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Abstract
Recent progress in dialogue generation has in-
spired a number of studies on dialogue sys-
tems that are capable of accomplishing tasks
through natural language interactions. A
promising direction among these studies is the
use of reinforcement learning techniques, such
as self-play, for training dialogue agents. How-
ever, current datasets are limited in size, and
the environment for training agents and eval-
uating process is relatively unsophisticated.
We present AirDialogue, a large dataset that
contains 402,038 goal-oriented conversations.
To collect this dataset, we create a context-
generator which provides travel and flight re-
strictions. We then ask human annotators to
play the role of a customer or an agent and
interact with the goal of successfully booking
a trip given the restrictions. Key to our en-
vironment is the ease of evaluating the suc-
cess of the dialogue, which is achieved by us-
ing ground-truth states (e.g., the flight being
booked) generated by the restrictions. Any di-
alogue agent that does not generate the correct
states is considered to fail. Our experimental
results indicate that state-of-the-art dialogue
models on the test dataset can only achieve a
scaled score of 0.22 and an exact match score
of 0.1 while humans can reach a score of 0.94
and 0.93 respectively, which suggests signifi-
cant opportunities for future improvement.

1 Introduction

Designing machines to talk like a human is one of
the most important goals of research in machine
learning and natural language generation. (Tur-
ing, 1950; Levin et al., 1997, 2000; Banchs and
Li, 2012). Rooted in seq2seq models (Sutskever
et al., 2014; Cho et al., 2014), recent neural based
dialogue models (Shang et al., 2015; Sordoni et al.,
2015; Vinyals and Le, 2015; Li et al., 2016a; Wen
et al., 2016; Bordes et al., 2017; Lewis et al., 2017;
Pieraccini et al., 2009; Serban et al., 2017) have
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Figure 1: Goal-Oriented Dialogue Environment. (left)
Context pairs are mapped to unique states in the envi-
ronment. (right) Conversation models can only access
its own private context and utterance in the public do-
main. At the end of the conversation, dialogue states
are generated from one of the agents using information
from the utterance.

generated promising results. However, building a
robust and reliable agent that can hold a conversa-
tion with humans while achieving a specific goal
remains an open challenge. While a majority of pre-
vious work studied chitchat models (Ghazvininejad
et al., 2018; Sordoni et al., 2015), in this paper we
focus on goal-oriented models (Li et al., 2017; Liu
and Lane, 2017; Liu et al., 2017) for conversations.

We define a goal-driven dialogue to be a con-
versation that is conditioned on a pair of contexts
c = (u, v), with the goal of reaching the target state
s ∈ S. For a dialogue environment E, there exists
a mapping fE that maps from the context pair to
the target state (i.e., s = fE(c)). While an environ-
ment can access to the full context pair, a dialogue
agent, say Au, can only access its own private con-
text u and the dialogue history ht = {x1, x2, ...xt}
with xt being an utterance generated by one of
the agents at time t (i.e., xt+1 ∼ Av(x|v, ht)



3845

or xt+1 ∼ Au(x|u, ht)). By forbidding access-
ing to the context of the other party, goal-driven
dialogues will have to be developed so that the
dialogue history ht contains all the information
that is necessary for a particular agent, say Av to
reach the target state s of the conversation defined
by the environment through a mapping gv (e.g.,
s = gv(ht, cv) = fE(c) ). When one of u or v is a
human, Au and Av will have to belong to a class
of generators that respond in natural language.

We present AirDialogue, a large-scale corpus
with 402,038 dialogues and an environment that
makes it easy to simulate and evaluate goal-
oriented dialogues. Our setting is centered around
the theme of a flight booking session between a cus-
tomer and a support agent. Since it’s easy to find
a rule based strategy to book a ticket given all the
constraints, a mapping can be easily found in order
to generate the ground-truth state (e.g., the ticket
that needs to be booked) for each dialogue context
so that we can evaluate the generated dialogue. In
our environment, a context pair c always comes
with a unique s. If the dialogue agent generates a
state s′ that is different from s, the agent has failed
to achieve the goal. We use this as a mechanism to
measure the performance of dialogue agents. We
consider an additional metric to measure the “natu-
ral languageness” of the conversations so that the
agents do not just exchange bits.

We have implemented some strong dialogue gen-
eration models and experimented with them on
our dataset. Experimental results demonstrate that
even the most advanced model can only achieve a
benchmark score of 0.33. Comparing that to the hu-
man score of 0.94, that leaves for significant future
improvement.

2 Existing Datasets

A comparison between the AirDialogue and several
publicly available ones is shown in Table 1. Exist-
ing datasets are usually too small to support deep
learning approaches to model dialogues generation.
As a comparison, the WMT’15 English-Czech
dataset (Luong and Manning, 2016), a benchmark
dataset for machine translation, contains 15.8 mil-
lion translation pairs whereas the current largest
goal-oriented dataset has only 20,300 conversa-
tions. Synthesized data can also be an option to ob-
tain a large dataset. However, these are often built
from templated responses which make it meaning-
less for dialogue models to learn. Another issue

with conversation datasets is the lack of a sophis-
ticated environment that can be used to evaluate a
generated dialogue. Some of the recent datasets
provide an environment but are generally not rep-
resentative enough to model real-world settings as
illustrated by a narrow context space. As a result,
the limited availability of datasets and complex en-
vironments have become a bottleneck for research
in goal-oriented dialogue.

Our dataset has more than 20 times as many sam-
ples as found in the biggest of the existing public
datasets. In addition to the number of samples, we
have also compared the context complexity and the
state complexity. Context complexity measures the
unique number of context that a conversaion can
be grounded into and state complexity measures
the number of states that a conversation can reach.
As we can see from the table, AirDialogue has the
largest complexity in both context and state, giv-
ing it the flexibility to form a diverse selection of
goal-oriented conversations. Our dataset also sup-
ports a wide range of tasks that can be found in
the dialogue community. These include dialogue
generation, state tracking and dialogue self-play.

3 Task Environment

We formulate the flight booking problem as a col-
laborative goal-driven dialogue problem that was
defined in the introduction. Two types of agents
are present: customers and agents. Dialogues are
conditioned on a context pair c = (cc, ca), with cc
being the context for the customer and ca for the
context of the agent. Here, the customer context
cc = (tr, o) consists of the goal of the dialogue o
(i.e., book, change or cancel) as well as the travel
constants tr. Agent context ca = (db, r) consists
of available flights in the database db and a field
r indicating whether the customer has an existing
reservation in the system. A final dialogue state
s is derived at the end of the conversation once
the agent has acquired all the information and the
customer has confirmed all the changes in their
reservation.

Task Logic. One of the main purposes of the
flight booking problem is to mix decision making
in the context of a dialogue. Figure 2 illustrates
the task logic in order to successfully solve our
problem. The goal of the conversation is provided
as part of the customer’s context, which has to be
one of the following:
• book: make a new reservation
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Dataset
Context

complexity
State

complexity Supported tasks
Num.

samples

Real Datasets

AirDialogue ≥ 4.43 ×10178 a 750,000 b
Dialogue Generation
Dialogue Self-play

State Tracking
402,038

DSTC1-4
(Henderson et al., 2014) Unknown Unknown State Tracking 20,300

Stanford CoCoA
(He et al., 2017) 16 N/A Dialogue Generation 11,157

Talk and Walk
(de Vries et al., 2018) 80 2 Dialogue Generation 10,000

Negotiation Chatbot
(Lewis et al., 2017) 3 7 × 3 Dialogue Generation

Dialogue Self-play 5,808

Frames
(El Asri et al., 2017) Unknown 20 Dialogue Generation

State Tracking 1,369

Key-Value
Retrieval Networks
(Eric et al., 2017)

284 284 Dialogue Generation
State Tracking 3,031

Cambridge Restaurant
System

(Wen et al., 2016)
Unknown Unknown Dialogue Generation

State Tracking 680

Synthesized Datasets

AirDialogue Synthesized ≥ 4.43 ×10178 750,000
Dialogue Generation

State Tracking
Dialogue Self-play

-

Facebook bAbI dialog tasks
(Bordes et al., 2017) Unknown Unknown Dialogue Generation

State Tracking -

Task-Completion Dialogue Systems
(Li et al., 2016b) Unknown 3 Dialogue Generation

State Tracking -

aCalculated based on all possible combinations of customer and agent context features in Table 2 and Table 3. Assume 365
days a year, 24 airport codes, 8 airlines and 30 flights in the database with each flight having the same departure and arrival date
as the intent and is always under the customer’s budget. This is a conservative estimate since the actual dataset have flights with
different dates and prices.

bCalculated based on 30 flights in the database, 5,000 names and 5 dialogue action states.

Table 1: Comparing AirDialogue to Existing Datasets

• change: change an existing reservation
• cancel: cancel an existing reservation.

The agent is then expected to follow the task
logic and guide the conversation all the way to one
of the five dialogue state actions. For example,
when the goal o is “book”, the agent will iterate
through each of the customer’s set of travel restric-
tions tr and search for available flights in db. If
there are available flights, the conversation will be
concluded with the status action “booked”. Oth-
erwise a status action of “no flight found” will be
returned. On the other hand, the task logic for cus-
tomers with a goal of “change” would be slightly
different. Agents are supposed to check for r to
determine whether a reservation exists. If it does,
the agent will interact with the customer to update

the travel constants tr. Otherwise, a status action
will be selected with “no reservation”. Similarly,
the conversation will conclude “no flight found” if
none of the flights in db satisfies the customers’
need and “changed” if the the new flight is found.
Finally, for customers who wish to cancel their
ticket, the agents will perform a simple check and
cancel if the reservation is found and “no reserva-
tion” otherwise.

Agent Context. There are two components in the
agent context ca = (db, r). db = (f1, f2, . . . , fm)
is a list of flights each with 12 features listed in Ta-
ble 3. Each feature has a prior distribution that we
use to generate those settings. For example, 90% of
the flights in the database would be economy class
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Figure 2: Task Logic of the flight booking problem

while 10% of the flights would be business class.
The flight database is unique to each conversation.
The price of the flights are drawn from a Gaussian
distribution with mean µ and standard deviation
σ = µ ∗ β. µ is 210 for economy class and 650
for business class. β is 0.2 for direct flights, 0.4 for
flights with one connection and 0.6 for those with 2
connections. To simplify our setting, we only con-
sider round trip flight tickets with both trips under
the same airlines. r is simply a binary variable indi-
cating whether the customer has previously made a
reservation.

Customer Context. Customer context cc =
(tr, o) also consists of two pieces. tr =
(tr1, tr2, . . . , trn) is a list of travel restrictions in-
dicated in Table 2. Here we constrain the form
of travel restrictions into the ones that are most
useful for the flight booking situation, which is il-
lustrated in Table 3. For example, customers may
request a flight with either economy class, business
class or accepts anything that is available. Some
of the restrictions requires certain level of common
sense knowledge to “translate” into an actual search
query. Take travel time for example, a morning
flight would corresponds the flight between 3am
to 11am and a standard fare airline would be one
of the big brand airline companies. The rest of the
airlines are considered low-cost airlines. The prob-
ability of each occurrence that will be appeared in
the customer context is also listed in the table.

Dialogue States. At the end of the conversa-
tion, agent will submit the dialogue states s =
(sa, sn, sf ), a state action sa which will be one of
the following 5 : “booked”, “changed”, “no flight
found”, “no reservation” and “cancel”, the name
of the customer sn and the flight being selected
for this dialogue sf . Flights will be identified by a
flight number that indicates one of the m flights in

the database.

Environment. As we discussed earlier in the in-
troduction, there exists a mapping f : c→ s so that
we can acquire the final dialogue state directly from
the context pair. This mapping corresponds to our
environment and the expected state s′ = f(c) gen-
erated from the context pair can be used to evaluate
the state s generated from our algorithm.

Sentence Level Annotation. In addition to dia-
logue context and states, some of the sentences
in the dialogues are also labeled during the data
collection process. The sentence level annotation
records the items agent clicked on the web UI when
we were collecting the dialogue data. Agents are
given the instructions to input all the travel con-
straints immediately after they receive them from
the customers via the chat window.

4 Datasets

In this paper we present the AirDialogue dataset
that contains a large collection of human generated
dialogues. In addition, we also present the synther-
ized dataset generated using a templated simulator,
along with an out-of-domain dataset that contains
context that drawn from a different prior distribu-
tion than the previous two. AirDialogue and the
synthesized datasets are divided into train, dev and
eval sets randomly by applying a ratio of 80%, 10%
and 10%. Details of the statistics are shown in
Table 5.

Figure 3: Customer’s Interface

AirDialogue Dataset. To collect human anno-
tated dialogue data, we first generate context pairs
based on the prior distributions defined in Table 3
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feature goal class max. price airline dep./ret. time

condition
(prob.)

book (80%)
change (10%)
cancel (10%)

economy (7%)
business (3%)

any (90%)

≤200 (25%)
≤500 (25%)
≤1000 (25%)

any (25%)

standard fare (5%)
UA, Delta

AA, Hawaiian
any (95%)

morning (3%)
3am-11am

afternoon (4%)
12pm-19pm
evening (3%)

20pm-2am
any (90%)
0am-23pm

feature dep./ret. month dep./ret. day max. conn. dep./ret. airport

condition
(prob.) uniform uniform

0 (7%)
1 (90%)
any (3%)

uniform

Table 2: List of Customer Travel Restrictions

feature dep./ret.city dep./ret. month dep./ret. day dep./ret. time
range categorical 1-12 1-31 00-23
prob. uniform uniform uniform uniform

feature class price connections airline
range business,economy 0-5000 0,1,2 categorical
prob. 10%, 90% See Section 3 7%, 90%, 3% uniform

Table 3: Flight Features

avg. duration 4.7mins vocab size 25,621
avg. dialogue len 115 avg. turns 14.10

avg. turn len 8.17 num. diag. 402,038
sent. annotation % 36.1 correct % 88.5

Table 4: Statistics of the AirDialogue Dataset

Train Dev Test Total

AirDialogue 321,460 40,363 40,215 402,038
Syntherized 320,000 40,000 40,000 400,000

OOD Context - 40,000 40,000 80,000

Table 5: Statistics of All the Datasets Used in the Paper

Figure 4: Agent’s Interface

and Table 2. 30 flights are generated for each dia-
logue. Annotators are then asked to role play the
dialogue using the web interface illustrated in Fig-
ure 3 and Figure 4. The customer is shown with
the goal and any requirements, as well as the chat
history. The agent has a similar interface with the
addition of a search feature that will search and
return the cheapest flights that satisfy the given
search constraints. The layouts and colors of the
UI were optimized to reduce human errors. Human
annotators are highly familiar with the settings of
the task as most of them stayed in the project full
time for more than 6 month. A human project
manager manually examines roughly 5%-6% of
the data each day and provide feedbacks to the hu-
man annotators to ensure the quality of the data
collection. Table 4 shows some of the statistics
of the AirDialogue dataset. On average, 88.5% of
the dialogues generated by human reaches a per-
fect state. In the next Section we will analyze the
types of human mistakes. In addition to dialogue
history, we have also recorded agent search events
(e.g. adding a new search constant through the web
UI) on each turn, which are sentence level dialogue
state annotations. Annotators are given the instruc-
tions to put search constraints immediately after
they have received them from the natural conver-
sation. 36.1% of the dataset dialogues have access
to such information. Tracking search events pro-
vides a structured representation of progress of the
dialogue.
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Synthesized Dataset. In addition to the AirDia-
logue dataset collected using human annotators,
we have also built a dialogue simulator to gener-
ate synthesized dialogues. The dialogue simulator
relies on the context generator with the same set
of priors. Synthesized dialogues are generated by
following a set of templates and alternate between
them randomly.

Out-of-domain Context Set. We have also gen-
erated an out-of-domain context set that does not
contain any dialogues. This context set is gener-
ated by setting the goal probability from the one
showing in Table 2 to a uniform distribution. The
reservation probability is also changed from 10%
to 70%. The sets of customer name and airport
codes have also gone up significantly in those two
datasets. This makes it difficult for models with
fixed vocabulary size to perform well on those
OOD datasets.

5 Data Analysis

5.1 Required Skills
This dataset presents many challenges for existing
methods. Table 6 lists some of the skills that are
required to accomplish the flight booking task.

Lexical and Syntactic Variations. Human lan-
guage is diverse and there are many forms of lexical
and syntactic variations. Taking the examples in
Table 6, the amount of variation that appears in
human dialogue poses great challenges for conver-
sational models.

Applying External Knowledge. Another chal-
lenge in our data set is the use of external (com-
monsense) knowledge. Vaguely defined concepts
such as morning and afternoon are used comfort-
ably by humans. However, a learning algorithm
needs to successfully adapt those concepts when
searching for flights. An alternative way to solve
this problem is to inject external knowledge into
the algorithm, which is ananother important issue
in dialogue systems.

Active Information Seeking Conversation. We
have observed that human annotators who have
high correct rates often have the habit of actively
requesting information. They take extra steps to
ensure all the flight search conditions are correctly
communicated. This is especially important since
customers are the only party in the dialogue who
have access to the travel restrictions.

Goal-driven Dialogue Development. Another
necessary skill to solve the flight booking prob-
lem is to develop dialogue that can be used to drive
the conversation towards its end goal. Having such
a goal in mind distinguishes goal-oriented models
from chitchat models and makes the conversation
more effective and efficient.

Reasoning over Large Structured Data. Se-
lecting flights relies on effective methods to reason
over a large scale structured database. This is a
challenge that has practical impact but has rarely
been addressed in previous research.

Learning from Multiple Solutions. A final
challenge in the problem is the fact that there exists
multiple equally optimal flights to the same set of
customer restrictions.

5.2 Analysis on Human Mistakes

As we have reported in Table 7, the human error
rate on this task is close to 10%. We have ana-
lyzed the human errors and grouped them into 6
categories. Here an invalid status indicates that
agents have chosen a status that they are not sup-
posed to reach according to Figure 2. For example,
a “book” goal should not reach “no reservation”
as an action status. “Wrong status”, on the other
hand, is a possible action status to reach but are
not expected given the context of the conversation.
Minor mistakes comprise of situations that include
when agents misspell the name of the customer but
get everything else correct. Those mistakes can be
fixed in the dialogue from the ground truth. The
majority (85%) of the errors happened when com-
municating flight search constraints, and entering
wrong conditions that lead the search tool to return
no results (6.8%).

6 Methods

6.1 Supervised Learning

Model Architecture. Our supervised dia-
logue model is built based on the seq2seq
model(Sutskever et al., 2014). We treat both
context from customer and agent as sequences and
encode them using RNN. For customer context cc
we encode it using a single RNN. To encode agent
context ca we apply a hierarchical RNN structure
by first encoding each flight using an RNN and
then encode the outputs of each encoded flights
along with the reservation information using an-
other RNN. Utterance of time t is generated using
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Skills Examples

Lexical and Syntactic Variations

Customer: My travelling dates are Aug 12-14.
Customer: I want to take off on Sept 18 and please
confirm my return ticket on Sept 20.
Customer: Travelling dates are 12/13 and 12/15.

Applying External Knowledge
Customer: I am traveling on Oct, 10 and I am returning on Oct, 12
in the evening.
Customer: I prefer normal-cost airlines.

Active Information Seeking

Customer: And please make sure that the departure time is
at afternoon.
Agent: Do you have any other specifications?
Agent: Can you mention Washington airport code for me?
Agent: Do you like to travel in a economy class or business class?

Goal-driven Dialogue Development
Agent: Sure, please provide me with your planned travel dates.
Agent: Hello, how can I help you?
Agent: Thank you for reaching out to us. Have a great time.

Table 6: Conversational Skills required to accomplish the AirDialogue task.

invalid status 4.4% minor mistakes 2.0%
reservation 1.0% flight constant 85%

wrong condition 6.8% wrong status 0.8%

Table 7: Human error statistics.

a sequence2sequence model by concatenating the
context embedding along with the embeddings of
conversation history ht−1. Agent and customer
will have their own model P (xt|ht−1, ca; θa) and
P (xt|ht−1, cc; θc). At the end of the conversation
the dialogue state will be generated in a sequence
using another sequence2sequence model by taking
the entire conversation history and the agent
context, P (si|si−1, hT , ca; θs).

Optimization. During supervised learning, we
optimize the model by considering the loss from
both the dialogues x and their states s. A token xt
can belong to a either customer utterance (xt ∈ πc)
or an agent utterance (t ∈ πa). The parameters
for supervised learning contains all the parameters
of the models: Θ = {θa, θc, θs}. In supervised
learning we optimize the following loss function.

`(Θ) = −
∑

(x,c,s)∈D

T∑
t=1

1πc(xt) logP (xt|ht−1, cc; θc)+

1πa(xt) logP (xt|ht−1, ca; θa)+∑
i

logP (si|s1:i−1, hT , ca; θs)

6.2 Reinforcement Learning Self-Play

Supervised learning for dialogue generation is
known for many issues such as generating tem-
plated responses regardless of the inputs (Li et al.,
2015). Here we design a reinforcement learning

self-play algorithm to enable the model to learn
from the environment by chatting with each other.
Our self-play model is initialized using a model
trained from the supervised learning. Since no
conversation data is involved in the self-play, we
generate context pairs directly from the context
generator during training. Here we consider termi-
nal rewards, which is generated by simulating the
dialogue all the way to the end and compare the
generated state s with the ground truth state s′. We
use the scaled score as rewards introduced in the
paragraph of Evaluation Metrics in Section 7.

Value Network. To reduce variance, we build a
value network to provide a baseline estimate for re-
turns. Both agent and customer gets their own
value network va(ht|ca; θv,a) and vc(ht|cc; θv,c).
The value functions are parameterized by a seq2seq
model and a linear transform applied on its output.
During the training of the value functions, the main
model parameters Θ are fixed and the only train-
able variables are θv = {θv,a, θv,c}.

Policy Network. We use the same structure as in
supervised learning to be our policy network. We
adopt REINFORCE algorithm (Williams, 1992) to
optimize our algorithm using the following gradi-
ent.

∇`RL(Θ) =

E
xt∈πc

(Rt − vc(ht−1))∇ logP (xt|ht−1, cc; θc)+

E
xt∈πa

(Rt − va(ht−1))∇ logP (xt|ht−1, ca; θa)+

E
si

(Rt − va(hT , si−1))∇ logP (si|si−1, hT , ca; θs)
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Experiments pplx BLEU Name Acc. Flight Acc. Action Acc.

Synthesized dev 1.08 68.72 100% 100% 100%
Synthesized test 1.08 68.73 100% 100% 100%

AirDialogue dev 2.21 23.26 100% 100% 100%
AirDialogue test 2.20 23.75 100% 100% 100%

Table 8: Dialogue Generation and State Prediction

Experiments Name Flight State Total BLEU

Supervised (Synthesized dev) 0.39(0%) 0.11(8%) 0.32(32%) 0.23(0.14) 68.72
Self-play (Synthesized dev) 0.47(0%) 0.36(35%) 0.39(39%) 0.39(0.29) 62.71

Supervised (Synthesized test) 0.39(0%) 0.08(4%) 0.33(33%) 0.22(0.12) 68.73
Self-play (Synthesized test) 0.47(1%) 0.35(16%) 0.47(47%) 0.41(0.22) 62.66

Supervised (AirDialogue dev) 0.4(0.9%) 0.07(1.2%) 0.12(12%) 0.15(0.04) 23.26
Self-play (AirDialogue dev) 0.41(1%) 0.13(4%) 0.29(29%) 0.23(0.11) 19.65

Supervised (AirDialogue test) 0.39(1%) 0.08(1.6%) 0.08(8%) 0.14(0.03) 23.15
Self-play (AirDialogue test) 0.43(1%) 0.11(3%) 0.28(28%) 0.22(0.10) 18.84

Human (AirDialogue test) 1 (98%) 0.92 (91.4%) 0.92 (91.8%) 0.94 (0.93) -

Table 9: Dialogue Self-play Displayed with Scaled Scores and Their Exact Match Scores in the Parentheses.

Exp Name Flight State Dialogue

OOD1 0.4(0%) 0.1(1%) 0.18(18%) 0.18(0.06)
OOD2 0.4(0%) 0.09(2%) 0.21(21%) 0.19(0.07)

Table 10: Performance of Trained Self-play Models on
Out-of-domain Context Pairs using AirDialogue Data

7 Experiments

Experiment Setup. We implemented our model
using Tensorflow using SGD as the optimizer with
a learning rate of 0.1 and a batch size of 64. The
seq2seq model was implemented using 4 layers of
GRU with a hidden unit 384. Greedy Decoder is
used for seq2seq decoding. Inputs are tokenized
using NLTK 1. For AirDialogue dataset, tokens oc-
curred less than 10 times are eliminated but no
tokens are removed for the synthesized dataset.
As a result, there are 5,547 tokens left the exper-
iments. There are 700 tokens for the synthesized
dataset and no tokens are eliminated during the
pre-processing. In training we only applied the
dialogues that have correct states.

Accelerate Training In the usual seq2seq dia-
gram for dialogue generation, one would treat a
single conversation with k turns as k different train-
ing samples by feeding conversation before the kth

turn into the encoder and use a decoder to gener-
ate the kth turn. Such a training strategy would
encode the dialogue history repeatedly. We apply
a technique to speed up training that is illustrated

1https://www.nltk.org

in Figure 5. Here the encoder is never needed to
encode a single dialogue multiple times since its
outputs are reused for multiple turn predictions.
The decoder generates the output sequence by al-
ternating its states between previous decoder state
and the encoder states. If the sentence is within
the boundary of the current turn, its hidden state
got passed from its previous state. Otherwise, its
hidden state will be “reset” into the corresponding
state in the encoder. One can easily implement this
training strategy and use a pre-processed Boolean
array to represent whether a token is within a turn
for a specific agent.

A B C D E F G

C D E F G

Figure 5: Techniques to speed up training. Here a con-
versation with 3 turns are annotated using colors. The
encoder only needs to pass through the dialogue once
for the entire dialouge sample to be trained.

Evaluation Metrics. We use perplexity and
BLEU score to evaluate the quality of the language
generated by the model. We also compare the dia-
logue state generated by the model s and the ground
truth state s′. Two categories of the metrics are
used: exact match scores and scaled scores. In an
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exact match metric, dialogue state is given a score
of 1 if it matches exactly to the ground truth and
0 otherwise. In a scaled metric, scores are scaled
between 0 and 1 to provide information that are of
finer granularity. There are three dialogue states:
name, flight and action. For name, scaled metric is
chosen to be the character-wise F1 score. For flight,
scaled metric is chosen to be 1 minus the scaled dis-
tance between the selected flight f and the ground
truth Fg. Note there might be multiple optimal
ground truth flights that have the same price and
satisfy the customers’ requirements. Therefore Fg
should be a set of flights. The distance function
d(f1, f2) is a measure of distance on each of the
flight features. The scaled score on flight is calcu-
lated as the following. Here F is a set of all flights
in the datasbase.

score(f) = 1−
minf ′∈Fg d(f, f ′)

maxf1∈F,f2∈Fg d(f1, f2)

Dialogue action states can only have exact match
metrics. Finally, the total score of a dialogue is
taken to be a weighed sum scores of name, flight
and dialogue status by a factor of 0.2, 0.5 and 0.3
for both scaled and discrete metrics.

Dialogue Generation and State Prediction.
We train the models on the train sets and show their
performs on the dev and test sets in Table 8. The
BLEU score measured by comparing the generated
response and the ground truth is around 68.7 for
synthesized data and around 23 for AirDialogue.
Given the fact that templated dialogues are easier
to learn, it is expected that the synthesized dataset
gets a high BLEU score. In the state prediction
task, the model paper achieved a perfect accuracy
across all the dialogue states given the ground truth
dialogue and previous states. However, as we will
see shortly, the triumph on ground truth hisotry
might not be able to be transferred to self-play
experiments, which generates dialogues that have
different distributions from the ground truth data.

Dialogue Self-play. During the self-play experi-
ments we perform similar predictions on the dia-
logue states. However, instead of asking the models
to predict those states given ground truth history,
we now ask the models to predict given the gen-
erated dialogues. Table 9 shows the results using
both the supervised model and the self-play model.
Here we see significantly improvements across all
measures for self-play models compare to their su-
pervised learning models. However, the fact that

the exact match scores are so low indicates that our
models are far from mastering the goal-oriented
dialogue problem in the self-play setting as the re-
wards and accuracies are consistently low. As a
comparison, human agents achieved nearly 90% on
rewards across all categories, which sets a good tar-
get for future work in the field. One possible reason
for the low exact match score but relatively high
scaled score is because we use the scaled score
as rewards in out self-play training. As a result,
the metrics are highly tuned toward scaled scores
instead of exact match scores. One can apply tech-
niques such as pointer networks (Vinyals et al.,
2015) which is possible to optimize exact match
scores in a better way. To prevent language from
degenerating into binary bits, we mix three super-
vised training steps on the train data with one rein-
forcement learning update during self-play training.
By doing this, we are able to maintain a BLEU
score at similar level compares to the supervised
learning.

Out-Of-Domain Self-play. We have also con-
ducted experiments on the out-of-domain context
pairs. The results are shown in Table 10. The out-
of-domain context pairs contain dialogue contexts
with distribution far deviated from the training data.
It is not surprised to see here that our model does
not perform as good as in the testing data using the
data it is familiar with.

8 Conclusions

In this paper, we propose an environment for goal-
oriented dialogue research based on the problem
of flight bookings. We have collected a dataset
that is more than 400,000 conversations. Our en-
vironment allows easy generation of new dialogue
contexts and allows verification of the generated
dialogues, which can be used to support a wide
range of research such as dialogue self-play. Al-
though supervised learning seems to perform well
in our setting, self-play poses a challenge for goal-
oriented dialogue research. The gap between our
self-play approach and the human baseline suggests
possibilities for significant future improvements.

References
Rafael E Banchs and Haizhou Li. 2012. Iris: a chat-

oriented dialogue system based on the vector space
model. In Proceedings of the ACL 2012 System
Demonstrations, pages 37–42. Association for Com-
putational Linguistics.



3853

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734. Association for Computational Linguistics.

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: a
corpus for adding memory to goal-oriented dialogue
systems. In Proceedings of the 18th Annual SIGdial
Meeting on Discourse and Dialogue, pages 207–219.
Association for Computational Linguistics.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In Proceedings
of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, pages 37–49. Association for Com-
putational Linguistics.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In AAAI Conference on Artifi-
cial Intelligence.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1766–1776, Vancouver,
Canada. Association for Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263–272.

Esther Levin, Roberto Pieraccini, and Wieland Eck-
ert. 1997. Learning dialogue strategies within the
markov decision process framework. In Automatic
Speech Recognition and Understanding, 1997. Pro-
ceedings., 1997 IEEE Workshop on, pages 72–79.
IEEE.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine inter-
action for learning dialog strategies. IEEE Transac-
tions on speech and audio processing, 8(1):11–23.

Mike Lewis, Denis Yarats, Yann N Dauphin, Devi
Parikh, and Dhruv Batra. 2017. Deal or no deal?
end-to-end learning for negotiation dialogues. arXiv
preprint arXiv:1706.05125.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016a. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192–
1202. Association for Computational Linguistics.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. arXiv preprint
arXiv:1703.01008.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016b. A
user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688.

Bing Liu and Ian Lane. 2017. An end-to-end trainable
neural network model with belief tracking for task-
oriented dialog. arXiv preprint arXiv:1708.05956.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2017. End-to-end op-
timization of task-oriented dialogue model with
deep reinforcement learning. arXiv preprint
arXiv:1711.10712.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1054–1063. Association for Computa-
tional Linguistics.

Roberto Pieraccini, David Suendermann, Krishna
Dayanidhi, and Jackson Liscombe. 2009. Are we
there yet? research in commercial spoken dialog sys-
tems. In International Conference on Text, Speech
and Dialogue, pages 3–13. Springer.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron C Courville. 2017. Multiresolution re-
current neural networks: An application to dialogue
response generation. In AAAI, pages 3288–3294.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Lin-
guistics.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement, pages 553–562. ACM.



3854

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Alan M. Turing. 1950. I.computing machinery and in-
telligence. Mind, LIX(236):433–460.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Oriol Vinyals and Quoc Le. 2015. A neural conver-
sational model. In Proceedings of the 31st Interna-
tional Conference on Machine Learning.

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh,
Jason Weston, and Douwe Kiela. 2018. Talk the
walk: Navigating new york city through grounded
dialogue. arXiv preprint arXiv:1807.03367.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages
5–32. Springer.


