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Abstract
Recent neural models for data-to-text genera-
tion are mostly based on data-driven end-to-
end training over encoder-decoder networks.
Even though the generated texts are mostly
fluent and informative, they often generate
descriptions that are not consistent with the
input structured data. This is a critical is-
sue especially in domains that require in-
ference or calculations over raw data. In
this paper, we attempt to improve the fi-
delity of neural data-to-text generation by
utilizing pre-executed symbolic operations.
We propose a framework called Operation-
guided Attention-based sequence-to-sequence
network (OpAtt), with a specifically designed
gating mechanism as well as a quantization
module for operation results to utilize infor-
mation from pre-executed operations. Exper-
iments on two sports datasets show our pro-
posed method clearly improves the fidelity of
the generated texts to the input structured data.

1 Introduction

Data-to-text generation is a classic language gen-
eration task that takes structured data (e.g., a ta-
ble of statistics or a set of event records) as in-
put, aiming at automatically producing texts that
informatively, correctly and fluently describe the
data (Kukich, 1983; Reiter and Dale, 1997; An-
geli et al., 2010; Konstas and Lapata, 2012; Perez-
Beltrachini and Gardent, 2017). Traditionally,
a data-to-text generation system should pay at-
tention to the problem of content selection (i.e.,
what to say) and surface realization (i.e., how to
say) (Reiter and Dale, 1997; Gatt and Krahmer,
2018). Modern neural generation systems avoid
the distinction of these aspects by building over a
standard encoder-decoder architecture (Sutskever
et al., 2014) with the attention mechanism over in-
put content (Bahdanau et al., 2015) and train the

∗Contribution during internship at Microsoft.

Input Data
Row Team Points Rebound City

1 Heat 94 44 Miami
2 Hawks 95 40 Atlanta

Generated Description
Hawks

:::::
edges the Heat with 95 - 94

Table 1: An example of generated texts from structured
data. In this example, the wining team is not indicated
explicitly, but can be inferred from the scores for hte
two teams. The words with underlining and

:::::
wave

::::
lines

are based on the facts from the input data and the results
of inferring, respectively.

whole system in an end-to-end fashion. As a re-
sult, end-to-end neural text generation has drawn
increasing attention from the natural language re-
search community (Mei et al., 2016; Lebret et al.,
2016; Wiseman et al., 2017; Kiddon et al., 2016).

However, a critical issue for neural text gen-
eration has been largely overlooked. In domains
such as sports, finance or medical care, language
generation should adhere to facts which are sup-
ported by or can be derived from the input data
through analysis or inference. For instance, the
sentence “Hawks edges the Heat with 95-94” de-
scribing the result of a basketball game should al-
ways conform to the original data in team names
and the scoreline. More importantly, the word
“edges” in the description is an inferred fact that
the scores between the two competing teams are
rather close, while “Hawks” is the winner that
scores the slightly higher point total of “95”. Since
current neural models do not have special treat-
ment for such data analytics, they are likely to
generate spurious and incorrect statements. This
problem has already been pointed out in recent
studies (Wiseman et al., 2017). Related studies
on neural program induction have shown that cur-
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rent neural models have difficulties in learning
arithmetic operations such as addition and com-
parisons (Joulin and Mikolov, 2015; Neelakantan
et al., 2016).

A straightforward way to improve the fidelity of
neural text generation is to separate symbolic op-
erations out from the neural models. More specifi-
cally, it is viable to pre-execute a few symbolic op-
erations before generation, and then use the results
of execution to guide the whole generation pro-
cess. However, there are two major challenges for
incorporating pre-defined operations: (1) if we ap-
ply operations exhaustively on all fields with com-
patible value types in the table, it would create a
huge search space in which mention worthy results
are rare events and (2) it is difficult to establish
the correspondences between specific spans of nu-
meric results and lexical choices. For example, the
word “edges” corresponds to the slight difference
in score, i.e. 1, in Table. 1.

Inspired by recent work that separates neural
representations and symbolic operations (Liang
et al., 2017), we propose a framework for neural
data-to-text generation that is able to utilize infor-
mation from pre-computed operations on raw data.
Based on a standard sequence-to-sequence model
with an attention and copying mechanism, we de-
sign a gating mechanism for the neural model to
decide which part of the execution results should
be used for generation. To address the second
challenge, we also design a quantization layer
to map numerical execution results into bins to
guide different lexical choices according to differ-
ent quantities of values.

To examine the effectiveness of our proposed
model, we collect a large dataset of sports headline
generation for NBA basketball games1. We also
evaluate the models on the ROTOWIRE dataset
released by Wiseman et al. (2017) which targets
at generating short paragraphs. Experiments show
that our model outperforms current state-of-the-
art neural methods in terms of both fluency and
fidelity. In summary, we make the following con-
tributions in this paper:

• We propose a neural data-to-text framework
that generate texts by additional processing
over input data. Based on a basic sequence-
to-sequence model with attention and copy-
ing, we design a gating mechanism to enable

1Available at https://github.com/janenie/
espn-nba-data

the model to decide which part of the exe-
cuted results should be utilized. We also pro-
pose a novel quantization layer to map spe-
cific numerical values onto different spans to
affect lexical choices under different condi-
tions.

• To focus our study on correct text generation,
we collect a challenging dataset for NBA
headline generation.

• We conduct experiments on the NBA head-
line dataset as well as the ROTOWIRE
dataset from previous work. Results show
improvements on both correctness and flu-
ency from our proposed framework over
baseline systems.

2 Background: Attention-Based Neural
Sequence-to-Sequence Model

In this section, we briefly introduce the architec-
ture of the attention-based sequence-to-sequence
(Seq2Seq) (Cho et al., 2014b; Bahdanau et al.,
2015) model with a copy mechanism (See et al.,
2017), which is the basis of our proposed model.

2.1 RNN Encoder-Decoder
The goal of data-to-text generation is to generate
a natural language description for a given set of
data records S = {rj}Kj=1. Usually, a Seq2Seq
model consists of an encoder and a decoder with
recurrent neural networks (RNN). First, each input
record rj is encoded into a hidden vector hj with
j ∈ {1, ...,K} using a bidirectional RNN. The de-
coder generates the description word by word us-
ing another RNN.

In the training phase, given a record set and its
corresponding natural language description (S, y),
the Seq2Seq model maximizes the conditional
probability as follows:

P (y|S) =
T∏
t=1

P (yt|y<t, S) (1)

where yt is the t-th word in the description and T
is the length of the description. The conditional
probability P (yt|y<t, S) is computed as:

P (yt|y<t, S) = softmax(f(dt, yt−1, ct)) (2)

where f(·) is a non-linear function and dt is the
hidden state of the decoder at step t:

dt = g(dt−1, yt−1, ct−1) (3)

https://github.com/janenie/espn-nba-data
https://github.com/janenie/espn-nba-data
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Figure 1: A diagram of the operation guided neural data-to-text generation. The input record table is converted
from the first 3 columns of Table1. First, a set of operations are applied to the input records. Then, the records,
operations and pre-excuted operation results are encoded. Finally, an attention-equipped GRU decoder with a
gating mechanism decides which part of the execution results and context should be used for generation.

where g(·) is a non-linear function. We adopt the
Gated Recurrent Unit (GRU) (Cho et al., 2014a)
as the recurrent unit for the encoder and decoder.
ct in Eq. 2 is the context vector at timestep t, com-
puted as a weighted hidden vectors hj :

ct =
K∑
j=1

αt,jhj (4)

where αt,j is computed by an attention scheme,
typically implemented as a softmax distribution
over scores calculated with a multi-layer percep-
tron (Bahdanau et al., 2015).

2.2 Copy Mechanism

Recent work augments Seq2Seq models to copy
words directly from the source information on
which they are conditioned (Gu et al., 2016; See
et al., 2017). These models usually introduce an
additional binary variable zt into per-timestep tar-
get word distribution, which indicates whether the
target word yt is copied from the source or is gen-
erated from the recurrent hidden states. We use the
pointer-generator network (See et al., 2017) for the
copy mechanism. Specifically, the binary variable
zt is calculated from the context vector ct, the de-
coder state dt and the decoder input yt−1:

pgen = σ(w>c ct + w>d dt + w>y yt−1 + bptr) (5)

where vectors wc, wd, wy and the scalar bptr are
learnable parameters, and σ is the sigmoid func-

tion. The joint probability for generating yt is for-
mulated as follows:

Pcopy(yt|y<t, S) = pgenP (yt|y<t, S) (6)

+(1− pgen)
∑

i:ri=yt

αt,i

3 The Proposed Model

In this paper, we propose to utilize information
from pre-executed operations on the input data
to guide the generation. As shown in Fig. 1,
our model consists of a record encoder, an oper-
ation encoder and an operation result encoder, and
an attention-equipped GRU decoder with a gat-
ing mechanism. First, a set of operations are ap-
plied to all valid records in the input data, yielding
their corresponding pre-executed results. The pre-
executed results act as facts inferred from input
data to guide the generation. Then, the records,
operation and pre-executed operation results are
encoded into corresponding representation. Fi-
nally, we design a gating mechanism for the GRU
decoder to decide which part of the inferred facts
should be used for generation. Moreover, to
address the challenge in establishing correspon-
dences between specific numeric results and lex-
ical choices, a quantization layer maps the re-
sults into several segmentations to guide the lex-
ical choices.

3.1 Notation
Given the input data and description pair (S, y),
where each target description y = y1, ..., yT con-
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sists of T words, and each input data is stored
in a table (e.g., Table 1), where each row is an
entity and each column is a field of this entity.
The input data can be transferred into K records
S = {ri}Ki=1, where each record r is a triple
(r.idx, r.f, r.v). For r4 in the table of Fig. 1,
r.idx r.f and r.v refer to the row index (e.g., row
2), the field name (e.g., column Points) and value
(e.g., cell value 95), respectively. We also define
a set of operations {opi}, and the operations are
applied to the input records S to produce corre-
sponding results at the preprocessing stage. The
results of operations can be categorized into two
types: opscli denotes results with a type of scalar
value and opidxi denotes results with a type of in-
dexing value.

3.2 Encoding Records
We map each record r ∈ S into a vector r by con-
catenating the embedding of r.idx (e.g., row 2),
r.f (e.g., column Points) and r.v (e.g., cell value
95), denoted as r = [eidx, ef , ev]>, where eidx, ef ,
ev are trainable word embeddings of r.idx, r.f and
r.v respectively, similar to (Yang et al., 2017). We
feed a set of record vectors r1, ..., rK to a bidirec-
tional GRU and yield the final record representa-
tions hctx

1 , ...,hctx
K as introduced in Section 2. We

leave the exploring of different encoding methods
as future work, as it would affect the performance.

3.3 Encoding Operations
As shown in Fig. 1, each operation opi consists of:
a) the name of the operation opi.t (e.g., minus);
b) the column opi.c to which the operation applies
(e.g., Points); and c) the row to which the oper-
ation applies, denoted as opi.arg = {ri.idx}Ai=1,
where A is the count of arguments. We then en-
code each operation opi by concatenating the rep-
resentation of these three components and feed
them into a nonlinear layer to represent each op-
eration as follows:

hop
i = tanh(Wop[opt

i, opc
i , oparg

i ]>i + bop), (7)

where opt
i is the embedding of opi.t; opc

i is the
embedding of column opi.cwhich shares the same
parameters of embedding with record column r.f .
For opi.arg, it may contain multiple arguments,
so we apply a nonlinear layer to get a fixed length
representation as follows:

oparg
i = tanh(

∑
k∈argi

Warg
k eidxk + barg), (8)

where eidxk is the same embedding as used to en-
code the row index r.idx, and Warg

k and barg are
learnable parameters. For operations which are
applied in the entire column (e.g., argmax) with-
out specific rows, the representation of arguments
is a special vector which stands for ALL.

3.4 Encoding Operation Results

The operations produce two types of results, one is
scalar results (e.g., the minus operation returns -1),
the other is indexing results (e.g., the argmax oper-
ation returns the row number 2), and two encoders
are designed to encode these results respectively.

Scalar Results Representation In Table. 1, the
word “edges” is generated based on the fact that
the points gap of the two teams is -1. In fact, other
value likes -2 or -3 is close to -1, and the word
“edges” is also applicable to them. However, di-
rectly establishing the lexical choices on various
sparse numeric values is not easy (Reiter et al.,
2005; Smiley et al., 2016; Zarrieß and Schlangen,
2016). Reiter et al. (2005) use consistent data-to-
word rules for time-series weather forecast sum-
mary generation. In this paper, we aim to capture
the data-to-word mapping automatically by a sim-
ple quantization unit. A quantization layer is de-
signed to map the scalar values into several bins,
namely quantization units. Specifically, we feed
each scalar value opscli to a softmax layer, and its
representation hres

i is computed as the weighted
sum of all quantization embeddings:

qi = Wqop
scl
i + bq, (9)

µi,l =
exp(qi,l)∑L
j=1 exp(qi,j)

, (10)

hres
i =

L∑
l=1

µi,l escll (11)

where Wq and bq are trainable parameters, escl is
the quantization embedding and L is the size of
quantization units. Note that L is much smaller
than the unique number of scalar results. We set L
to 5 in this paper.

Indexing Results Representation Some opera-
tions produce the row number of records (denoted
as idxi) as a result. For instance, the argmax op-
eration in Fig. 1 returns row 2. We then look up
the row embedding of the selected record defined
in Section 3.2 to represent the result. Defined as
hres
i = eidxi .
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3.5 Decoder
Comparing with the Seq2Seq model described in
Section 2 and our model, the main difference is in
the context vector ct. Different from Eq. 4, our
model has both records and operations as input.
We design two attention layers to summarize in-
formation from both parts respectively, the overall
context vector ct is balanced by a dynamic gate λt.

ct = (1− λt)copt + λtcctxt , (12)

λt = σ(Wgdt + bg), (13)

where copt and cctxt are the context vector of oper-
ation results and records, respectively.

As there are two types of operation results
which have quite different meanings, their con-
text vectors are calculated separately and then put
together by a nonlinear layer. The context vec-
tors csclt of operation results with scalar value at
timestep t are constructed as (Luong et al., 2015):

csclt =
N∑
j=1

αscl
t,j ∗ hres

j (14)

βsclt,j = MLP(dt−1,hop
j ), (15)

αscl
t,j =

exp(βsclt,j )∑
k exp(β

scl
t,k )

(16)

where MLP stands for standard 1-layer perceptron
(with tanh nonlinearity), and αscl

t,j refers to the im-
portance of j-th operations at the current timestep
t. Eq. 14 is based on the attention mechanism
which can be treated as mapping a query and a
set of key-value pairs to an output. The output
csclt is computed as a weighted sum of the values
hres
j , where the weight assigned to each value is

computed by a compatibility function of the query
dt−1 with the corresponding key hop

j . In this way,
we also construct cidxt . Then the context vector
of operation results at time step t is computed by
putting these two context vectors together:

copt = MLP([csclt , cidxt ]>) (17)

The context vector representation cctxt for
records is constructed by replacing hres

j with hctx
j

in Eq. 14 and replacing hop
j with hctx

j in Eq. 15.
After obtaining ct, the word distribution for

generation can be calculated by substituting the
ct in Eq. 2. For the copy probability defined in
Eq. 6, to copy words based on the information of
both operations and records at current time step t,

ESPN ROTOWIRE WIKIBIO
Vocab 3.3K 11.3K 400K

Tokens 114.3K 1.6M 19M
Examples 15.1K 4.9K 728K
Avg Len 9.5 337.1 26.1

Input facts 62.7% 61.2% 72.1%
Inferred facts 29.1% 11.7% 7.4%
Unsupported 8.2% 27.1% 20.5%

Table 2: Dataset statistics. For each dataset, we also
manually label the source for the facts mentioned in 20
descriptions, and report the percentage of facts based
on the input data, inferred facts and unsupported facts.

we need to update the attention weights for Eq. 6
based on the newly computed context vector ct
and decoding state dt:

βnewt,j = MLP(hctx
j , [dt−1, ct]>) (18)

αnew
t,j =

exp(βnewt,j )∑
k exp(β

new
t,k )

(19)

3.6 Training
As the results of operations are pre-computed in
an offline stage, our proposed model is fully dif-
ferentiable and can be optimized in an end-to-end
manner using back propagation. Given the batches
of records {S}N and the standard natural language
descriptions {Y }N , the objective function is to
minimize the negative log-likelihood:

L = − 1

N

N∑
k=1

Tk∑
t=1

log p(ykt |yk<t, S
k) (20)

where the superscript k indicates the index of the
records-description pair, and Tk is the length of the
k-th description.

4 Experiments

4.1 Datasets
Several benchmark datasets have been used in
recent years for data-to-text generation (Liang
et al., 2009; Chen and Mooney, 2008; Lebret et al.,
2016). For instance, Lebret et al. (2016) have built
a biography generation dataset from Wikipedia.
However, a recent study by Perez-Beltrachini and
Gardent (2017) shows that existing datasets have
a few missing properties such as lacking syntactic
and semantic diversity. To check whether the facts
mentioned in the descriptions are based on input
data, we identify the text spans which contain facts
(e.g., in table 1, “Hawks” is a span contain fact)
from the descriptions and divide each span into
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three categories: a) input facts (facts that can be
directly found from the input), b) inferred facts
(facts that can not be directly found from the in-
put but can be derived), c) unsupported facts (facts
that can not be found or derived from input data).
Table 2 shows that WikiBio dataset requires infer-
ence on only 5.4% of its data. To better demon-
strate the effectiveness of our approach, we adopt
the following datasets which require substantially
more inference based on the input data:

ROTOWIRE We use the dataset and its stan-
dard splits released by Wiseman et al. (2017),
which consists of 4,853 human written NBA bas-
ketball game summaries aligned with their cor-
responding game statistics. Table 2 shows that
11.7% of facts in the game summaries can be in-
ferred based on the input data. However, this
dataset focuses on generating long text and 27.1%
of facts are unsupported2, which brings difficulties
to the analysis of fidelity for the generated text.

ESPN We collect 15,054 NBA game result
headlines during 2006-2017 from the ESPN web-
site, paired with their corresponding game statis-
tics. These headlines are professional and concise,
e.g., the description in Fig. 1. The percentage of
inferred facts is 29.1% while unsupportive facts is
only 8%, so we can focus on generation for the
inferred facts. We split the dataset into 12,043
(80%) for training, 1,505 (10%) for development
and 1,506 (10%) for testing respectively.

4.2 Instantiation

In the following experiments, we define two op-
erations, the minus operation which returns the
scalar result and the argmax operation which re-
turns a id of a row. These operations are applied
to all columns and rows whose record values are
numeric numbers. The number of pre-executed
results increases with the number of operations,
arguments and the size of input data, which will
impact the efficiency of our model. The unneces-
sary operation arguments can be pruned, e.g., only
apply operations to the arguments co-mentioned in
descriptions on the training set. We will leave this
part of research for our future work.

4.3 Experiment Setup

In the main experiments, we compare our model
with the following methods: (a) Template: a
problem-specific template-based generator which

2e.g., injuries, rankings in the league, team schedule, etc.

fills structured data into corresponding place-
holders to generate texts3, (b) Seq2Seq+copy:
Seq2Seq model with pointer network copy mech-
anism introduced in Section 2. It is one of
the state-of-the-art methods, (c) Seq2Seq+op:
Seq2Seq+copy plus the results of operations,
where results are directly treated as extra records
and fed to the record encoder introduced in Sec-
tion 3.2 with the original input together, (d)
Seq2Seq+op+quanti: We apply the quantization
layer Eq. 9-11 to the results of minus operation on
the basis of Seq2Seq+op. For completeness, we
also report the results of Wiseman et al. (2017) on
the ROTOWIRE dataset. The difference between
this baseline and Seq2Seq+copy is that the former
uses an LSTM rather than GRU for decoding and
an additional copying loss. All the experiments
use a beam size of 5 in decoding4.

For model training, we use the stochastic gra-
dient descent algorithm and the AdaDelta opti-
mizer (Zeiler, 2012). The dimension of trainable
word embeddings are set to 256 except for the di-
mension of input record row embedding, which is
set to 32; and the dimension of hidden units in
GRUs are all set to 512. All the parameters are ini-
tialized using a normal distribution with zero mean
and a variance of

√
6/(din + dout), where din is

the dimension of the input layer and dout is the di-
mension of the output layer (Glorot and Bengio,
2010). Training converges after 40 epochs.

4.4 Main Results

We adopt both automatic evaluation and hu-
man evaluation to evaluate the proposed model.
Automatic Evaluation We employ BLEU-4 as
the metric for automatic evaluation. Table 4
gives the automatic evaluation results for gen-
eration on two datasets. Our proposed model
OpAtt outperforms neural network baselines (See
et al., 2017; Wiseman et al., 2017). The
results show that our method which incorpo-
rates the operations enables generating texts that
are fidelity to facts and therefore yields the
best performance. Seq2Seq+op+quant outper-

3For the ROTOWIRE dataset, we adopt Wiseman et al.
(2017)’s templates. For the ESPN dataset, we use Dou
et al. (2018)’s system to extract templates. The template
is constructed by emitting teams and players information in
a sentence: <team1> beats <team2> with <point1>-
<point2>.

4The authors have updated the dataset to fix some mis-
takes recently, so we cannot use the result which is reported
in their paper and rerun this baseline with the authors’ code.
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ESPN ROTOWIRE
#Cont./#Supp. #Cont./#Supp. #Cont. #Cont./#Supp. #Cont./#Supp. #Cont.
(input facts) (inferred facts) (unsupported) (input facts) (inferred facts) (unsupported)

Ref 0.00 / 4.90 0.00 / 1.12 0.51 0.00 / 12.87 0.00 / 3.07 3.20
Seq2Seq+copy 0.44 / 4.61 0.16 / 1.25 0.25 3.75 / 14.44 0.89 / 2.20 2.82
Seq2Seq+op 0.24 / 3.97 0.07 / 1.08 0.76 5.55 / 18.13 0.42 / 2.53 1.93
Seq2Seq+op+quant 0.21 / 4.88 0.03 / 1.10 0.32 3.47 / 16.02 0.53 / 2.02 2.13
OpAtt 0.04 / 5.00 0.02 / 1.27 0.19 2.24 / 16.56 0.18 / 2.84 2.07

Table 3: Average annotators judgment for the count of facts contradicting (#Cont.) and supporting (#Supp.) on
facts based on input data, inferred facts and unsupported facts respectively.

ESPN ROTOWIRE
Dev Test Dev Test

Template 13.75 14.27 8.97 8.93
Wiseman’s - - 13.57 13.62
Seq2Seq+copy 15.63 15.30 13.72 13.47
Seq2Seq+op 14.07 13.74 13.52 13.44
Seq2Seq+op+quant 15.68 15.49 14.05 13.88
OpAtt 17.19* 18.00* 14.96* 14.74*

Table 4: BLEU scores (%) over two datasets. Statistical
significant is indicated with *(p < 0.05) with respect to
Seq2Seq+copy.

forms the baseline method Seq2Seq+copy, but
is not as good as our method. The result con-
firms that our proposed method with special-
ized operation encoder and gating mechanism
utilizes the information of operations more ef-
fectively. Moreover, Seq2Seq+op+quant outper-
forms Seq2Seq+op showing the effectiveness of
the quantization layer.
Human Evaluation Because of the approximate
nature of the automated metric BLEU, we also
conduct human evaluation to examine the fidelity
of the generated texts. We randomly select some
games from testing set, and entrust a professional
crowdsourcing company to annotate the generated
texts5. Specifically, three native English workers
who are familiar with NBA games are hired. They
are first required to identify the text spans which
contain facts from the generated texts, then cate-
gorize the text spans into one of three facts listed
in Table 2, and finally judge whether the span is
supported or contradicted by the input data.

Table 3 shows the annotation results. Our
method talks more about the inferred facts in the
generated texts while includes less contradictions.
In addition, all methods produce some unsup-

5The Fleiss’ kappa score of the annotation is 0.782 for
ESPN and 0.761 for ROTOWIRE respectively. For the ESPN
dataset, we select 50 games and each with one generated sen-
tence. For ROTOWIRE, by following (Wiseman et al., 2017),
we select 15 games and each with 3 randomly selected sen-
tences.

Dev Test
Seq2Seq + copy 15.63 15.30
OpAtt 17.19 18.00
OpAtt w/o argmax op 15.71 15.97
OpAtt w/o quantization 16.35 16.70
OpAtt w/o gate 16.35 16.15

Table 5: BLEU scores (%) of model ablation.

Reference
:::::
horford ’s . . . . . .dunk helps hawks

::::
edge nets

, 114 - 111
Seq2Seq
+copy

nets rally from . . .17 . . . . . .down to
:::
top nets

111 - 111
OpAtt w/o
argmax op

hawks rally from . . .17 . . . . . .down to
:::
beat nets

114 - 111
OpAtt

:::::
horford scores 24 as hawks

:::
beat nets

114 - 111

Table 6: The generated texts by introducing different
operations. The words with underline,

:::::
wavy

:::
line and

. . .dot. . . . .line are input facts, inferred facts and unsupported
fact, respectively. And the bold words are contradicted
facts.

ported facts which affect the fidelity of the gen-
erated texts. We leave this issue for future work.

4.5 Analysis

As discussed in Section 4.1, the ESPN dataset is
rich in inferred facts. Therefore, the model analy-
sis is based on this dataset, and all case studies are
made on the development set.

4.5.1 Effect of Operations
We examine the necessity and the benefit of intro-
ducing operations by removing the argmax oper-
ation (see “OpAtt w/o argmax op” in Table 5).
Comparing to Seq2Seq+copy, the results show
that our full model and “OpAtt w/o argmax op”
which incorporates results of operations both work
well in terms of BLEU, and the improvements in-
crease with the number of operations.

To better illustrate that our model can generate
factually correct text, we show the texts gener-
ated by different models in Table 6. The game
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results mentioned in the text generated by the
Seq2Seq+copy model are wrong, which shows the
inability for existing neural models on inferring
facts from the structured data. After adding the
minus operation, “OpAtt w/o argmax op” is able
to infer the game result by applying the minus op-
eration on the points of the two competing teams,
therefore its generated text conforms to the game
results. The results confirm the necessity of intro-
ducing operations to ensure factually correct gen-
eration. Furthermore, our full model generates
text with the correct point leader and game result
based on the results of operation argmax and op-
eration minus respectively.

4.5.2 Effect of Quantization

Figure 2: Weights of the quantization softmax layer
when mapping the points gap of two competing teams
to five bins. X-axis is points gap and Y-axis is quanti-
zation bin.

The quantization layer maps the numerical exe-
cution results into several bins to enable different
lexical choices according to different quantities of
values. Compared to our full model, “OpAtt w/o
quantization” in Table 5 which removes the quan-
tization layer decreases the BLEU performance,
which shows the effectiveness of the quantization
layer in the lexical choices during generation.

In Fig. 2, we visualize the weights of quantiza-
tion softmax layer µi,l produced by Eq. 10 when
mapping the points gap of two competing teams
to five bins. We can see that the points gaps with
close numerical values are mapped to the same
bin, so the decoder can choose similar words for
them in generation. When the absolute value of
the points gap is small, the weights distribution
over the points gap is dispersive. At this time,
the decoder tends to generate general words. This
distribution becomes more centralized with the in-
crease of the absolute value of the points gap, to
generate more unique words. Moreover, we show
the distribution of words that describes the win-
ning relationship of games over different intervals
of game points gap. As shown in Table 7, we
can clearly see that apart from three most common

Points Gap Words describes winning relationship
[0, 5) beat, past, win over, edge, hold off, survive
[5, 10) beat, past, win over, out last, hold off
[10, 20) beat, past, win over, blow out, top, pull away,

rout
>= 20 beat, past, win over, power, rout, easy win

over, roll past

Table 7: The words that describing the winning re-
lationship of games over different intervals of game
points gap.

word “beat”, “past”, “win over”, our proposed
quantization layer can choose specific words ac-
cording to the points gap. The word “edge” and
“hold off” will only be chosen when the points gap
is small, while the word “rout” and “blow out” will
appear when the points gap is larger than 10.

4.5.3 Effect of Gating Mechanism

Figure 3: The gating weights at different time steps.

We design a gating mechanism to decide when to
incorporate the results of operations to guide the
process of generation. From Table 5, “OpAtt w/o
gate” stands for the method which replaces the
balancing weight λ in Eq. 12 to 0.5, which is a spe-
cial case of our proposed gating mechanism. The
performance of this ablation is worse than our full
model, which demonstrates that the gating mech-
anism is an essential component. Fig. 3 shows an
example of the gating weights at each time step in
generation, where a darker cell means the incorpo-
ration of more information from operation results
for decoding corresponding word. We can see that
the gate weights are reasonable, as the gate values
are large when deciding the team leader “horford”
and the winner of the game “hawks”.

5 Related Work

Data-to-text generation is a task of natural lan-
guage generation (NLG) (Gatt and Krahmer,
2018). Previous research has focused on indi-
vidual content selection (Kukich, 1983; Reiter
and Dale, 1997; Duboué and McKeown, 2003;
Barzilay and Lapata, 2005) and surface realization
(Goldberg et al., 1994; Soricut and Marcu, 2006;
Wong and Mooney, 2007).
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Recent work avoids the distinction of the con-
tent selection and sentence realization. Chen and
Mooney (2008) use an SMT based approach to
learn alignments between comments and their cor-
responding event records. Angeli et al. (2010)
transform the problem into a sequence of local de-
cisions using a log-linear model. Konstas and La-
pata (2012) employ a PCFG to simultaneously op-
timize the content selection and surface realization
problem.

In the field of neural text generation, Mei et al.
(2016) uses a neural encoder-decoder approach for
end-to-end training. Some have focused on condi-
tional language generation based on tables (Yang
et al., 2017), short biographies generation from
Wikipedia tables (Lebret et al., 2016; Chisholm
et al., 2017) and comments generation based on
stock prices (Murakami et al., 2017). However,
none of these methods consider incorporating the
facts that can be inferred from the input data to
guide the process of generation. Murakami et al.
(2017) post-process the price by extending the
copy mechanism and replacing numerical values
with defined arithmetic operations after genera-
tion. While our model, OpAtt utilizes informa-
tion from pre-computed operations on raw data to
guide the generation.

Our work is related to research areas on deep
learning models for program induction and ques-
tion answering from a knowledge base (Neelakan-
tan et al., 2016; Liang et al., 2017; Ling et al.,
2017). Neelakantan et al. (2016) solve the prob-
lem of semantic parsing from structured data and
generate programs using pre-defined arithmetic
operations. Liang et al. (2017) design a set of ex-
ecutable operators and obtain the answers by the
generated logic forms. Ling et al. (2017) design a
set of operators to generate the latent program for
math problem solving. However, data-to-text is a
different task. The operations for these methods
are designed to find the answers, while we use the
operations to guide the process of generation.

6 Conclusion and Future Work

In this work, we address the problem of generat-
ing consistent text from structured data in a neural
data-to-text generation framework, where we ex-
tract facts that can be inferred in the given data by
applying several executable symbolic operations
to guide the generation. Moreover, we design a
special quantization layer to operations whose re-

sult type is numeric value and establish the corre-
spondence between the numeric values and lexi-
cal choice in generation. Experiments show that
our method, OpAtt, outperforms existing state-of-
the-art neural methods, in both fluency and fidelity
evaluations.

As applying operations on a large number of
records greatly increases the search space for the
attention mechanism, we will extend our model to
automatically detect the relevant operations to re-
duce computing complexity. We will also extend
the set of operations to accommodate historical
data, graph data and detect the unsupported facts
in the generation within the single framework.
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Pablo Ariel Duboué and Kathleen R. McKeown. 2003.
Statistical acquisition of content selection rules for
natural language generation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2003, Sapporo, Japan,
July 11-12, 2003.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Intell.
Res., 61:65–170.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In AISTATS.

Eli Goldberg, Norbert Driedger, and Richard I. Kit-
tredge. 1994. Using natural-language processing to
produce weather forecasts. IEEE Expert, 9(2):45–
53.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. In Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 190–198.
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