot be adapted for the purpose easily.

Recently, a few works have been proposed
for disentangled representation learning. Info-
GAN (Chen et al., 2016) was proposed for gen-
erating continuous image data conditioned on im-
age labels and disentangled text generation (Hu
et al., 2017) focused on controllable generation in
the semi-supervised setting. Though inspired by
them, the motivation and proposed models of our
work differ from these methods by a large mar-
gin. To the best of our knowledge, we are the first
effort at stylistic poetry generation in a fully unsu-
pervised manner.

3 Method

We hope our generation model can generate mul-
tiple outputs in various styles. Formally, our
model takes two arguments as input: input sen-
tence Sippy¢ and style id & € 1,2... K where K
is the total number of different styles. Then we
can enumerate each style id k£ and generate style-
specific output sentence sfjutput respectively.

In this section, we will start by introducing the
background knowledge about mutual information
and sequence-to-sequence model with attention
mechanism. Then we propose our framework of
decoder model for style disentanglement by tak-
ing the mutual information as an additional regu-
larization term. Finally, we will present the details
of our implementations of each component in the
framework.

3.1 Mutual Information

Inspired by previous works on image genera-
tion (Chen et al., 2016) and semi-supervised gen-
eration (Hu et al., 2017), we propose to incorpo-
rate the concept of mutual information in informa-
tion theory for style disentanglement. Given two
random variables X and Y, the mutual informa-
tion 7(X,Y) measures “the amount of informa-
tion” obtained about one random variable given
another one '. Mutual information can also be
interpreted as a measurement about how similar
the joint probability distribution p(X,Y") is to the
product of marginal distributions p(X)p(Y’). The

'https://en.wikipedia.org/wiki/Mutual_
information

definition of mutual information is

_ oe PXY)
I(X,Y)_/Y/Xp(X,Y)l 8 oy O

3.2 Sequence-to-Sequence Model with
Attention Mechanism

We employ a widely used Encoder-Decoder
framework (Sutskever et al., 2014) which was
firstly proposed in machine translation as our ba-
sis. Suppose sentence X = (xjx2...z7) and
Y = (y1y2...yr) are the input sentence (source
sentence) and output sentence (target sentence) re-
spectively where x;,y; fori = 1,2...T are char-
acters and 7T is the total number of characters in
the sentence. We denote the character vocabulary
as V.

Specifically, we use bidirectional LSTM (bi-
LSTM) (Hochreiter and Schmidhuber, 1997,
Schuster and Paliwal, 1997) model as the encoder
to project the input sentence X into the vector
space. Formally, the hidden state of LSTM are
computed by

hi = LSTMorwara(hio, e(x:)), @

71—1‘ = LSTMbackwaTd(;Eye($T7i+1))7 3

for: = 1,2...T where Ez and E are the i-th
hidden state of forward and backward LSTM re-
spectively, e(z;) € R? is the character embedding
of character x; and d is the dimension of charac-
ter embeddings. Then we concatenate correspond-
ing hidden states of forward and backward LSTM
hi = [hi, hr—i+1] as the i-th hidden state of bi-
LSTM. In specific, we use the last hidden state h
as the embedding vector and feed it to the decoder.

The decoder module contains an LSTM decoder
with attention mechanism (Bahdanau et al., 2014)
which computes a context vector as a weighted
sum of all encoder hidden states to represent the
most relevant information at each stage. The char-
acter probability distribution when decoding the ¢-
th character can be expressed as

pYily1yz - - yi-1, X) = g(yilsi), “

where ¢(-) is a linear projection function with soft-
max regularization, s; is the ¢-th hidden state in the
decoder LSTM:

S = LSTMdecode'r(Si—h [e(yi—l)7 ai])a (5)

fori = 2,...7T and s; = hp, where [ ] indi-
cates concatenation operation, e(y;_1) is charac-
ter embedding of y;_1 and a; is the context vector
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Figure 2: An overview of style disentanglement by mutual information maximization.

learned by attention mechanism (Bahdanau et al.,
2014)

a; = attention(si—1, h1.7). (6)

3.3 Decoder Model with Style
Disentanglement

To accept two arguments, i.e., input sentence X
and style id k, we can directly concatenate the
one-hot representation of style id one_hot(k) and
the embedding vector hp obtained by bi-LSTM
encoder and then feed the concatenated vector
[one_hot(k), hp] instead of hp into the decoder
model without changing anything else.

However, there is no theoretical guarantee
that the output sentence generated by the de-
coder is strongly correlated to the style id input
one_hot(k). In other words, when the input style
id is changed, the output sentence would probably
be the same because no supervised loss is given
to force the output sentences to follow the one-
hot style representation. Therefore, we naturally
come up with the idea to add a regularization term
to force a strong dependency relationship between
the input style id and generated sentence.

Without loss of generality, we assume that the
input style id is a uniformly distributed random
variable Sty and Pr(Sty = k) = & for k =
1,2... K where K is the total number of styles.
Recall that mutual information quantifies the mu-
tual dependency between two random variables.
Hence we propose to maximize the mutual in-
formation between the style distribution Pr(Sty)
and the generated sentence distribution Pr(Y; X)
given input sentence X to strengthen the depen-
dency between them as shown in Fig. 2. The mu-

tual information is computed as

I(Pr(Sty),Pr(Y; X))

Pr(Y, Sty = k; X)
Pr(Sty =k / lo dY
(Sty = k) vinx  CPr(Sty = k) Pr(Y; X)

M=

k=1

Pr(Y, Sty = k; X)

Prv;x)

K
Pr(Sty = k)/ log
P Y|k X
K

=Y Pr(Sty = k) log Pr(Sty = k)

k=1
K

:ZPr(Sty = k)/
k=1 Y

K
= [ > Pr(Sty = k[Y)log P(Sty = k[Y)dY + logK.
ViXg=1
@)

Note that the input sequence X and style Sty
are both input arguments and thus independent
with each other. Therefore, posterior distribution
Pr(Sty = k|Y; X) = Pr(Sty = k|Y).

But the posterior probability distribution
Pr(Sty = k|Y) is actually unknown, we cannot
compute the integration directly. Fortunately,
with the help of variational inference maximiza-
tion (Barber and Agakov, 2003), we can train a
parameterized function Q(Sty = k|Y) which
estimates the posterior distribution and maximize
a lower bound of mutual information in Eq. 7
instead:

logPr(Sty = k|Y)dY + logK

[k X

I(Pr(Sty),Pr(Y; X)) — log K
K
= / > Pr(Sty = k|Y) log Pr(Sty = k[Y)dY
Y; X k=1

K
= / > Pr(Sty = k|Y)log Q(Sty = k|Y)dY
YiX p=1

Pr(Sty = k|Y)

K
+/ Pr(Sty = k|Y)log ——————-dY
e 2 TSt =) o i
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K

= > Pr(Sty = k[Y) log Q(Sty = k[Y)dY
YViX p=1

+ KL(Pr(Sty|Y), Q(Sty|Y))dY
Y; X

K (®)
> / > " Pr(Sty = k[Y) log Q(Sty = k|Y)dY
YiX =1

log Q(Sty = k|Y)dY.

Here KL(Pr(-)||Q(-)) indicates the KL-
divergence distance between probability dis-
tribution Pr(-) and Q(:). The inequality comes
from the fact that the KL-divergence is always no
less than zero and is tight when Pr(-) = Q(-).

We use the lower bound parameterized by func-
tion ) in Eq. 8 as an additional maximization
term. Intuitively, the lower bound is maximized if
we can perfectly infer the style id from generated
style-specific outputs by inference function . It
also indicates that generated outputs will heavily
depend on the input style id and outputs generated
by different styles are distinguishable, which fol-
lows our motivation of stylistic poetry generation.
Now we will introduce how to design the poste-
rior distribution estimation function ) and com-
pute the integration in the lower bound.

3.4 Posterior Distribution Estimation

Given an output sequence Y, the function () esti-
mates the probability distribution of the style of
sequence Y and therefore disentangles different
styles. In this paper, we employ neural network
to parametrize the posterior distribution estima-
tion function ). Specifically, we first compute
the average character embeddings of sequence Y
and then use a linear projection with softmax nor-

malizer to get the style distribution. Formally,
Q(Sty|Y) is computed as
1 T
Q(Sty|Y) = sofmax(W - ;e(yi)), ©)

where T € R4 is the linear projection matrix.

Then the last thing to do is to compute the in-
tegration over Y'|k; X. However, the search space
of sequence Y is exponential to the size of vocab-
ulary. Hence it’s impossible to enumerate all pos-
sible sequence Y for computing the integration.
Also, it is not differentiable if we sample sequence
Y according to generation probability for approx-
imation. Therefore, we propose to use expected

character embedding to approximate the integra-
tion.

3.5 Expected Character Embedding

Inspired by previous works (Kocisky et al., 2016),
we use expected character embedding to approxi-
mate the probabilistic space of output sequences:
we only generate an expected embedding se-
quence and suppose Y |k; X has one hundred per-
cent probability generating this one. Formally,
Eq. 4 gives a probability distribution of generat-
ing the i-th character given previous ones. Then
the “expected” generated character embedding is

expect(is k, X) = Z g(clsi)e(e), (10)

ceV

where expect(i;k, X) € R? represents the ex-
pected character embedding at i-th output given
style id k£ and input sequence X and ¢ € V enu-
merates all characters in the vocabulary.

Then expect(i; k, X) is fed into the LSTM in
decoder to update the hidden state for generating
next expected character embedding:

Si+1 = LST Maccoder (i, [expect(i; k, X), ai1]). (11)

Finally, we use the expected embeddings
expect(is k, X ) fori = 1,2...7T as an approxi-
mation of the whole probability space of Y'|k; X.
The lower bound in Eq. 8 can be rewritten as

K T
Lreg = % ; log{softmax(W-% ; expect(i; k, X))[k]},
(12)
where xz[j| represents the j-th dimension of vector
x.

We add the lower bound L., to the overall
training objective as a regularization term. The
computing process is shown in Fig. 2. Then for
each training pair (X, Y"), we aim to maximize

T
Train(X,Y) =Y logp(yily1ya - .- i1, X) + ALreg,

i=1

13)
where p(yi|y1y2 ... yi—1,X) is style irrelevant
generation likelihood and computed by setting
one-hot style representation to an all-zero vector,
and A is a harmonic hyperparameter to balance
the log-likelihood of generating sequence Y and
the lower bound of mutual information. The first
term ensures that the decoder can generate fluent
and coherent outputs and the second term guaran-
tees the style-specific output has a strong depen-
dency on the one-hot style representation input.
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Note that unlike machine translation task where
the trained model is desired to generate exactly the
same as the target, poetry generation encourages
novelty as an important requirement. In Eq. 13, we
can also enumerate the style id representation as a
one-hot vector instead of an all-zero one. How-
ever, this will force the generation of all styles to
be close to the training target and discourage the
diversity and novelty.

Moreover, our model is not task-specific: the
regularization term L,., can be added to other
models conveniently for diverse or stylistic gen-
erations. A Chinese quatrain has at most 4*7=28
characters and clear rhyme requirements. As the
first attempt on unsupervised style disentangle-
ment, we find Chinese poetry generation is an
ideal choice for evaluation because we can bet-
ter focus on stylistic generation rather than deal-
ing with genre requirements. We will explore the
applicability of our model on other languages and
tasks for future work.

4 Experiments

Following the experimental settings in previous
works (Zhang et al., 2017), we conduct human
judgment to evaluate the performance of our
model and state-of-the-art baseline methods. We
will first introduce the dataset, our model details,
baseline methods and evaluation settings. Then we
will present the experimental results and give fur-
ther analysis about the evaluation. Finally, we will
present some example generations for case study.

4.1 Dataset and Model Details

We collect 168,000 poems (half wuyan: five char-
acters per line, half giyan: seven characters per
line) over 1,000 years history of classical Chinese
poetries as our corpus. We randomly select 80%
of the corpus as training set, 10% as validation set
and leave the rest for test. We extract all consec-
utive sentences in a poem as training pairs (X, Y)
and feed them into our model.

For hyperparameter settings of our model, i.e.
stylistic poetry generation (SPG), we set the di-
mensions of character embeddings and encoder
hidden states as d = 512. The total number of
styles is set to K = 10. Hence the dimension of
decoder hidden states is 512 + 512 + 10 = 1034.
We pack the training pairs to mini-batches and the
size of mini-batches is set to 50. The harmonic hy-
perparameter is set to A = 0 for the first 50,000

mini-batches as pretraining and A = 1.0 for subse-
quent batches. We use Adam optimizer (Kingma
and Ba, 2014) for stochastic gradient descent. We
also employ dropout (Srivastava et al., 2014) strat-
egy with dropout rate 0.2 to avoid overfitting prob-
lem. We terminate the training process when the
optimization loss on validation set is stable, i.e.
300, 000 mini-batches in total.

4.2 Baselines

We consider the following state-of-the-art poetry
generation models for comparison:

e Seq2seq (Bahdanau et al.,, 2014) is the
sequence-to-sequence model with attention mech-
anism. Note that seq2seq is the basis of our SPG
model. We can better analyze the improvement by
style disentanglement from the comparison with
seq2seq.

e Polish (Yan, 2016) proposed an iterative
schema to polish and refine the generated sen-
tences for several times instead of a one-pass gen-
eration.

e Memory (Zhang et al., 2017) incorporated
external memory into poem generation for better
novelty. The memory can be seen as a regulariza-
tion to constrain the behavior of the neural model.

Rule-based and template-based methods are not
considered as our baselines as they have been al-
ready thoroughly compared in (He et al., 2012;
Yan, 2016).

4.3 Evaluation Settings

Following the settings in (Zhang et al., 2017), we
employ human judgment for evaluation. To better
compare the ability to generate fluent and coherent
poems, we fix the first sentence as input and let all
models generate three subsequent sentences. The
first sentences are randomly chosen from the po-
ems in the test set. Therefore we also consider the
original poems written by real poets for compari-
son.

Note that our SPG model need a manually spec-
ified style id as input. For fully automatic poem
generation, we use the posterior style estimation
function Q(-) to infer the style of the first sen-
tence and then generate next three sentences se-
quentially using the same style.

As previous works (Manurung, 2004; Yi et al.,
2017) did, we design four criteria for human judg-
ment: Fluency (are the generated poems fluent
and well-formed?), Coherence (is the topic of
the whole quatrain consistent?), Meaningfulness
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Fluency Coherence Meaningfulness Poeticness
Group Methods e - - .

wuyan | gqiyan | wuyan | giyan | wuyan | giyan | wuyan | giyan
Group 1 seq2seq 2.75 2.48 2.60 2.33 2.38 2.15 2.40 2.35
SPG 343 3.23 3.13 3.05 2.83 3.10 3.10 3.10
memory 2.50 2.60 2.30 2.38 2.18 2.25 2.05 2.40
Group 2 polish 2.53 2.90 2.28 2.55 2.15 2.55 2.20 2.50
SPG 3.38 3.53 3.38 3.30 3.13 3.25 3.20 3.20
human poet | 3.85 3.68 4.05 3.83 4.00 3.83 3.53 3.75

Table 1: Human judgment results. We bold the best performing model in each group.

(does the poem convey some certain messages?)
and Poeticness (does the poem have some poetic
features?). Each criterion needs to be scored on a
5-point scale ranging from 1 to 5.

For each model, we generate 20 wuyan and 20
giyan quatrains given the first sentence. We invite
10 experts who major in Chinese literature or are
members of a poetry association to evaluate these
quatrains. We divide the baseline methods into
two groups: In the first group, we compare SPG
with seq2seq (Bahdanau et al., 2014) to present the
advantages of style disentanglement; In the sec-
ond group, we compare SPG with state-of-the-art
poetry generation methods, memory (Zhang et al.,
2017) and polish (Yan, 2016), and the original po-
ems written by poets to demonstrate the effective-
ness of our algorithm. Note that the scores of hu-
man judgment are relative, not absolute. Thus we
compare with seq2seq separately to avoid mutual
interference.

4.4 Experimental Results

We report the average scores of expert judgments
in Table 1. From the experimental results, we have
the following observations:

Firstly, the experimental results in group
1 demonstrate that SPG outperforms seq2seq,
the basis of our model, by learning a style-
disentangled generation model. The only differ-
ence between seq2seq and our model is that we
append a one-hot style id to the encoder state and
add mutual information regularization in Eq. 12 to
the loss function. Note that our model is fully un-
supervised: the one-hot style id conveys no mean-
ingful message unless the mutual information reg-
ularization is considered. In other words, the one-
hot style id and mutual information regularization
cannot be torn apart. Therefore, the improvements
over seq2seq all come from the part of style dis-
entanglement modeling because seq2seq and our

model share all the other components. The com-
parisons in group 1 of Table 1 are sufficient to
show the effectiveness of style modeling.

Secondly, the experimental results in group 2
show that SPG consistently outperforms two state-
of-the-art poem generation methods. SPG is able
to generate poetries in diverse styles without los-
ing fluency and coherency. Our advantages are
two-fold: On one hand, SPG better fits the diver-
sity characteristic of human poetry writing. In-
tuitively, seq2seq learns a generation model that
mixes poems in various styles and is more likely
to generate meaningless common sentences. By
disentangling poems in different styles, our model
can learn a more compact generation model for
each style and write more fluent and meaningful
poems. On the other hand, by fixing the style when
generating three lines in a quatrain, SPG is able to
generate more coherent poems.

One can also imagine that the generation prob-
ability distribution actually consists of several
peaks where each peak identifies a cluster of po-
ems in similar styles. A traditional model mixes
all the stuff together and learns a one-peak genera-
tion model which is more likely to generate mean-
ingless common sentences. In contrast, our model
disentangles different clusters (styles) and learns a
more accurate and compact generation model for
each cluster (style). Hence our model can generate
poems with higher quality and beat the baselines
in terms of human evaluation. This observation
demonstrates the effectiveness and robustness of
our model.

Finally, there is still a large margin between
SPG and human poets. In this paper, we focus on
poem generation in diverse styles. Other poetry
characteristics are also important for the quality of
generations. We will consider applying our style-
disentangle regularization on other poem models
for better performance in the future.
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Style id Keywords
loneliness, melancholy
the portrait of landscape
sorrow during roaming
hermit, rural scenes
grand scenery, regrets about old events
sorrow during drinking
emotions towards life experience
the portrait of hazy sceneries
reminiscence, homesickness
sadness about seasons

SO 0NN AW~

Table 2: Representative keywords for poems generated
by each learned style.

1 2 3 4 5 6 7 8 9 10

1 1
2 2
3 3

S 4 4

©

© 5 5

(0]

26 6

(0]

©

27 7
8 8
9 9

10 10

1 2 3 4 5 6 7 8 9 10
Human annotation

Figure 3: Experimental results on style recognition.
Each row represents the human annotation of corre-
sponding style generations. The diagonal blocks are
correct classifications. Darker block indicates higher
probability.

4.5 Interpretability of Learned Styles

In this subsection, we conduct experiments to un-
derstand the semantic meanings of each learned
style. To this end, we first generate 50 poems in
each style and then manually select two or three
keywords to sketch the overall feelings of every
style. The keywords of all 10 styles are listed
in Table 2. Note that the learned styles may not
strictly align the traditional writing styles recog-
nized by human such as romantic or pastoral be-
cause our model is fully unsupervised.

Then we generate another 50 poems (5 poems
per style) and ask the experts to classify these po-
ems into the 10 styles according to the relationship
between generated poems and style keywords in
Table 2. The human annotation results are shown
in Fig. 3.

We can see that many learned styles can be suc-
cessfully recognized by human with a higher prob-
ability, e.g. the first style can be correctly clas-
sified by 80% probability. This observation indi-
cates that the learned styles of SPG are meaningful
and recognizable through only two or three key-
words. Also, the generated poems are diverse oth-
erwise they cannot be differentiated and correctly
classified.

4.6 Case Study

We present three poems generated by SPG with
the same first sentence for case study. We only
list the results of three most representative styles
in Fig. 4 and put other generation examples in sup-
plementary materials (in Chinese). We can see that
the poems generated by different style inputs dif-
fer a lot from each other and follow the style key-
words. To conclude, SPG can generate fluent and
coherent poetries in diverse styles.

5 Conclusion

In this paper, we propose a stylistic poetry gen-
eration (SPG) model to learn the ability to write
poems in different styles under the same poetic
imagery. To the best of our knowledge, we are
the first effort at stylistic poetry generation in a
fully unsupervised manner. Therefore, our model
requires no expensive expert style annotation for
thousands of poems in the database. We innova-
tively employ mutual information, a concept in in-
formation theory, to develop our model. Exper-
imental results show that SPG is able to gener-
ate fluent and coherent poetries in diverse styles
without losing fluency and coherency. The learned
styles are meaningful and recognizable given only
two or three keywords. Our algorithm has been in-
corporated into Jiuge? poetry generation system.

For future works, we will consider adopting the
mutual information regularization for other text
generation tasks which encourage stylistic gener-
ation or diversity to improve their performances.
Another intriguing direction is to refine our model
for more task-specific scenarios. Besides, our
model simplifies the prior of style distribution as
a uniform distribution. This assumption could be
further improved by an iteratively updating ap-
proach.

*https://jiuge.thunlp.cn
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TRIB — AR BL AT,
After a cup of unstrained wine,
I have been a little drunk
B =1 2w,
I saw the cloud split the sky apart.
53k A L35,
On horseback, I pass through every road

across the mountain,

PATRA R AR 4,
but can only watch the red sun falling down
with sorrow.

WRIE — AR AL AT,
After a cup of unstrained wine,
I have been a little drunk
Ry FHAT 4L B B A
With a narrow boat, where could I find
the hermits?
T3 Rk,
Friends, don't be surprised that I come
back so late,
77 EARREHH
I have seen the great tide and the grand
spring breeze.

iR IR — AR I B4 BT
After a cup of unstrained wine,
I have been a little drunk
F AT R ANIR
I wonder on which cloud I can see the
presence of the gods.
BB+ KA,
The moon above the mount seems
farther and farther.
BEFLEE K.
The mist among the hill becomes
thicker and thicker.

(a) Style 1: “loneliness, melancholy”

(b) Style 4: “hermit, rural scenes”

(c) Style 8: “the portrait of hazy scener-
ies”

Figure 4: Examples generated by style 1,4 and 8 given the same first sentence. The keywords of the three styles

are listed for convenience.
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