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Abstract

Scripts define knowledge about how everyday
scenarios (such as going to a restaurant) are
expected to unfold. One of the challenges to
learning scripts is the hierarchical nature of
the knowledge. For example, a suspect ar-
rested might plead innocent or guilty, and a
very different track of events is then expected
to happen. To capture this type of informa-
tion, we propose an autoencoder model with a
latent space defined by a hierarchy of categor-
ical variables. We utilize a recently proposed
vector quantization based approach, which al-
lows continuous embeddings to be associated
with each latent variable value. This permits
the decoder to softly decide what portions of
the latent hierarchy to condition on by attend-
ing over the value embeddings for a given set-
ting. Our model effectively encodes and gen-
erates scripts, outperforming a recent language
modeling-based method on several standard
tasks, and allowing the autoencoder model to
achieve substantially lower perplexity scores
compared to the previous language modeling-
based method.

1 Introduction

Scripts were originally proposed by Schank and
Abelson (1977) as “structures that describe the
appropriate sequence of events in a particular
context”. These event sequences define expec-
tations for how common scenarios (such as go-
ing to a restaurant) should unfold, thus enabling
better language understanding. Although scripts
represented many other factors (roles, entry con-
ditions, outcomes) recent work in script induc-
tion (Rudinger et al., 2015; Pichotta and Mooney,
2016; Peng and Roth, 2016) has focused on lan-
guage modeling (LM) approaches where the “ap-
propriate sequence of events” is the textual or-
der of events (tuples of event predicates and their
arguments). Modeling a distribution of text se-
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Figure 1: An automatically learned multi-track
script. The left track is a dismissed case, and the
right is a convicted suspect. Our model generated
both tracks through a latent hierarchy.

quences gives the intuitive interpretation of appro-
priate event sequences being roughly equivalent
to probable textual sequences. We continue with
an LM approach, but we tackle two very impor-
tant LM problems that have not yet been addressed
with regards to event sequence modeling.

The first problem to address is that language
models tend towards local coherency. Count
based models are restricted by window size and
sparse counts, while neural language models are
known to rely on the local context for predictions.
Since scripts are meant to describe longer coherent
scenarios, this is a major issue. For example, con-
tradictory events like (he denied charges) and (he
pleads guilty) are given high probability in a typ-
ical language model. Our model instead captures
these variations with learned latent variables.

The second problem with recent work is that the
hierarchical nature of scripts is not explicitly cap-
tured. A high level script (like a suspect getting
arrested) can branch off into many possible varia-
tions. These variations are called the “tracks” of
a script. Figure 1 shows a script with two tracks
learned by our model. LM-based approaches of-
ten fail to explicitly capture this structure, instead
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throwing it all into one big distribution. This mud-
dies the water for language understanding, making
it difficult to tease apart differences like going to a
fancy restaurant or a casual restaurant.

To remedy these problems, we propose a model
that captures hierarchical structure via global la-
tent variables. The latent variables are categorical
(representing the various types of scripts and thier
possible tracks and variations) and form a tree (or
more generally, a DAG)!, thus capturing hierarchi-
cal structure with the top (or bottom) levels of the
tree representing high (or low) level features of the
script. The top might control for large differences
like restaurant vs crime, while the bottom selects
between fancy and casual dining.

The overall model, which we describe below,
takes the form of an autoencoder, with an encoder
network inferring values of the latents and a de-
coder conditioned on the latents generating scripts.
We show the usefulness of these latent representa-
tions against a prior RNN language model based
system (Pichotta and Mooney, 2016) on several
tasks. We additionally evaluate the perplexity of
the system against the RNN language model, a
task that autoencoder models have typically strug-
gled with (Bowman et al., 2016). We find that the
latent tree reduces model perplexity by a signifi-
cant amount, possibly indicating the usefulness of
the model in a more general sense.

2 Background

2.1 Variational Autoencoders

Variational Autoencoders (VAEs, Kingma and
Welling (2014)) are generative models which learn
latent codes z for the data = by maximizing a lower
bound on the data likelihood:

log(p(x)) = Eq(z1z)[p(z(2)] — K L[q(z|2)]|p(2)]

VAEs consist of two components: an encoder
which parameterizes the latent posterior g(z|x)
and a decoder which parameterizes p(x|z). The
objective function can be made completely differ-
entiable via the reparameterization trick, with the
full model resembling an autoencoder and the KL
term acting as a regularizer.

While VAEs have been useful in continuous
domains, they have been less successful in gen-
erating discrete domains whose outputs have lo-

"In this work we only look at linear chains of categorical

variables, which is enough to encode trees (such as the one in
Figure 1)

cal syntactic regularities. Part of this is due to
the “posterior collapse” problem (Bowman et al.,
2016); when VAEs are equipped with powerful au-
toregressive decoders, they tend to ignore the la-
tent, collapsing the posterior ¢(z|x) to the (usually
zero-mean Gaussian) prior p(z). By doing this,
the model takes no penalty from the KL term, but
effectively ignores its encoder.

2.2 Vector Quantized Variational
Autoencoders

Vector Quantized VAEs (VQ-VAEs, van den Oord
etal. (2017)) are a recently proposed class of mod-
els which both alleviates the posterior collapse
problem and allows the model to use a latent space
of discrete values. In VQ-VAEs the latent z is rep-
resented as a categorical variable that can take on
K values. Each of these values k£ € {1,...,K}
has associated with it a vector embedding ey. The
posterior of VQ-VAEs are discrete, deterministic,
and parameterized as follows:

1 k=argmin,||f(2) - eil|2

q(z = klz) = {

0 elsewise

where f(z) is a function defined by an encoder
network. The decoding portion of the network is
similar to VAEs, where a decoder parameterizes a
distribution p(z|z = k) = g(ex), where g is the
decoder network, and ey, is the corresponding em-
bedding, which is fed as input to the decoder. This
process can be seen as a ”quantization” operation
mapping the continuous encoder output to the la-
tent embedding it falls closest to, and then feeding
this latent embedding (in lieu of the encoder out-
put) to the decoder.

The quantization operator is not differentiable,
thus during training, the gradient of the loss with
respect to the decoder input is used as an estima-
tion to the gradient of the loss with respect to the
encoder output. If one assumes a uniform prior
over the latents (we do so here), then the KL term
in the VAE objective becomes constant and may
be ignored. In practice, multiple latent variables
z may by used, each with their own (or shared)
embeddings space.

3 Hierarchical Quantized Autoencoder

Our goal is to build a model that can generate glob-
ally coherent multi-track scripts which allow us to
account for the different ways in which a script
can unfold. The main idea behind our approach
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Figure 2: Hierarchical Quantized Autoencoder Ar-
chitecture

is to use a hierarchical latent space which condi-
tions the generation of the scripts. The VQ-VAE
models (described earlier) provide a way to model
discrete variables in an autoencoding framework
while avoiding the posterior collapse problem. We
build on this framework to propose a new Hierar-
chicAl Quantized Autoencoder (HAQAE) model.

HAQAEs are autoencoders with M latent vari-
ables, zg, ..., 2p7. Each latent variable is categor-
ical taking on K different values. Like in VQ-
VAEs, every categorical value k for variable z has
an associated embeddings e,;. The latent vari-
ables are given a tree structure and the full pos-
terior over all M latents z factorizes as:

M—-1

q(z|z) = qo(zolz) H qi(zilpr(zi), v)

i=1

where pr(z;) denotes the parent of z; in the tree.
Since the latent variables are meant to capture the
hierarchical categorization of the script, we make
the assumption that when a higher level script cat-
egory (for example, zg) is observed with the ac-
tual sequence of events (x), determining the im-
mediate lower level category (z1) is a determinis-
tic operation. Thus, similar to VQ-VAEs, we pa-
rameterize the individual factors of the posterior,

qi(zi = k|pr(z;),z), as:

{1 k:argminj || fi(z, pr(2i)) —

eijl2
0 elsewise

where f;(x,pr(z;)) is an encoding function spe-
cific to latent z; and e;; is the jth value em-

beddings for z;. The distribution p(z|z) is simi-
larly parameterized by an decoder function g(z. ),
where z, is the set of corresponding value embed-
ding for each latent z;. We describe the forms of
the encoder and decoder in the next section.

3.1 HAQAE Encoder and Decoder

During the encoding process, certain parts of the
input may provide more evidence towards differ-
ent parts of the hierarchy. For example, the event
(he ate food) gives evidence to the high level cate-
gory of a restaurant script, while the more specific
event (he drank wine) gives more evidence to the
lower level category fancy restaurant. Thus dur-
ing encoding, it makes sense to allow each latent
to decide which parts of the input to take into con-
sideration, based on its parent latents. This is ac-
complished by parameterizing the encoding func-
tion for latent z; as an attention over the input x,
with the parent of z; (more specifically, the embed-
ding for the parent’s current value) acting as the
‘query’ vector. As is standard when using atten-
tion, the input sequence of events, = (1, ...z,
is first encoded into a sequence of hidden states
h, = (h1,...,h,) via a RNN encoder. The full
encoding function for latent z; can thus be written
as:

fi(x,pr(z)) = attn(hy, pr(z;))

Though any attention formulation is possible, we
use the bi-linear attention proposed in Luong et al.
(2015) in our implementations. For the root of the
latent tree (zg), which has no parents, we use the
averaged value of the encoder vectors h, as the
query vector for its attention.

We can define the decoder in a similar fashion.
As is usually done, the distribution p(z|z.) can be
defined in an autoregressive manner using a RNN
decoder network. Like the encoding process, dif-
ferent parts of the hierarchy may affect the gen-
eration of different parts of the input. We thus
also allow the decoder network g(z.) to be a RNN
with a standard attention mechanism over the la-
tent value embeddings, z.. Since the latent root zg
is supposed to capture the highest level informa-
tion about the script, we use its embedding value,
(passed through an affine transformation and tanh
activation) to initialize the hidden state of the de-
coder. Both encoder and decoder can be trained
end to end using the same gradient estimation used
for VQ-VAE.
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3.2 Training Objective

The training objective for HAQAE is nearly
the same as the VQ-VAE objective proposed in
van den Oord et al. (2017). For a single training
example, z; the objective can be written as:

| M LM
— . R C
L= —logp(xz|z)+M;Lj —i—sz:Lj

where Lf and LJC are the reconstruct and commit
loss for the jth latent variable. As in van den Oord
etal. (2017), we let sg(-) stand for a stop gradient
operator, such that any term passed to it is treated
as a constant. The reconstruction loss is defined
as:

LE = llsg(fy(@,pr()))) - €513

where e is the argmin value embedding for z; (for
the given input). The reconstruct loss is how the
value embeddings for z are learned, and pushes the
value embeddings to be closer to the output of the
fi- The commit loss is defined as:

LS = BI|fi(w, pr(z)) — sg(e))If3

which forces the encoder to push its output closer
to some embedding, preventing a situation in
which the encoder maps inputs far away from all
embeddings. ( is a hyperparameter that weighs
the commit loss?. Note that the commitment loss
may be propogated all the way up through the hier-
archy of latent nodes. We allow the latent embed-
dings to receive updates only from the reconstruct
and commit loss (not from the NLL loss).

4 Training Details

4.1 Dataset and Preprocessing

Dataset We use the New York Times Gigaword
Corpus as our dataset. The corpus contains a to-
tal of around 1.8 million articles. We hold out
4000 articles from the corpus to construct our de-
velopment (dev) set for hyperparameter tuning and
6000 articles for the test set. The input and output
of the model is in the form of an event sequence.
Each event is defined as a 4-tuple, (v, s, 0, p), con-
taining the verb, subject, object and preposition.
Events without prepositions are given a null token
in their preposition slot. The components of the
events (the verb, subject, etc.) are all taken to be
individual tokens, and can thus be treated more or

’In our implementations we set 8 = 0.25

less like normal text. For example, the events (he
played harp), (he touched moon), would be tok-
enized and given to the model as: played he harp
null tup touched he moon null, where null is the
null preposition token and fup is a special separa-
tion token between events.

We extract event tuples using Open Information
Extraction system Ollie (Mausam et al., 2012).
We then group together event tuples for 4 subse-
quent sentences to create a single event sequence.
We also ignore tuples with common (is, are, be,
...) and repeating predicates. Finally we have
7123097, 19425, and 28667 event sequences for
training, dev, and test dataset respectively. For all
the experiments we fix the minimum and maxi-
mum sequence lengths to be 8 and 50 respectively.

4.2 HAQAE Model Details

The HAQAE model we use across all evaluations
uses 5 discrete latent variables, structured in the
form of a linear chain (thus no variable has more
than one child or parent). Each variable can ini-
tially take on K = 512 values, with all latents
having an embeddings dimension of 256. The en-
coder RNN that performs the initial encoding of
the event sequence is a bidirectional, single layer
RNN with GRU cell (Cho et al., 2014) with a
hidden dimension of 512. The inputs to this en-
coder are word embeddings derived from the one-
hot encodings of the tokens in the event sequence.
The embeddings size is 300. We find initializ-
ing the embeddings with pretrained GloVe (Pen-
nington et al., 2014) vectors to be useful. The de-
coder RNN is also a single layer RNN with GRU
cells with a hidden dimension of 512 and 300
dimensional (initialized) word embeddings as in-
puts. For all experiments we use a vocabulary size
of 50k. We train the model using Adam (Kingma
and Ba, 2014) with a learning rate of 0.0005, and
gradient clipping at 5.0. We find that the training
converges around 1.5 epochs on our dataset. Fur-
ther details can be found in our implementation’

4.3 Baselines

We compare the performance of our proposed
model against three previous baselines and a mod-
ification of our HAQAE model that removes ex-
plicit dependencies between latents.

For our first baseline
This

RNN Language Model
system we train a RNN sequence model.

3github.com/StonyBrookNLP /HAQAE
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model is 2 layered GRU cells with hidden size 512
and embedding size 300. We use Adam with a
learning rate 0.001. To prevent the problem of ex-
ploding gradients, we clip the gradients at 10. We
use uniform distribution [-0.1, 0.1] for random ini-
tialization and biases initialized to zero. We also
use a dropout of 0.15 on the input and output em-
bedding layers but none on the recurrent layers.
We initialize the word embedding layer with pre-
trained Glove vectors as it improved the perfor-
mance and makes the system directly comparable
to HAQAE. We refer to this model as RNNLM in
the following sections.

RNNLM + Role Embeddings We also repro-
duced the model from Pichotta and Mooney
(2016) for comparison. This model is similar to
the one above except that at each time step the
model has an additional role marker input going
into it. The marker guides the language model
further by indicating what type of input is being
currently fed to it: a subject, object, or predicate.
These role embeddings are learned during training
itself. Hyperparameters are exactly the same as
the RNNLN except that the role embeddings have
a dimension of 300. We will refer to this model as
RNNLM-+Role. We perform hyperparameter tun-
ing of both the models using the development set.
We use a vocabulary size of 50k. We trained both
the baseline models for 2 epochs on the training
set.

VAE We report results using a vanilla VAE
model similar to the one used in Bowman et al.
(2016). The encoder/decoder for the VAE baseline
has the same specs as the encoder/decoder for the
HAQAE model, with a latent dimension of 300.
We use linear KL annealing for the first 15000
steps and 0.5 as the word dropout rate.

Hierarchyless HAQAE (NOHIER) In order to
test the effect of explicitly having a hierarchy in
the latent variables, we additionally train another
HAQAE model with no explicit hierarchical latent
space. The model still has 5 discrete latent vari-
ables like our original model, however each of the
variables are independent of each other (given the
input). All five variables are have an attention over
the input and take the average of encoder vectors
h,, as the query vector (as done with the latent root
zp in the original model). We additionally desig-
nate one of the variables to be used to initialize the
hidden state of the decoder. We found the same

System validation test
NLL | PPL | NLL | PPL
RNNLM 4.52 | 91.84 | 4.51 | 90.92
RNNLM+Role | 4.53 | 92.76 | 4.53 | 92.76
VAE 4.56 | 95.58 | 4.55 | 94.63
NOHIER 377 | 43.38 | 3.78 | 43.82
HAQAE 3.73 | 41.68 | 3.74 | 42.10

Table 1: Negative log-likelihood (NLL) and per-
plexity (PPL) measures on the validation and test
set. Lower is better for both metrics.

training hyperparmaters used in the training of the
original model to work well here.

5 Evaluation

5.1 Language Modeling: Perplexity

As our proposed models are essentially language
models, it is natural to evaluate their perplexity
scores, which can be viewed as an indirect mea-
sure of how well the models can identify scripts.
We compute per-word perplexity and per-word
negative log likelihood on the validation and test
sets. We compute these values without consid-
ering the end-of-sentence (EOS) token. Table 1
gives these results. A good language model should
assign low perplexity (high probability) to the val-
idation and test sets. We observe that HAQAE
achieves the minimum negative log likelihood and
perplexity scores on both the validation and test
sets as compared to the previous RNN-based mod-
els. The result is particularly interesting as au-
toencoders usually perform worse or comparable
to other RNN language models in terms of per-
plexity (negative log likelihood) as is in the case
of the vanilla VAE here; similar observations have
also been made in Bowman et al. (2016).

5.2 Inverse Multiple Choice Narrative Cloze

Narrative cloze evaluations of event based lan-
guage models (LMs) start with a sequence of
events as input and test whether the LMs cor-
rectly predict a single held-out event. The standard
narrative cloze task has various issues (Cham-
bers, 2017). In our evaluations we opt instead for
the multiple choice variant proposed in Granroth-
Wilding and Clark (2016).

One of our goals is to test if our generative
model can produce globally coherent scripts by
evaluating their ability to generate coherent event
sequences. To evaluate this we create a new in-
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System validation | test
RNNLM 25.30 26.30
RNNLM-+Role 24.60 26.35
VAE 26.54 28.01
NOHIER 31.68 34.00
HAQAE 31.80 33.85

Table 2: Inverse narrative cloze accuracy(%) on
randomly selected 2k validation and test set. Mod-
els scored on whether they assign a higher proba-
bility to legitimate event sequence over detractor
event sequences. Higher is better.

verse narrative cloze task. Instead of being given
an event sequence and predicting a single event to
go with it, we instead are given only one event
and the model must identify the rest of the event
sequence. The model is identifying sequences of
events, not single events. We chose this setup be-
cause sequences is what we ultimately want, but
also because identifying single events resulted in
very high scores (around 98% accuracy). This task
proved to be more challenging as an evaluation.

We thus score a model based on the probabil-
ity it assigns to event sequences that begin with
a single input event. A legitimate event sequence
should have high probability compared to an event
sequence that is stitched together using two ran-
dom event sequences. We create legitimate event
sequences of a fixed length (six) by extracting ac-
tual event sequences observed in documents. For
every legitimate event sequence, we use the first
event in the sequence as a seed event. Then, we
construct detractor event sequences for this seed
by appending a different sequence of events (num-
ber of events being five) from a randomly cho-
sen document. We create five such detractor se-
quences for every legitimate sequence. We rank
the six sequences based on the probabilities as-
signed by the model and then evaluate the ac-
curacy of the top ranked sequence. A random
model will uniformly choose one among the six
sequences and thus will score 16 = 16.60% on the
task. We report results averaged over 2000 sets of
legitimate and detractor sequences.

Results in Table 2 show that the HAQAE is sub-
stantially better than both RNN LMs and vanilla
VAE and similar to the NOHIER model, which
shows the usefulness of the quantized embeddings
overall as a global representation. The comparable
results of the NOHIER model on this task might
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Figure 3: Cross entropy error on dev set of NO-
HIER (red) and HAQAE (blue) models as training
progresses.

also indicate that explicitly modeling the hierar-
chical structure may not be completely necessary
if ones only aim is to capture global coherence.
The results on the perplexity task do indicate that
overall, modeling the hierarchical structure is use-
ful for better prediction.

5.3 Comparing HAQAE and NOHIER

Both HAQAE and NOHIER models achieve the
best results across all tasks. The HAQAE model
does better on the perplexity task, while results of
the two models on the cloze task are nearly the
same. One clear benefit of explicitly connecting
the latent variables together appears to be in the
efficiency of the learning. The HAQAE model
performs comparable or better than the NOHIER
model despite (in this case at least) having fewer
parameters*.

The HAQAE model also appears to learn much
faster than the NOHIER model. We show this
in Figure 3, which shows the per-word cross en-
tropy error on the validation set as training pro-
gresses. We observe that the cross entropy error
drops much faster in the latter model than the for-
mer one. Also, the error is always lower for the
HAQAE model.

One possibility is that the NOHIER model
learns similar information as the HAQAE model,
but due to its lack of explicit inductive bias, takes
a longer time to learn this. We leave it as future
work to confirm whether this is the case through
an in depth study into the properties of the learned
discrete latents.

*NOHIER has more parameters in our case due to each
latent taking a bidirectional encoder state as a query vector,
as opposed to taking the parent latent vector as the query
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5.4 Evaluating Event Schemas

So far, we’ve evaluated how well the models rec-
ognize real textual events (perplexity) and how
well the models predict events in scripts (narrative
cloze). This section evaluates the script genera-
tion ability of the model, and specifically its abil-
ity to capture hierarchical information with differ-
ent tracks in scripts (e.g., pleading guilty causes
different events to occur than does pleading inno-
cent). In many respects, this section illustrates best
the power of HAQAE even though the results are
partly subjective.

While we presented two automatic evaluations
above, we shift to human judgment to evaluate the
scripts themselves. We believe this complements
the empirical gains already presented. The scripts
generated by the models were shown to human
judges and scored on several metrics.

Most previous work on script induction starts
with a seed event and then grows the script based
on measures of event proximity or from sampling
the distribution with the seed as context. While ef-
fective in generating a bag of events, a major prob-
lem in all previous work is that conflicting events
are included (sentenced and acquitted). While the
events are related and part of the same high-level
script, they should never appear together in an ac-
tual instance of a script.

In order to evaluate our model for this type of
knowledge, we instead defined a seed as 2 events:
the first event sets the general topic, and the sec-
ond event starts a specific track in that topic. For
instance, below are two seeds that are intended to
generate two tracks for the same script:

“people reported fire”
“fire spread in neighborhood”

“people reported fire”
“fire spread to forest”

For each seed (2 events in one seed) we select
the first 3 events generated by a model conditioned
on the seed as context. The 2 events in a seed thus
initialize the latent variable values, which then
inform the decoder to generate more events (we
choose the first 3). The strength of our model is
that the second event helps select the more spe-
cific script track, and to ignore conflicting events
in other tracks.

While generating for both RNNLM+Role and
HAQAE models, we additionally enforce a con-
straint that restricts models from generating events

that have a predicate that has already been gener-
ated, as well as events whose subject and object
are the same.

We evaluated the RNNLM+Role model from
Pichotta and Mooney (2016) against our proposed
HAQAE. Each model was given 40 seeds (20 first
event each with 2 contrasting second seed) and
thus generated 40 scripts. The annotators were
also shown the seeds (2 events), and then asked to
rate each three-event sequence for various metrics
described below.

Non-Sensical (Sense): Binary, is each event itself
non-sensical or understandable?

Event Relevance (Rel): Binary, each event was
scored for being relevant or not to the script topic.
This ignored whether it was consistent with the
seed’s branch.

Coherency with Branch (Coh): 0-2, each event
was scored for being coherent with the seed’s spe-
cific branch (the second event). 0 means not at all,
1 means somewhat, and 2 means yes.

Branching Uniqueness (BranchU): 0-2, each
pair of scripts (both branches of the same topic)
were scored for overlap of events. 0 means similar
events generated for both, 1 means some similar
events, and 2 means distinct. This score is impor-
tant because some RNN decoders might ignore the
second event and focus on the general topic only.
Branching Quality (BranchQ): 0-2, each gen-
erated branch was scored for branch quality. 0
means the generated events are not specific to the
branch, 1 means some are specific, and 2 means
most/all events are specific. This is the most im-
portant score in measuring how well a model cap-
tures hierarchical structure and script tracks.

Two expert annotators evaluated the generated
event sequences. In case of disagreements in
scores, we also involved a third annotator to re-
solve these conflicts. Results for this task are
shown in Table 3.

Both RNNLM and HAQAE produce sensical
events, but the HAQAE model outperforms on all
other metrics. It produces more relevant and co-
herent events for the topic at hand (relevance and
coherency). But most important to the goals of this
paper, it doubles the RNNLM scores on branch-
ing uniqueness and quality. This is because an
RNNLM mostly generates from a bag of events
after encoding the seed, but the HAQAE utilizes
its latent space to produce branch-specific tracks
of event sequences. Tables 4 show a few such ex-
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System

| Sense(%) | Rel(%) | Coh(0-2) | BranchU(0-2) | BranchQ(0-2)

RNNLM-+Role

Table 3: Human evaluation of schemas generated for the seed events. HAQAE consistently performs

1.35
1.59

93.13

84.73
93.13

HAQAE 95.37

0.51

0.65
1.00

1.35

better than the baseline model. Higher is better for all metrics.

RNN+Role bomb found in backpack, bomb failed to detonate | bomb killed people, bomb detonated in blast
bomb found in backpack, bomb detonated explosion killed people, people injured in blast
people reported fire, fire spread to forest fire destroyed building
people reported fire, fire spread to neighborhood fire damaged building

HAQAE bomb found in backpack, bomb failed to detonate | they found evidence, explosive hidden in luggage
bomb found in backpack, bomb detonated blast left crater, blast killed people
people reported fire, fire spread to forest fire burned acres
people reported fire, fire spread to neighborhood fire destroyed building

Table 4: Sample outputs from the baseline and our proposed system. The seeds (what is given to the
system) are shown in the left column while the outputs are on the right. HAQAE is able to distinguish
between the contrasting seeds. Red highlights the lack of branching quality in the baseline model and
Blue highlights the correct behavior as exhibited by HAQAE.

person denied charges, lawsuit filed by person, judge dismissed lawsuit
person denied charges, they accused person, person resigned in january

clinton carried promises, clinton began in 1988, clinton made changes
campaign carried promises, campaign began on september, campaign made effort

campaign carried promises, campaign began on september, campaign made effort
team carried for championship, team played in philadelphia, they won champoinship

Table 5: Results of changing a single latent variable while keeping others fixed. Lower level latents
typically change ending/beginnings or entity names (Rows 1 and 2). The top level latent changes the
topic and may occasionally preserve the form (Row 3)

amples.

5.5 Observations about the Latent Variables

We also look at how changing the values of var-
ious latent variables change the resulting output,
in order to get a small idea as to what properties
the variables capture. We find that the root level
variable z( has the largest effect on the output, and
typically corresponds to the domain that the se-
quence of events belong to. The non root variables
generally change the output on a smaller scale,
however we find no correspondence between the
level of the variable and the amount of output that
is affected upon changing its value.

One reason for the difficulty of interpreting the
variables is that the model conditions on them
through attention, thus changing the value of one
does not necessarily need to have any effect.

We do find that changing the lower level latents
generally leads to the ending/beginning of the se-
quence changing or the entities of the sequence
changing (but still remaining in the same topi-
cal domain). We additionally find that changing

the top level latent may often preserve the overall
form of the event sequence, and only transform the
topic. We provide examples of these output by our
system in Table 5.

6 Related Work

Scripts were originally proposed by Schank and
Abelson (1975) and further expanded upon in
Schank and Abelson (1977). The notion of hier-
archies in scripts has been studied in the works
of Abbott et al. (1985) and Bower et al. (1979).
Mooney and DeJong (1985) present an early non
probabilistic system for extracting scripts from
text. A highly related work by Miikkulainen
(1990) provides an early example of a system
explicitly designed to take advantage of the hi-
erarchical nature of scripts, creating a model of
scripts based on self organizing maps (Kohonen,
1982). Interestingly, self organizing maps also uti-
lize vector quantization during learning (albeit in
a different way than done here).

Recent work starting from Chambers and Ju-
rafsky (2008) has focused on learning scripts as
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prototypical sequences of events using event co-
occurrence. Further work has framed this task
as a language modeling problem (Pichotta and
Mooney, 2016; Rudinger et al., 2015; Peng and
Roth, 2016). Other work has looked at learn-
ing more structured forms of script knowledge
called schemas (Chambers, 2013; Balasubrama-
nian et al., 2013; Nguyen et al., 2015) which fo-
cuses on additionally inducing script specific roles
to be filled by entities. In this work we treat event
components as separate tokens, though work has
also looked into methods for composing this com-
ponents into a single distributed event representa-
tion (Modi and Titov, 2014; Modi, 2016; Weber
etal., 2018). We leave this as possible future work.

The hierarchical structure of our proposed
model is similar to structure of the latent space in
other VAE variants (Sonderby et al., 2016; Zhao
et al., 2017), with the discrete variables and at-
tentions in our model being the major differences.
Hu et al. (2017) present a VAE based model for
controllable text generation, with different latents
controlling different aspects of the generated text,
but requiring labels for semi-supervision. Other
methods using discrete variables for VAEs have
also been proposed (Rolfe, 2017), as have varia-
tions in the VQ-VAE learning process (Sonderby
etal., 2017)

7 Conclusion

We proposed a new model, HAQAE, for script
learning and generation that is one of the first to
model the hierarchy that is inherent in this type
of real-world knowledge. Previous work has fo-
cused on modeling event sequences with language
models, while ignoring the problem of contradic-
tory events and different tracks being jumbled to-
gether. The hierarchical latent space of HAQAE
instead attends to the choice points in event se-
quences, and is able to provide some discrimina-
tion between tracks of events.

While HAQAE is motivated by the specific need
for hierarchies in scripts, it can also be seen as
a general event language model. As a language
model HAQAE has a substantially lower perplex-
ity on our test set than previous RNN models de-
spite HAQAE’s decoder having fewer parameters.

We also presented a new inverse narrative cloze
task that is a multiple-choice selection of event
sequences. It proved to be a very difficult task
with systems producing accuracies in the mid 20%

range. HAQAE and NOHEIR were the only sys-
tems to break 30 with a top accuracy of 34.0%.
This further illustrates that using a latent space to
capture script differences helps identify relevant
sequences.

To our knowledge, all previous work on script
induction has focused on learning single event se-
quences or bags of events. We view our proposed
model as a new step toward learning different de-
tails about scripts, such as tracks and hierarchies.
Though the proposed model works well empiri-
cally, understanding exactly what is learned in the
latent variables is non trivial, and is a possible di-
rection for future work.
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