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Abstract

Automatic generation of paraphrases from a
given sentence is an important yet challeng-
ing task in natural language processing (NLP).
In this paper, we present a deep reinforce-
ment learning approach to paraphrase gener-
ation. Specifically, we propose a new frame-
work for the task, which consists of a genera-
tor and an evaluator, both of which are learned
from data. The generator, built as a sequence-
to-sequence learning model, can produce para-
phrases given a sentence. The evaluator, con-
structed as a deep matching model, can judge
whether two sentences are paraphrases of each
other. The generator is first trained by deep
learning and then further fine-tuned by re-
inforcement learning in which the reward is
given by the evaluator. For the learning of the
evaluator, we propose two methods based on
supervised learning and inverse reinforcement
learning respectively, depending on the type
of available training data. Experimental re-
sults on two datasets demonstrate the proposed
models (the generators) can produce more ac-
curate paraphrases and outperform the state-
of-the-art methods in paraphrase generation in
both automatic evaluation and human evalua-
tion.

1 Introduction

Paraphrases refer to texts that convey the same
meaning but with different expressions. For ex-
ample, “how far is Earth from Sun”, “what is the
distance between Sun and Earth” are paraphrases.
Paraphrase generation refers to a task in which
given a sentence the system creates paraphrases
of it. Paraphrase generation is an important task
in NLP, which can be a key technology in many
applications such as retrieval based question an-
swering, semantic parsing, query reformulation in
web search, data augmentation for dialogue sys-
tem. However, due to the complexity of natural

language, automatically generating accurate and
diverse paraphrases is still very challenging. Tra-
ditional symbolic approaches to paraphrase gen-
eration include rule-based methods (McKeown,
1983), thesaurus-based methods (Bolshakov and
Gelbukh, 2004; Kauchak and Barzilay, 2006),
grammar-based methods (Narayan et al., 2016),
and statistical machine translation (SMT) based
methods (Quirk et al., 2004; Zhao et al., 2008,
2009).

Recently, neural network based sequence-to-
sequence (Seq2Seq) learning has made remark-
able success in various NLP tasks, including
machine translation, short-text conversation, text
summarization, and question answering (e.g., Cho
et al. (2014); Wu et al. (2016); Shang et al. (2015);
Vinyals and Le (2015); Rush et al. (2015); Yin
et al. (2016)). Paraphrase generation can naturally
be formulated as a Seq2Seq problem (Cao et al.,
2017; Prakash et al., 2016; Gupta et al., 2018; Su
and Yan, 2017). The main challenge in paraphrase
generation lies in the definition of the evaluation
measure. Ideally the measure is able to calculate
the semantic similarity between a generated para-
phrase and the given sentence. In a straightfor-
ward application of Seq2Seq to paraphrase gen-
eration one would make use of cross entropy as
evaluation measure, which can only be a loose ap-
proximation of semantic similarity. To tackle this
problem, Ranzato et al. (2016) propose employing
reinforcement learning (RL) to guide the training
of Seq2Seq and using lexical-based measures such
as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) as a reward function. However, these lexi-
cal measures may not perfectly represent semantic
similarity. It is likely that a correctly generated
sequence gets a low ROUGE score due to lexical
mismatch. For instance, an input sentence “how
far is Earth from Sun” can be paraphrased as “what
is the distance between Sun and Earth”, but it will
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get a very low ROUGE score given “how many
miles is it from Earth to Sun” as a reference.

In this work, we propose taking a data-driven
approach to train a model that can conduct evalu-
ation in learning for paraphrasing generation. The
framework contains two modules, a generator (for
paraphrase generation) and an evaluator (for para-
phrase evaluation). The generator is a Seq2Seq
learning model with attention and copy mecha-
nism (Bahdanau et al., 2015; See et al., 2017),
which is first trained with cross entropy loss and
then fine-tuned by using policy gradient with su-
pervisions from the evaluator as rewards. The
evaluator is a deep matching model, specifically
a decomposable attention model (Parikh et al.,
2016), which can be trained by supervised learn-
ing (SL) when both positive and negative exam-
ples are available as training data, or by inverse
reinforcement learning (IRL) with outputs from
the generator as supervisions when only positive
examples are available. In the latter setting, for
the training of evaluator using IRL, we develop a
novel algorithm based on max-margin IRL prin-
ciple (Ratliff et al., 2006). Moreover, the gener-
ator can be further trained with non-parallel data,
which is particularly effective when the amount of
parallel data is small.

We evaluate the effectiveness of our approach
using two real-world datasets (Quora question
pairs and Twitter URL paraphrase corpus) and we
conduct both automatic and human assessments.
We find that the evaluator trained by our methods
can provide accurate supervisions to the genera-
tor, and thus further improve the accuracies of the
generator. The experimental results indicate that
our models can achieve significantly better per-
formances than the existing neural network based
methods.

It should be noted that the proposed approach
is not limited to paraphrase generation and can
be readily applied into other sequence-to-sequence
tasks such as machine translation and generation
based single turn dialogue. Our technical contri-
bution in this work is of three-fold:

1. We introduce the generator-evaluator frame-
work for paraphrase generation, or in general,
sequence-to-sequence learning.

2. We propose two approaches to train the evalu-
ator, i.e., supervised learning and inverse rein-
forcement learning.

3. In the above framework, we develop several

Figure 1: Framework of RbM (Reinforced by
Matching).

techniques for learning of the generator and
evaluator.
Section 2 defines the models of generator and

evaluator. In section 3, we formalize the problem
of learning the models of generator and evaluator.
In section 4, we report our experimental results. In
section 5, we introduce related work.

2 Models

This section explains our framework for para-
phrase generation, containing two models, the
generator and evaluator.

2.1 Problem and Framework

Given an input sequence of words X =
[x1, . . . , xS ] with length S, we aim to generate
an output sequence of words Y = [y1, . . . , yT ]
with length T that has the same meaning as X .
We denote the pair of sentences in paraphrasing
as (X,Y ). We use Y1:t to denote the subsequence
of Y ranging from 1 to t and use Ŷ to denote the
sequence generated by a model.

We propose a framework, which contains a
generator and an evaluator, called RbM (Rein-
forced by Matching). Specifically, for the gener-
ator we adopt the Seq2Seq architecture with atten-
tion and copy mechanism (Bahdanau et al., 2015;
See et al., 2017), and for the evaluator we adopt
the decomposable attention-based deep matching
model (Parikh et al., 2016). We denote the gener-
ator as Gθ and the evaluator as Mφ, where θ and φ
represent their parameters respectively. Figure 1
gives an overview of our framework. Basically
the generator can generate a paraphrase of a given
sentence and the evaluator can judge how seman-
tically similar the two sentences are.

2.2 Generator: Seq2Seq Model

In this work, paraphrase generation is defined as
a sequence-to-sequence (Seq2Seq) learning prob-
lem. Given input sentence X , the goal is to
learn a model Gθ that can generate a sentence
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Ŷ = Gθ(X) as its paraphrase. We choose the
pointer-generator proposed by See et al. (2017)
as the generator. The model is built based on
the encoder-decoder framework (Cho et al., 2014;
Sutskever et al., 2014), both of which are imple-
mented as recurrent neural networks (RNN). The
encoder RNN transforms the input sequence X
into a sequence of hidden statesH = [h1, . . . , hS ].
The decoder RNN generates an output sentence Y
on the basis of the hidden states. Specifically it
predicts the next word at each position by sam-
pling from ŷt ∼ p(yt|Y1:t−1, X) = g(st, ct, yt−1),
where st is the decoder state, ct is the context
vector, yt−1 is the previous word, and g is a
feed-forward neural network. Attention mecha-
nism (Bahdanau et al., 2015) is introduced to com-
pute the context vector as the weighted sum of en-
coder states:

ct =

S∑
i=1

αtihi, αti =
exp η(st−1, hi)∑S
j=1 exp η(st−1, hj)

,

where αti represents the attention weight and η
is the attention function, which is a feed-forward
neural network.

Paraphrasing often needs copying words from
the input sentence, for instance, named entities.
The pointer-generator model allows either gener-
ating words from a vocabulary or copying words
from the input sequence. Specifically the proba-
bility of generating the next word is given by a
mixture model:

pθ(yt|Y1:t−1, X) = q(st, ct, yt−1)g(st, ct, yt−1)

+ (1− q(st, ct, yt−1))
∑

i:yt=xi
αti,

where q(st, ct, yt−1) is a binary neural classifier
deciding the probability of switching between the
generation mode and the copying mode.

2.3 Evaluator: Deep Matching Model
In this work, paraphrase evaluation (identifica-
tion) is casted as a problem of learning of sen-
tence matching. The goal is to learn a real-valued
function Mφ(X,Y ) that can represent the match-
ing degree between the two sentences as para-
phrases of each other. A variety of learning tech-
niques have been developed for matching sen-
tences, from linear models (e.g., Wu et al. (2013))
to neural network based models (e.g., Socher et al.
(2011); Hu et al. (2014)). We choose a simple
yet effective neural network architecture, called

the decomposable-attention model (Parikh et al.,
2016), as the evaluator. The evaluator can cal-
culate the semantic similarity between two sen-
tences:

Mφ(X,Y ) = H(

S∑
i=1

G([e(xi), x̄i]),

T∑
j=1

G([e(yj), ȳj ])),

where e(·) denotes a word embedding, x̄i and ȳj
denote inter-attended vectors, H and G are feed-
forward networks. We refer the reader to Parikh
et al. (2016) for details. In addition, we add po-
sitional encodings to the word embedding vectors
to incorporate the order information of the words,
following the idea in Vaswani et al. (2017).

3 Learning

This section explains how to learn the generator
and evaluator using deep reinforcement learning.

3.1 Learning of Generator
Given training data (X,Y ), the generator Gθ is
first trained to maximize the conditional log like-
lihood (negative cross entropy):

LSeq2Seq(θ) =
∑T

t=1
log pθ(yt|Y1:t−1, X). (1)

When computing the conditional probability of the
next word as above, we choose the previous word
yt−1 in the ground-truth rather than the word ŷt−1
generated by the model. This technique is called
teacher forcing.

With teacher forcing, the discrepancy between
training and prediction (also referred to as expo-
sure bias) can quickly accumulate errors along the
generated sequence (Bengio et al., 2015; Ranzato
et al., 2016). Therefore, the generator Gθ is next
fine-tuned using RL, where the reward is given by
the evaluator.

In the RL formulation, generation of the next
word represents an action, the previous words rep-
resent a state, and the probability of generation
pθ(yt|Y1:t−1, X) induces a stochastic policy. Let
rt denote the reward at position t. The goal of RL
is to find a policy (i.e., a generator) that maximizes
the expected cumulative reward:

LRL(θ) = Epθ(Ŷ |X)

T∑
t=1

rt(X, Ŷ1:t). (2)

We define a positive reward at the end of se-
quence (rT = R) and a zero reward at the other
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positions. The reward R is given by the evalua-
tor Mφ. In particular, when a pair of input sen-
tence X and generated paraphrase Ŷ = Gθ(X)
is given, the reward is calculated by the evaluator
R = Mφ(X, Ŷ ).

We can then learn the optimal policy by em-
ploying policy gradient. According to the policy
gradient theorem (Williams, 1992; Sutton et al.,
2000), the gradient of the expected cumulative re-
ward can be calculated by

∇θLRL(θ) =
T∑
t=1

[∇θ log pθ(ŷt|Ŷ1:t−1, X)]rt.

(3)
The generator can thus be learned with stochastic
gradient descent methods such as Adam (Kingma
and Ba, 2015).

3.2 Learning of Evaluator

The evaluator works as the reward function in RL
of the generator and thus is essential for the task.
We propose two methods for learning the evalua-
tor in different settings. When there are both pos-
itive and negative examples of paraphrases, the
evaluator is trained by supervised learning (SL).
When only positive examples are available (usu-
ally the same data as the training data of the gener-
ator), the evaluator is trained by inverse reinforce-
ment learning (IRL).

Supervised Learning
Given a set of positive and negative examples
(paraphrase pairs), we conduct supervised learn-
ing of the evaluator with the pointwise cross en-
tropy loss:

JSL(φ) = − logMφ(X,Y )−log(1−Mφ(X,Y −)),
(4)

where Y − represents a sentence that is not a para-
phrase ofX . The evaluatorMφ here is defined as a
classifier, trained to distinguish negative example
(X,Y −) from positive example (X,Y ).

We call this method RbM-SL (Reinforced by
Matching with Supervised Learning). The evalu-
ator Mφ trained by supervised learning can make
a judgement on whether two sentences are para-
phrases of each other. With a well-trained evalua-
tor Mφ, we further train the generator Gθ by rein-
forcement learning usingMφ as a reward function.
Figure 2a shows the learning process of RbM-SL.
The detailed training procedure is shown in Algo-
rithm 1 in Appendix A.

Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) is a sub-
problem of reinforcement learning (RL), about
learning of a reward function given expert demon-
strations, which are sequences of states and ac-
tions from an expert (optimal) policy. More
specifically, the goal is to find an optimal re-
ward function R∗ with which the expert policy
pθ∗(Y |X) really becomes optimal among all pos-
sible policies, i.e.,

Epθ∗ (Y |X)R
∗(Y ) ≥ Epθ(Ŷ |X)R

∗(Ŷ ), ∀θ.

In the current problem setting, the problem
becomes learning of an optimal reward function
(evaluator) given a number of paraphrase pairs
given by human experts (expert demonstrations).

To learn an optimal reward (matching) func-
tion is challenging, because the expert demonstra-
tions might not be optimal and the reward function
might not be rigorously defined. To deal with the
problem, we employ the maximum margin formu-
lation of IRL inspired by Ratliff et al. (2006).

The maximum margin approach ensures the
learned reward function has the following two
desirable properties in the paraphrase generation
task: (a) given the same input sentence, a reference
from humans should have a higher reward than the
ones generated by the model; (b) the margins be-
tween the rewards should become smaller when
the paraphrases generated by the model get closer
to a reference given by humans. We thus specifi-
cally consider the following optimization problem
for learning of the evaluator:

JIRL(φ) = max(0, 1−ζ+Mφ(X, Ŷ )−Mφ(X,Y )),
(5)

where ζ is a slack variable to measure the agree-
ment between Ŷ and Y . In practice we set ζ =
ROUGE-L(Ŷ , Y ). Different from RbM-SL, the
evaluator Mφ here is defined as a ranking model
that assigns higher rewards to more plausible para-
phrases.

Once the reward function (evaluator) is learned,
it is then used to improve the policy function (gen-
erator) through policy gradient. In fact, the gen-
erator Gθ and the evaluator Mφ are trained alter-
natively. We call this method RbM-IRL (Rein-
forced by Matching with Inverse Reinforcement
Learning). Figure 2b shows the learning process
of RbM-IRL. The detailed training procedure is
shown in Algorithm 2 in Appendix A.
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(a) RbM-SL (b) RbM-IRL

Figure 2: Learning Process of RbM models: (a) RbM-SL, (b) RbM-IRL.

We can formalize the whole learning procedure
as the following optimization problem:

min
φ

max
θ

Epθ(Ŷ |X)JIRL(φ). (6)

RbM-IRL can make effective use of sequences
generated by the generator for training of the eval-
uator. As the generated sentences become closer to
the ground-truth, the evaluator also becomes more
discriminative in identifying paraphrases.

It should be also noted that for both RbM-SL
and RbM-IRL, once the evaluator is learned, the
reinforcement learning of the generator only needs
non-parallel sentences as input. This makes it pos-
sible to further train the generator and enhance the
generalization ability of the generator.

3.3 Training Techniques
Reward Shaping
In the original RL of the generator, only a positive
rewardR is given at the end of sentence. This pro-
vides sparse supervision signals and can make the
model greatly degenerate. Inspired by the idea of
reward shaping (Ng et al., 1999; Bahdanau et al.,
2017), we estimate the intermediate cumulative re-
ward (value function) for each position, that is

Qt = Epθ(Yt+1:T |Ŷ1:t,X)R(X, [Ŷ1:t, Yt+1:T ]),

by Monte-Carlo simulation, in the same way as
in Yu et al. (2017):

Qt =

{
1
N

∑n=N
n=1 Mφ(X, [Ŷ1:t, Ŷ

n
t+1:T ]), t < T

Mφ(X, Ŷ ), t = T,
(7)

where N is the sample size and Ŷ n
t+1:T ∼

pθ(Yt+1:T |Ŷ1:t, X) denotes simulated sub-
sequences randomly sampled starting from the
(t + 1)-th word. During training of the generator,
the reward rt in policy gradient (3) is replaced by
Qt estimated in (7).

Reward Rescaling
In practice, RL algorithms often suffer from insta-
bility in training. A common approach to reduce
the variance is to subtract a baseline reward from
the value function. For instance, a simple base-
line can be a moving average of historical rewards.
While in RbM-IRL, the evaluator keeps updating
during training. Thus, keeping track of a base-
line reward is unstable and inefficient. Inspired
by Guo et al. (2018), we propose an efficient re-
ward rescaling method based on ranking. For a
batch of D generated paraphrases {Ŷ d}Dd=1, each
associated with a reward Rd = Mφ(Xd, Ŷ d), we
rescale the rewards by

R̄d = σ(δ1 · (0.5−
rank(d)

D
))− 0.5, (8)

where σ(·) is the sigmoid function, rank(d) is the
rank ofRd in {R1, ..., RD}, and δ1 is a scalar con-
trolling the variance of rewards. A similar strat-
egy is applied into estimation of in-sequence value
function for each word, and the final rescaled
value function is

Q̄dt = σ(δ2 · (0.5−
rank(t)

T
))− 0.5 + R̄d, (9)

where rank(t) is the rank of Qdt in {Qd1, ..., QdT }.
Reward rescaling has two advantages. First, the

mean and variance of Q̄dt are controlled and hence
they make the policy gradient more stable, even
with a varying reward function. Second, when the
evaluator Mφ is trained with the ranking loss as in
RbM-IRL, it is better to inform which paraphrase
is better, rather than to provide a scalar reward in a
range. In our experiment, we find that this method
can bring substantial gains for RbM-SL and RbM-
IRL, but not for RL with ROUGE as reward.

Curriculum Learning
RbM-IRL may not achieve its best performance if
all of the training instances are included in training
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at the beginning. We employ a curriculum learn-
ing strategy (Bengio et al., 2009) for it. During
the training of the evaluator Mφ, each example k
is associated with a weight wk, i.e.

J kIRL-CL(φ) = wk max(0,1− ζk+
Mφ(Xk, Ŷ k)−Mφ(Xk, Y k)) (10)

In curriculum learning, wk is determined by the
difficulty of the example. At the beginning, the
training procedure concentrates on relatively sim-
ple examples, and gradually puts more weights
on difficult ones. In our case, we use the edit
distance E(X,Y ) between X and Y as the mea-
sure of difficulty for paraphrasing. Specifically,
wk is determined by wk ∼ Binomial(pk, 1), and
pk = σ(δ3 · (0.5 − rank(E(Xk,Y k))

K )), where K de-
notes the batch size for training the evaluator. For
δ3, we start with a relatively high value and grad-
ually decrease it. In the end each example will
be sampled with a probability around 0.5. In this
manner, the evaluator first learns to identify para-
phrases with small modifications on the input sen-
tences (e.g. “what ’s” and “what is”). Along with
training it gradually learns to handle more compli-
cated paraphrases (e.g. “how can I” and “what is
the best way to”).

4 Experiment

4.1 Baselines and Evaluation Measures

To compare our methods (RbM-SL and RbM-
IRL) with existing neural network based meth-
ods, we choose five baseline models: the at-
tentive Seq2Seq model (Bahdanau et al., 2015),
the stacked Residual LSTM networks (Prakash
et al., 2016), the variational auto-encoder (VAE-
SVG-eq) (Gupta et al., 2018) 1, the pointer-
generator (See et al., 2017), and the reinforced
pointer-generator with ROUGE-2 as reward (RL-
ROUGE) (Ranzato et al., 2016).

We conduct both automatic and manual eval-
uation on the models. For the automatic
evaluation, we adopt four evaluation measures:
ROUGE-1, ROUGE-2 (Lin, 2004), BLEU (Pap-
ineni et al., 2002) (up to at most bi-grams) and
METEOR (Lavie and Agarwal, 2007). As pointed
out, ideally it would be better not to merely use a
lexical measure like ROUGE or BLEU for evalu-
ation of paraphrasing. We choose to use them for
1 We directly present the results reported in Gupta et al.

(2018) on the same dateset and settings.

reproducibility of our experimental results by oth-
ers. For the manual evaluation, we conduct evalu-
ation on the generated paraphrases in terms of rel-
evance and fluency.

4.2 Datasets

We evaluate our methods with the Quora ques-
tion pair dataset 2 and Twitter URL paraphrasing
corpus (Lan et al., 2017). Both datasets contain
positive and negative examples of paraphrases so
that we can evaluate the RbM-SL and RbM-IRL
methods. We randomly split the Quora dataset
in two different ways obtaining two experimen-
tal settings: Quora-I and Quora-II. In Quora-I, we
partition the dataset by question pairs, while in
Quora-II, we partition by question ids such that
there is no shared question between the training
and test/validation datasets. In addition, we sam-
ple a smaller training set in Quora-II to make the
task more challenging. Twitter URL paraphras-
ing corpus contains two subsets, one is labeled by
human annotators while the other is labeled auto-
matically by algorithm. We sample the test and
validation set from the labeled subset, while us-
ing the remaining pairs as training set. For RbM-
SL, we use the labeled subset to train the evalua-
tor Mφ. Compared to Quora-I, it is more difficult
to achieve a high performance with Quora-II. The
Twitter corpus is even more challenging since the
data contains more noise. The basic statistics of
datasets are shown in Table 1.

Table 1: Statistics of datasets.

Generator Evaluator (RbM-SL)

Dataset #Train #Test #Validation #Positive #Negative

Quora-I 100K 30K 3K 100K 160K
Quora-II 50K 30K 3K 50K 160K
Twitter 110K 5K 1K 10K 40K

4.3 Implementation Details

Generator We maintain a fixed-size vocabulary of
5K shared by the words in input and output, and
truncate all the sentences longer than 20 words.
The model architecture, word embedding size and
LSTM cell size are as the same as reported in See
et al. (2017). We use Adadgrad optimizer (Duchi
et al., 2011) in the supervised pre-training and
Adam optimizer in the reinforcement learning,
with the batch size of 80. We also fine-tune the
2 https://www.kaggle.com/c/

quora-question-pairs

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
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Table 2: Performances on Quora datasets.
Quora-I Quora-II

Models ROUGE-1 ROUGE-2 BLEU METEOR ROUGE-1 ROUGE-2 BLEU METEOR

Seq2Seq 58.77 31.47 36.55 26.28 47.22 20.72 26.06 20.35
Residual LSTM 59.21 32.43 37.38 28.17 48.55 22.48 27.32 22.37
VAE-SVG-eq - - - 25.50 - - - 22.20
Pointer-generator 61.96 36.07 40.55 30.21 51.98 25.16 30.01 24.31
RL-ROUGE 63.35 37.33 41.83 30.96 54.50 27.50 32.54 25.67

RbM-SL (ours) 64.39 38.11 43.54 32.84 57.34 31.09 35.81 28.12
RbM-IRL (ours) 64.02 37.72 43.09 31.97 56.86 29.90 34.79 26.67

Table 3: Performances on Twitter corpus.
Twitter

Models ROUGE-1 ROUGE-2 BLEU METEOR

Seq2Seq 30.43 14.61 30.54 12.80
Residual LSTM 32.50 16.86 33.90 13.65
Pointer-generator 38.31 21.22 40.37 17.62
RL-ROUGE 40.16 22.99 42.73 18.89

RbM-SL (ours) 41.87 24.23 44.67 19.97
RbM-IRL (ours) 42.15 24.73 45.74 20.18

Table 4: Human evaluation on Quora datasets.
Quora-I Quora-II

Models Relevance Fluency Relevance Fluency

Pointer-generator 3.23 4.55 2.34 2.96
RL-ROUGE 3.56 4.61 2.58 3.14

RbM-SL (ours) 4.08 4.67 3.20 3.48
RbM-IRL (ours) 4.07 4.69 2.80 3.53

Reference 4.69 4.95 4.68 4.90

Seq2Seq baseline models with Adam optimizer
for a fair comparison. In supervised pre-training,
we set the learning rate as 0.1 and initial accumu-
lator as 0.1. The maximum norm of gradient is set
as 2. During the RL training, the learning rate de-
creases to 1e-5 and the size of Monte-Carlo sam-
ple is 4. To make the training more stable, we use
the ground-truth with reward of 0.1.
Evaluator We use the pretrained GoogleNews
300-dimension word vectors 3 in Quora dataset
and 200-dimension GloVe word vectors 4 in Twit-
ter corpus. Other model settings are the same as
in Parikh et al. (2016). For evaluator in RbM-
SL we set the learning rate as 0.05 and the batch
size as 32. For the evaluator of Mφ in RbM-IRL,
the learning rate decreases to 1e-2, and we use the
batch size of 80.

We use the technique of reward rescaling as
mentioned in section 3.3 in training RbM-SL and
RbM-IRL. In RbM-SL, we set δ1 as 12 and δ2 as 1.
In RbM-IRL, we keep δ2 as 1 all the time and de-
crease δ1 from 12 to 3 and δ3 from 15 to 8 during
curriculum learning. In ROUGE-RL, we take the
exponential moving average of historical rewards
as baseline reward to stabilize the training:

bm = λQm−1 + (1− λ)bm−1, b1 = 0

where bm is the baseline b at iteration m, Q is the
3 https://code.google.com/archive/p/

word2vec/
4 https://nlp.stanford.edu/projects/

glove/

mean value of reward, and we set λ as 0.1 by grid
search.

4.4 Results and Analysis

Automatic evaluation Table 2 shows the per-
formances of the models on Quora datasets. In
both settings, we find that the proposed RbM-
SL and RbM-IRL models outperform the baseline
models in terms of all the evaluation measures.
Particularly in Quora-II, RbM-SL and RbM-IRL
make significant improvements over the baselines,
which demonstrates their higher ability in learn-
ing for paraphrase generation. On Quora dataset,
RbM-SL is constantly better than RbM-IRL for
all the automatic measures, which is reasonable
because RbM-SL makes use of additional labeled
data to train the evaluator. Quora datasets contains
a large number of high-quality non-paraphrases,
i.e., they are literally similar but semantically dif-
ferent, for instance “are analogue clocks better
than digital” and “is analogue better than digi-
tal”. Trained with the data, the evaluator tends to
become more capable in paraphrase identification.
With additional evaluation on Quora data, the eval-
uator used in RbM-SL can achieve an accuracy of
87% on identifying positive and negative pairs of
paraphrases.

Table 3 shows the performances on the Twitter
corpus. Our models again outperform the base-
lines in terms of all the evaluation measures. Note
that RbM-IRL performs better than RbM-SL in
this case. The reason might be that the evaluator

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


3872

of RbM-SL might not be effectively trained with
the relatively small dataset, while RbM-IRL can
leverage its advantage in learning of the evaluator
with less data.

In our experiments, we find that the training
techniques proposed in section 3.3 are all neces-
sary and effective. Reward shaping is by default
employed by all the RL based models. Reward
rescaling works particularly well for the RbM
models, where the reward functions are learned
from data. Without reward rescaling, RbM-SL
can still outperform the baselines but with smaller
margins. For RbM-IRL, curriculum learning is
necessary for its best performance. Without cur-
riculum learning, RbM-IRL only has comparable
performance with ROUGE-RL.

Human evaluation We randomly select 300 sen-
tences from the test data as input and generate
paraphrases using different models. The pairs of
paraphrases are then aggregated and partitioned
into seven random buckets for seven human asses-
sors to evaluate. The assessors are asked to rate
each sentence pair according to the following two
criteria: relevance (the paraphrase sentence is se-
mantically close to the original sentence) and flu-
ency (the paraphrase sentence is fluent as a natural
language sentence, and the grammar is correct).
Hence each assessor gives two scores to each para-
phrase, both ranging from 1 to 5. To reduce the
evaluation variance, there is a detailed evaluation
guideline for the assessors in Appendix B. Each
paraphrase is rated by two assessors, and then av-
eraged as the final judgement. The agreement be-
tween assessors is moderate (kappa=0.44).

Table 4 demonstrates the average ratings for
each model, including the ground-truth references.
Our models of RbM-SL and RbM-IRL get bet-
ter scores in terms of relevance and fluency than
the baseline models, and their differences are
statistically significant (paired t-test, p-value <
0.01). We note that in human evaluation, RbM-SL
achieves the best relevance score while RbM-IRL
achieves the best fluency score.

Case study Figure 3 gives some examples of gen-
erated paraphrases by the models on Quora-II for
illustration. The first and second examples show
the superior performances of RbM-SL and RbM-
IRL over the other models. In the third exam-
ple, both RbM-SL and RbM-IRL capture accu-
rate paraphrasing patterns, while the other models
wrongly segment and copy words from the input

sentence. Compared to RbM-SL with an error of
repeating the word scripting, RbM-IRL generates
a more fluent paraphrase. The reason is that the
evaluator in RbM-IRL is more capable of measur-
ing the fluency of a sentence. In the fourth ex-
ample, RL-ROUGE generates a totally non-sense
sentence, and pointer-generator and RbM-IRL just
cover half of the content of the original sentence,
while RbM-SL successfully rephrases and pre-
serves all the meaning. All of the models fail
in the last example, because the word ducking
is a rare word that never appears in the training
data. Pointer-generator and RL-ROUGE generate
totally irrelevant words such as UNK token or vic-
tory, while RbM-SL and RbM-IRL still generate
topic-relevant words.

5 Related Work

Neural paraphrase generation recently draws at-
tention in different application scenarios. The
task is often formalized as a sequence-to-sequence
(Seq2Seq) learning problem. Prakash et al. (2016)
employ a stacked residual LSTM network in the
Seq2Seq model to enlarge the model capacity.
Cao et al. (2017) utilize an additional vocabu-
lary to restrict word candidates during generation.
Gupta et al. (2018) use a variational auto-encoder
framework to generate more diverse paraphrases.
Ma et al. (2018) utilize an attention layer instead
of a linear mapping in the decoder to pick up word
candidates. Iyyer et al. (2018) harness syntac-
tic information for controllable paraphrase gen-
eration. Zhang and Lapata (2017) tackle a simi-
lar task of sentence simplification withe Seq2Seq
model coupled with deep reinforcement learning,
in which the reward function is manually defined
for the task. Similar to these works, we also pre-
train the paraphrase generator within the Seq2Seq
framework. The main difference lies in that we
use another trainable neural network, referred to
as evaluator, to guide the training of the generator
through reinforcement learning.

There is also work on paraphrasing generation
in different settings. For example, Mallinson et al.
(2017) leverage bilingual data to produce para-
phrases by pivoting over a shared translation in an-
other language. Wieting et al. (2017); Wieting and
Gimpel (2018) use neural machine translation to
generate paraphrases via back-translation of bilin-
gual sentence pairs. Buck et al. (2018) and Dong
et al. (2017) tackle the problem of QA-specific
paraphrasing with the guidance from an external
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Figure 3: Examples of the generated paraphrases by different models on Quora-II.

QA system and an associated evaluation metric.
Inverse reinforcement learning (IRL) aims to

learn a reward function from expert demonstra-
tions. Abbeel and Ng (2004) propose apprentice-
ship learning, which uses a feature based linear
reward function and learns to match feature ex-
pectations. Ratliff et al. (2006) cast the problem
as structured maximum margin prediction. Ziebart
et al. (2008) propose max entropy IRL in order to
solve the problem of expert suboptimality. Recent
work involving deep learning in IRL includes Finn
et al. (2016b) and Ho et al. (2016). There does not
seem to be much work on IRL for NLP. In Neu
and Szepesvári (2009), parsing is formalized as
a feature expectation matching problem. Wang
et al. (2018) apply adversarial inverse reinforce-
ment learning in visual story telling. To the best
of our knowledge, our work is the first that applies
deep IRL into a Seq2Seq task.

Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) is a family
of unsupervised generative models. GAN con-
tains a generator and a discriminator, respectively
for generating examples from random noises
and distinguishing generated examples from real
examples, and they are trained in an adversarial
way. There are applications of GAN on NLP,
such as text generation (Yu et al., 2017; Guo
et al., 2018) and dialogue generation (Li et al.,
2017). RankGAN (Lin et al., 2017) is the one
most similar to RbM-IRL that employs a ranking
model as the discriminator. However, RankGAN
works for text generation rather than sequence-
to-sequence learning, and training of generator
in RankGAN relies on parallel data while the
training of RbM-IRL can use non-parallel data.

There are connections between GAN and IRL

as pointed by Finn et al. (2016a); Ho and Ermon
(2016). However, there are significant differences
between GAN and our RbM-IRL model. GAN
employs the discriminator to distinguish gener-
ated examples from real examples, while RbM-
IRL employs the evaluator as a reward function
in RL. The generator in GAN is trained to maxi-
mize the loss of the discriminator in an adversarial
way, while the generator in RbM-IRL is trained
to maximize the expected cumulative reward from
the evaluator.

6 Conclusion
In this paper, we have proposed a novel deep re-
inforcement learning approach to paraphrase gen-
eration, with a new framework consisting of a
generator and an evaluator, modeled as sequence-
to-sequence learning model and deep matching
model respectively. The generator, which is
for paraphrase generation, is first trained via
sequence-to-sequence learning. The evaluator,
which is for paraphrase identification, is then
trained via supervised learning or inverse rein-
forcement learning in different settings. With
a well-trained evaluator, the generator is further
fine-tuned by reinforcement learning to produce
more accurate paraphrases. The experiment re-
sults demonstrate that the proposed method can
significantly improve the quality of paraphrase
generation upon the baseline methods. In the fu-
ture, we plan to apply the framework and training
techniques into other tasks, such as machine trans-
lation and dialogue.
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A Algorithms of RbM-SL and RbM-IRL

Algorithm 1: Training Procedure of RbM-
SL
Input : A corpus of paraphrase pairs

{(X,Y )}, a corpus of
non-paraphrase pairs {(X,Y −)},
a corpus of (non-parallel)
sentences {X}.

Output: Generator Gθ′
1 Train the evaluator Mφ with {(X,Y )} and
{(X,Y −)};

2 Pre-train the generator Gθ with {(X,Y )};
3 Init Gθ′ := Gθ;
4 while not converge do
5 Sample a sentence X = [x1, . . . , xS ]

from the paraphrase corpus or the
non-parallel corpus;

6 Generate a sentence Ŷ = [ŷ1, . . . , ŷT ]
according to Gθ′ given input X;

7 Set the gradient gθ′ = 0;
8 for t = 1 to T do
9 Run N Monte Carlo simulations:

{Ŷ 1
t+1:T , ...Ŷ

N
t+1:T } ∼

pθ′(Yt+1:T |Ŷ1:t, X);
10 Compute the value function by

Qt =

{
1
N

∑N
n=1Mφ(X, [Ŷ1:t, Ŷ

n
t+1:T ]), t < T

Mφ(X, Ŷ ), t = T.

Rescale the reward to Q̄t by (8);
11 Accumulate θ′-gradient: gθ′ :=

gθ′ +∇θ log pθ′(ŷt|Ŷ1:t−1, X)Q̄t
12 end
13 Update Gθ′ using the gradient gθ′ with

learning rate γG: Gθ′ := Gθ′ + γGgθ′
14 end
15 Return Gθ′

Algorithm 2: Training Procedure of RbM-
IRL
Input : A corpus of paraphrase pairs

{(X,Y )}, a corpus of
(non-parallel) sentences {X}.

Output: Generator Gθ′ , evaluator Mφ′

1 Pre-train the generator Gθ with {(X,Y )};
2 Init Gθ′ := Gθ and Mφ′ ;
3 while not converge do
4 while not converge do
5 Sample a sentence

X = [x1, . . . , xS ] from the
paraphrase corpus;

6 Generate a sentence
Ŷ = [ŷ1, . . . , ŷT ] according to Gθ′
given input X;

7 Calculate φ′-gradient:
gφ′ := ∇φJIRL-CL(φ);

8 Update Mφ′ using the gradient gφ′
with learning rate γM :
Mφ′ := Mφ′ − γMgφ′

9 end
10 Train Gθ′ with Mφ′ as in Algorithm 1;
11 end
12 Return Gθ′ , Mφ′
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B Human Evaluation Guideline

Please judge the paraphrases from the following
two criteria:
(1) Grammar and Fluency: the paraphrase is

acceptable as natural language text, and the
grammar is correct;

(2) Coherent and Consistent: please view from
the perspective of the original poster, to what
extent the answer of paraphrase is helpful
for you with respect to the original question.
Specifically, you can consider following as-
pects:

– Relatedness: it should be topically rele-
vant to the original question.

– Type of question: the type of the original
question remains the same in paraphrase.

– Informative: no information loss in para-
phrase.

For each paraphrase, give two separate score rank-
ing from 1 to 5. The meaning of specific score is
as following:

• Grammar and Fluency

– 5: Without any grammatical error;
– 4: Fluent and has one minor grammati-

cal error that does not affect understand-
ing, e.g. what is the best ways to learn
programming;

– 3: Basically fluent and has two or more
minor grammatical errors or one seri-
ous grammatical error that does not have
strong impact on understanding, e.g.
what some good book for read;

– 2: Can not understand what it means but
it is still in the form of human language,
e.g. what is the best movie of movie;

– 1: Non-sense composition of words and
not in the form of human language, e.g.
how world war iii world war.

• Coherent and Consistent

– 5: Accurate paraphrase with exact the
same meaning of the source sentence;

– 4: Basically the same meaning of the
source sentence but does not cover some
minor content, e.g. what are some good
places to visit in hong kong during sum-
mer → can you suggest some places to
visit in hong kong;

– 3: Cover part of the content of source
sentence and has serious information
loss, e.g. what is the best love movie by
wong ka wai→ what is the best movie;

– 2: Topic relevant but fail to cover most
of the content of source sentence, e.g.
what is some tips to learn english →
when do you start to learn english;

– 1: Topic irrelevant or even can not un-
derstand what it means.

There is token [UNK] that stands for unknown
token in paraphrase. Ones that contains [UNK]
should have both grammar and coherent score
lower than 5. The grammar score should depend
on other tokens in the paraphrase. The specific co-
herent score depends on the impact of [UNK] on
that certain paraphrase. Here are some paraphrase
examples given original question how can robot
have human intelligence ?:

• paraphrase: how can [UNK] be intelligent ?
coherent score: 1
This token prevent us from understanding the
question and give proper answer. It causes
serious information loss here;

• paraphrase: how can robot [UNK] intelli-
gent ?
coherent score: 3
There is information loss, but the unknown
token does not influence our understanding
so much;

• paraphrase: how can robot be intelligent
[UNK] ?
coherent score: 4
[UNK] basically does not influence under-
standing.

NOTED:

• Please decouple grammar and coherent as
possible as you can. For instance, given a
sentence is it true that girls like shopping, the
paraphrase do girls like go go shopping can
get a coherent score of 5 but a grammar score
of only 3. But for the one you even can not
understand, e.g., how is the go shopping of
girls, you should give both of low grammar
score and low coherent score, even it contains
some topic-relevant words.
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• Do a Google search when you see any strange
entity name such that you can make more ap-
propriate judgement.


