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Abstract

Sentiment analysis has immense implications
in modern businesses through user-feedback
mining. Large product-based enterprises like
Samsung and Apple make crucial business de-
cisions based on the large quantity of user re-
views and suggestions available in different
e-commerce websites and social media plat-
forms like Amazon and Facebook. Sentiment
analysis caters to these needs by summariz-
ing user sentiment behind a particular object.
In this paper, we present a novel approach of
incorporating the neighboring aspects related
information into the sentiment classification
of the target aspect using memory networks.
Our method outperforms the state of the art by
1.6% on average in two distinct domains.

1 Introduction

Sentiment analysis plays a huge role in user-
feedback extraction from different popular e-
commerce websites like Amazon, eBay, etc. Large
enterprises are not only interested in the overall
user sentiment about a given product, but the sen-
timent behind the finer aspects of a product is also
very important to them. Companies allocate their
resources to research, development, and marketing
based on these factors. Aspect-based sentiment
analysis (ABSA) caters to these needs.

Users tend to express their opinion on differ-
ent aspects of a given product. For example, the
sentence “Everything is so easy to use, Mac soft-
ware is just so much simpler than Microsoft soft-
ware.” expresses sentiment behind three aspects:
“use”, “Mac software”, and “Microsoft software”
to be positive, positive, and negative respectively.
This leads to two tasks to be solved: aspect extrac-
tion (Shu et al., 2017) and aspect sentiment polar-
ity detection (Wang et al., 2016). In this paper, we

tackle the latter problem by modeling the relation
among different aspects in a sentence.

Recent works on ABSA does not consider the
neighboring aspects in a sentence during classifi-
cation. For instance, in the sentence “The menu is
very limited - I think we counted 4 or 5 entries.”,
the sub-sentence “I think ... entries” does not re-
flect the true sentiment behind containing aspect
“entries”, unless the other aspect “menu” is con-
sidered. Here, the negative sentiment of “menu”
induces “entries” to have the same sentiment. We
hypothesize that our architecture iteratively mod-
els the influence from the other aspects to generate
accurate target aspect representation.

In sentences containing multiple aspects, the
main challenge an Aspect-Based-Sentiment-
Analysis (ABSA) classifier faces is to correctly
connect an aspect to the corresponding sentiment-
bearing phrase (typically adjective). Let us
consider this sentence “Coffee is a better deal
than overpriced cosi sandwiches”. Here, we find
two aspects: “coffee” and “cosi sandwiches”. It
is clear in this sentence that the sentiment of “cof-
fee” is expressed by the sentimentally charged
word “better”; on the other hand, “overpriced”
carries the sentiment of “cosi sandwiches”. The
aim of the ABSA classifier is to learn these con-
nections between the aspects and their sentiment
bearing phrases.

In this work, we argue that during sentiment
prediction of an aspect (say “coffee” in this case),
the knowledge of the existence and representation
of the other aspects (“cosi sandwiches”) in the
sentence is beneficial. The sentiment of an aspect
in a sentence can influence the succeeding aspects
due to the presence of conjunctions. In particular,
for sentences containing conjunctions like and, not
only, also, but, however, though, etc., aspects tend
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to share their sentiments. In the sentence “Food is
usually very good, though I wonder about fresh-
ness of raw vegetables”, the aspect “raw vegeta-
bles” does not have any trivial sentiment marker
linked to it. However, the positive sentiment of
“food”, due to the word “”good”, and presence of
conjunction “though” determines the sentiment of
“raw vegetables” to be negative. Thus, aspects
when arranged as a sequence, reveal high correla-
tion and interplay of sentiments.

To model these scenarios, firstly, following
Wang et al. (2016), we independently generate
aspect-aware sentence representations for all the
aspects using gated recurrent unit (GRU) (Chung
et al., 2014) and attention mechanism (Luong
et al., 2015). Then, we employ memory net-
works (Sukhbaatar et al., 2015) to repeatedly
match the target aspect representation with the
other aspects to generate more accurate represen-
tation of the target aspect. This refined repre-
sentation is fed to a softmax classifier for final
classification. We empirically show below that
our method outperforms the current state of the
art (Ma et al., 2017) by 1.6% on average in two
distinct domains: restaurant and laptop.

The rest of the paper structured as follows: Sec-
tion 2 discusses previous works; Section 3 delves
into the method we present; Section 4 mentions
the dataset, baselines, and experimental settings;
Section 5 presents and analyzes the results; finally,
Section 6 concludes this paper.

2 Related Works

Sentiment analysis is becoming increasingly im-
portant due to the rise of the need to process
textual data in wikis, micro-blogs, and other so-
cial media platforms. Sentiment analysis requires
solving several related NLP problems, like aspect
extraction (Poria et al., 2016). Aspect based sen-
timent analysis (ABSA) is a key task of sentiment
analysis which focuses on classifying sentiment of
each aspect in the sentences.

In this paper, we focus on ABSA, which is a key
task of sentiment analysis that aims to classify sen-
timent of each aspect individually in a sentence. In
recent days, thanks to the increasing progress of
deep neural network research (Young et al., 2018),
novel frameworks have been proposed, achieving
notable performance improvement in aspect-based
sentiment analysis.

The common way of doing ABSA is feeding the

aspect-aware sentence representation to the neural
network for classification. This was first proposed
by Wang et al. (2016) where they appended as-
pect embeddings with the each word embeddings
of the sentence to generate aspect-aware sentence
representation. This representation was further fed
to an attention layer followed by softmax for final
classification.

More recently, Ma et al. (2017) proposed a
model where both context and aspect representa-
tions interact with each other’s attention mecha-
nism to generate the overall representation. Tay
et al. (2017) proposed word-aspect associations
using circular correlation as an improvement over
Wang et al. (2016)’s work. Also, Li et al. (2018)
used transformer networks for target-oriented sen-
timent classification.

ABSA has also been researched from a
question-answering perspective where deep mem-
ory networks have played a major role (Tang et al.,
2016b; Li et al., 2017). However, unlike our pro-
posed method, none of these methods have tried to
model the inter-aspect relations.

3 Method

In this section, we formalize the task and present
our method.

3.1 Problem Definition
Input We are given a sentence S =

[w1,w2, . . . ,wL], where wi are the words and L
is the maximum number of words in a sentence.
Also, the given aspect-terms for sentence S are
A1,A2, . . . ,AM , where Ai = [wk, . . . ,wk+m−1],
1 ≤ k ≤ L, 0 < m ≤ L − k + 1, and M is the
maximum number of aspects in a sentence.

Output Sentiment polarity (1 for positive, 0 for
negative, and 2 for neutral) for each aspect-term
Ai.

3.2 Model
The primary distinction between our model and
the literature is the consideration of the neighbor-
ing aspects in a sentence with the target aspect.
We assume that our inter-aspect relation modeling
(IARM) architecture1 models the relation between
the target aspect and surrounding aspects, while
filtering out irrelevant information. Fig. 1 depicts
our model.

1Implementation available on http://github.
com/senticnet/IARM

http://github.com/senticnet/IARM
http://github.com/senticnet/IARM
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3.2.1 Overview
Our IARM model can be summarized with the fol-
lowing steps:

Input Representation We replace the words
in the input sentences and aspect-terms with
pre-trained Glove word embeddings (Pennington
et al., 2014). For multi-worded aspect-terms, we
take the mean of constituent word embeddings as
aspect representation.

Aspect-Aware Sentence Representation Fol-
lowing Wang et al. (2016), all the words in a sen-
tence are concatenated with the given aspect repre-
sentation. These modified sequence of words are
fed to a gated recurrent unit (GRU)2 for context
propagation, followed by an attention layer to ob-
tain the aspect-aware sentence representation; we
obtain for all the aspects in a sentence.

Inter-Aspect Dependency Modeling We em-
ploy memory network (Sukhbaatar et al., 2015)
to model the dependency of the target aspect
with the other aspects in the sentence. This
is achieved through matching target-aspect-aware
sentence representation with aspect-aware sen-
tence representation of the other aspects. After a
certain number of iterations of the memory net-
work, we obtain a refined representation of the
sentence that is relevant to the sentiment classifi-
cation of the target aspect. Further, this represen-
tation is passed to a softmax layer for final classi-
fication. The following subsections discuss these
steps in details.

3.2.2 Input Representation
The words (wi) in the sentences are represented
with 300 (D) dimensional Glove word embed-
dings (Pennington et al., 2014), resulting sentence
S ∈ RL×D.

Similarly, aspect terms are represented with
word embeddings. Multi-worded aspect terms are
averaged over the constituent words. This results
aspect representation ai ∈ RD for ith aspect term.

3.2.3 Aspect-Aware Sentence Representation
It would be fair to assume that not all the words in
a sentence carry sentimental information of a par-
ticular aspect (e.g., stop words have no impact).
This warrants a sentence representation that re-
flects the sentiment of the given aspect. To achieve

2LSTM (Hochreiter and Schmidhuber, 1997) yields simi-
lar performance, but requires training more parameters

this, we first concatenate aspect ai to all the words
in the sentence S:

Sai = [w1 ⊕ ai,w2 ⊕ ai, . . . ,wL ⊕ ai] ∈ RL×2D.
(1)

In order to propagate the context information
within the sentence, we feed Sai to a Gated Recur-
rent Unit (GRU) with output size Ds (kindly refer
to Table 1 for the value). We denote this GRU as
GRUs. GRU. is described as follows:

z = σ(xtU
z
. + st−1W

z
. ), (2)

r = σ(xtU
r
. + st−1W

r
. ), (3)

ht = tanh(xtU
h
. + (st−1 ∗ r)W

h
. ), (4)

st = (1 − z) ∗ ht + z ∗ st−1, (5)

where ht and st are the hidden outputs and the
cell states respectively at time t. We obtain Rai =
GRUs(Sai), where Rai ∈ RL×Ds and the GRUs
has the following parameters: U zs ∈ R2D×Ds ,
W z
s ∈ RDs×Ds , U rs ∈ R2D×Ds , W r

s ∈ RDs×Ds ,
Uhs ∈ R2D×Ds , W h

s ∈ RDs×Ds .
To amplify the sentimentally relevant words to

aspect ai, we employ an attention layer to obtain
the aspect-aware sentence representation (it is ef-
fectively a refined aspect representation) rai :

z = RaiWs + bs, (6)

α = softmax(z), (7)

rai = α
TRai , (8)

where z = [z1, z2, . . . , zL] ∈ RL×1,
softmax(x) = [ex1/∑j e

xj , ex2/∑j e
xj , . . . ],

α = [α1, α2, . . . , αL] ∈ RL×1, rai ∈ RDs ,
Ws ∈ RDs×1, and bs is a scalar.

3.2.4 Inter-Aspect Dependency Modeling
We feed R = [ra1 , ra2 , . . . , raM ] ∈ RM×Ds to a
GRU (GRUa) of size Do (kindly refer to Table 1
for the value) to propagate aspect information
among the aspect-aware sentence representations
and obtain Q = GRUa(R), where Q ∈ RM×Do

and GRUa has the following parameters: U za ∈

RDs×Do , W z
a ∈ RDo×Do , U ra ∈ RDs×Do , W r

a ∈

RDo×Do , Uha ∈ RDs×Do , W h
a ∈ RDo×Do . This par-

tially helps to model the dependency among as-
pects in a sentence.

After this, in order to further inter-aspect de-
pendency modeling, we employ memory net-
works (Sukhbaatar et al., 2015), where the target-
aspect representation (target-aspect-aware senti-
ment representation) rat is supplied as the query.



3405

AASR

S a1

AASR

S a2

∑

GRUm

GRUa

Q

Q′�

Q(τ+1) = Q′� (τ)

q(τ+1) = q(τ) + o

Classification

Negative 
Neutral 
Positive

Hop
s

Memory Network
in

pu
t m

em
or

y

AASR

S at

o = βTQ′�

qH+1

q

ou
tp

ut
 m

em
or

y

Input :

GRUs

w1

a

w2S : wL

α

ra

AASR

S
a

Aspect-aware Sentence Representation

Attention-block
β

Figure 1: The proposed IARM architecture; AASR stands for Aspect-Aware Sentence Representation.

rat is transformed into internal query state (q) with
a fully connected layer as

q = tanh(ratWT + bT ), (9)

where q ∈ RDo , WT ∈ RDs×Do , and bT ∈ RDo .

Input Memory Representation All the aspects
in the sentence are stored in memory. Each aspect
is represented by their corresponding aspect-aware
sentence representation inQ. An attention mecha-
nism is used to read these memories from Q (We-
ston et al., 2014). We compute the match between
the query q and the memory slots in Q with inner
product:

z = qQT , (10)

β = softmax(z), (11)

where z = [z1, z2, . . . , zM ] ∈ RM×1, β =

[β1, β2, . . . , βM ] ∈ RM×1. Here, βi is the measure
of relatedness between target aspect and aspect i
i.e., the attention score.

Output Memory Representation We choose
the output memory vectors (Q′) to be a refined ver-
sion of the input memory vectors (Q), obtained by
applying a GRU of sizeDo (namedGRUm) onQ.
Hence,

Q′
= GRUm(Q), (12)

whereGRUm has the following parameters: U zm ∈

RDo×Do , W z
m ∈ RDo×Do , U rm ∈ RDo×Do , W r

m ∈

RDo×Do , Uhm ∈ RDo×Do , W h
m ∈ RDo×Do .

The response vector o is obtained by summing
output vectors in Q′, weighted by the relatedness
measures in β:

o = βTQ′, (13)

where o ∈ RDo .

Final Classification (Single Hop) In the case of
single hop, target aspect representation q is added
with memory output o to generate refined target
aspect representative. This sum is passed to a soft-
max classifier of size C (C = 3 due to the classes
of sentiment polarity):

P = softmax((q + o)Wsmax + bsmax), (14)

ŷ = argmax
i

(P[i]), (15)

where Wsmax ∈ RDo×C , bsmax ∈ RC , and ŷ is the
estimated sentiment polarity (0 for negative, 1 for
positive, and 2 for neutral).

Multiple Hops We use total H (kindly refer
to Table 1 for the value) number of hops in our
model. Each hop generates a finer aspect repre-
sentation q. Hence, we formulate the hops in the
following way:
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• Query (q) at the end of hop τ is updated as

q(τ+1)
= q(τ) + o. (16)

• Output memory vectors of hop τ , Q′(τ), is
updated as the input memory vectors of hop
τ + 1:

Q(τ+1)
= Q′(τ). (17)

After H hops, q(H) becomes the target-aspect-
aware sentence representation vector for the final
classification:

P = softmax(q(H+1)Wsmax + bsmax), (18)

ŷ = argmax
i

(P[i]), (19)

where Wsmax ∈ RDo×C , bsmax ∈ RC , and ŷ is the
estimated sentiment polarity (0 for negative, 1 for
positive, and 2 for neutral). The whole algorithm
is summarized in Algorithm 1.

3.3 Training
We train the network for 30 epochs using categori-
cal cross entropy with L2-regularizer as loss func-
tion (L):

L = −
1

N

N

∑
i=1

C−1

∑
k=0

yik logP[k] + λ ∥θ∥2 , (20)

where N is the number of samples, i is the sample
index, k is the class value, λ is the regularization
weight (we set it to 10−4),

yik =

⎧⎪⎪
⎨
⎪⎪⎩

1, if expected class value of sample i is k,
0, otherwise,

(21)

and θ is the set of parameters to be trained, where

θ = {U z
{s,a,m},W

z
{s,a,m}, U

r
{s,a,m},W

r
{s,a,m},

Uh
{s,a,m},W

h
{s,a,m},Ws, bs,WT , bT ,Wsmax,

bsmax}.

As optimization algorithm, Stochastic Gradient
Descent (SGD)-based ADAM algorithm (Kingma
and Ba, 2014) is used with learning-rate 0.001 due
to its parameter-wise adaptive learning scheme.

Hyper-Parameters We employed grid-search
to obtain the best hyper-parameter values. Table 1
shows the best choice of these values.

Algorithm 1 IARM algorithm

1: procedure TRAINANDTESTMODEL(U , V )
▷ U = train set, V = test set

2: Aspect-aware sentence representation extrac-
tion:

3: for i:[1,M] do▷ generate for all the aspects in
the sentence

4: rai ← AspectAwareSentRep(S, ai)

5: Query generation:
6: q ← FCLayer(rat) ▷ Transform the

target-aspect-aware sentence representation to the query
of memory network

7: Memory networks:
8: Q← GRUa([ra1 , ra2 , . . . , raM ]) ▷ initial input

memory
9: Q′ ← GRUm(Q) ▷ initial output memory

10: for i:[1,H] do ▷ memory network hops
11: z ← qQT

▷ match with target aspect
12: β ← softmax(z)

13: o← βTQ′ ▷ response vector
14: Q← Q′ ▷ input memory for the next hop
15: q ← q + o ▷ update target-aspect-aware

sentence representation (query)

16: Classification:
17: ŷ = argmax

j
(softmax(q)[j]) ▷ softmax

classification
18: TestModel(V )

19: procedure ASPECTAWARESENTREP(S,a) ▷

generation of aspect-aware sentence representation
20: Ra ← GRUs([w1 ⊕ a,w2 ⊕ a, . . . ,wL ⊕ a]) ▷

S = [w1,w2, . . . ,wL]

21: z ← FCLayer(Ra)

22: α← softmax(z)

23: ra ← αTRa

24: return ra

25: procedure TESTMODEL(V )
26: Similar to the training phase, V is passed through

the learnt models to get the classification outputs. Sec-
tion 3.3 mentions the trainable parameters (θ).

4 Experiments

In this section, we discuss the dataset used and dif-
ferent experimental settings devised for the evalu-
ation of our model.

4.1 Dataset Details

We evaluate our model with SemEval-2014 ABSA
dataset3. It contains samples from two different
domains: Restaurant and Laptop. Table 2 shows
the distribution of these samples by class labels.
Also, Table 3 shows the count of the samples with
single aspect sentence and multi-aspect sentence.

3http://alt.qcri.org/semeval2014/task4

http://alt.qcri.org/semeval2014/task4
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4.2 Baseline Methods

We compare our method against the following
baseline methods:

LSTM Following Wang et al. (2016), the sen-
tence is fed to a long short-term memory (LSTM)
network to propagate context among the con-
stituent words. The mean of all the hidden out-
puts from the LSTM is taken as the sentence rep-
resentation, which is fed to a softmax classifier.
Aspect-terms have no participation in the classifi-
cation process.

TD-LSTM Following Tang et al. (2016a), se-
quence of words preceding (left context) and suc-
ceeding (right context) target aspect term are fed to
two different LSTMs. Mean of the hidden outputs
of the LSTMs are concatenated and fed to softmax
classifier.

AE-LSTM Following Wang et al. (2016), the
sentence is fed to an LSTM for context propaga-
tion. Then, the hidden outputs are concatenated
with target-aspect representation, from which at-
tention scores are calculated. Hidden outputs are
pooled based on the attention scores to generate
intermediate aspect representation. Final repre-
sentation is generated as the sum of the affine
transformations of intermediate representation and
final LSTM hidden output. This representation is
fed to softmax classifier.

ATAE-LSTM Following Wang et al. (2016),
ATAE-LSTM is identical to AE-LSTM, except the
LSTM is fed with the concatenation of aspect-term
representation and word representation.

IAN Following Ma et al. (2017), target-aspect
and its context are sent to two distinct LSTMs and
the means of the hidden outputs are taken as inter-
mediate aspect representation and context repre-
sentation respectively. Attention scores are gen-
erated from the hidden outputs of both LSTMs
which is used to generate final aspect and con-
text representation. The concatenation of these
two vectors are sent to a softmax classifier for final
classification.

Hyper-Parameter Restaurant Laptop
Ds 300 400
Do 350 400

Hop Count 3 10

Table 1: Hyper-parameter choices.

Domain Positive Negative Neutral
Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196
Laptop 987 341 866 128 460 169

Table 2: Distribution of the samples by class labels
in SemEval 2014 dataset.

4.3 Experimental Settings
In order to draw a comprehensive comparison be-
tween our IARM model and the baseline methods,
we performed the following experiments:

Overall Comparison IARM is compared with
the baseline methods for both of the domains.

Single Aspect and Multi Aspect Scenarios In
this setup, samples with single aspect and multi
aspect sentences are tested independently on the
trained model. For IAN, we ran our own experi-
ments for this scenario.

Cross-Domain Evaluation Here, the model
trained for restaurant domain is tested with the test
set for laptop domain and vice versa. For IAN, we
ran our own experiments for this scenario.

5 Results and Discussion

We discuss the results of different experiments be-
low:

Overall Comparison We present the overall
performance of our model against the baseline
methods in Table 4.

It is evident from the results that our IARM
model outperforms all the baseline models, in-
cluding the state of the art, in both of the do-
mains. We obtained bigger improvement in lap-
top domain, of 1.7%, compared to restaurant do-
main, of 1.4%. This shows that the inclusion of the
neighboring aspect information and memory net-
work has an overall positive impact on the classi-
fication process.

Single Aspect and Multi-Aspect Scenarios
Following Table 5, our IARM model beats the

Domain Train Test
SA MA SA MA

Restaurant 1007 2595 285 835
Laptop 917 1396 259 379

Table 3: Distribution of the samples by single
aspect/multi aspect sentence criteria in SemEval
2014 (SA: Single Aspect, MA: Multi Aspect).
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Model Domain
Restaurant Laptop

Majority Voting 53.4 65.0
LSTM 74.3 66.5

TD-LSTM 75.6 68.1
AE-LSTM 76.2 68.9

ATAE-LSTM 77.2 68.7
IAN (SoA) 78.6 72.1

IARM 80.0 73.8

Table 4: Domain-wise accuracy (%) of the dis-
cussed models. Best accuracy for each domain is
marked with bold font.

state of the art in both single aspect and multi-
aspect scenarios in both of the domains. It is in-
teresting that both model perform better in multi-
aspect scenario for restaurant domain. However,
for laptop domain IAN performs better in sin-
gle aspect scenario, even though there are more
multi-aspect samples than single aspect samples
(shown in Table 3). This indicates the failure of
IAN model to learn multi-aspect scenario, where
IARM model performs significantly better.

Model Restaurant Laptop
SA MA SA MA

IAN (SoA) 75.4 77.7 72.5 71.6
IARM 78.6 80.48 73.4 74.1

Table 5: Accuracy of the models for single as-
pect and multi aspect scenario; SA: Single Aspect,
MA: Multi Aspect.

Cross-Domain Evaluation Following Table 6,
IARM outperforms the state of the art IAN by
2% in both cross-domain scenarios. This indicates
the ability of IARM in learning general domain-
independent semantic structures from the training
data.

Model Rest→ Lap Lap→ Rest
IAN (SoA) 64.6 72.0

IARM 66.7 74.0

Table 6: Accuracy for cross-domain evaluation;
Rest: Restaurant domain, Lap: Laptop domain; A
→ B signifies train-set is the train-set of domain A
and test-set is the test-set of domain B.

5.1 Case Study

We analyze and compare IARM and IAN with sin-
gle aspect and multi-aspect samples from the Se-
mEval 2014 dataset.

Single Aspect Case It is evident from Table 5,
that IARM outperforms IAN in single-aspect sce-
nario. For example, the sentence “I recommend
any of their salmon dishes......” having aspect
“salmon dishes”, with positive sentiment, fails to
be correctly classified by IAN as the attention net-
work focuses on the incorrect word “salmon”, as
shown in Fig. 2a. Since, “salmon” does not carry
any sentimental charge, the network generates a
ineffective aspect-aware sentiment representation,
which leads to misclassification.

On the other hand, IARM succeeds in this case,
because the word-level attention network gener-
ates correct attention value as α in Eq. (7). α for
this case is depicted in Fig. 2b, where it is clear
that the network emphasizes the correct sentiment-
bearing word “recommended”. This leads to effec-
tive aspect-aware sentence representation by the
network, making correct final classification.

Multi-Aspect Case IARM also outperforms
IAN in multi-aspect scenario, which can be ob-
served in Table 5. We suspect that the presence of
multiple aspects in sentence makes IAN network
perplexed as to the connection between aspect and
the corresponding sentiment-bearing word in the
sentence. For example, the sentence “Coffee is a
better deal than overpriced cosi sandwiches” con-
tains two aspects: “coffee” and “better”. Clearly,
the sentiment behind aspect “coffee” comes from
the word “better” and the same for aspect “cosi
sandwiches” comes from “overpriced”. However,
IAN fails to make this association for the as-
pect “cosi sandwiches”, evident from the attention
weights of IAN shown in Fig. 3a where the empha-
sis is on “better”. This leads to imperfect aspect-
aware sentence representation generation, result-
ing misclassification of the target aspect to be pos-
itive.

However, IARM resolves this issue with the
combination of word-level aspect aware attention
(α) and the memory network. Since, the memory
network compares the target-aspect-aware sen-
tence representation with the sentence represen-
tations for the other aspects repeatedly, eventu-
ally the correct representation for the target aspect
emerges from the memory network.

Also, the consideration of surrounding as-
pects forces the network to better distinguish
the sentiment-bearing words for a particular as-
pect. These points are reflected in the α attention
weights of the aspects “coffee” and “cosi sand-
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(a) Attention weight for aspect “salmon dishes” for IAN.

(b) Attention weight for aspect “salmon dishes” for IARM.

Figure 2: Attention weights for IAN and IARM for “I recommend any of their salmon dishes”.

(a) Attention weights for aspect “cosi sandwiches” for IAN.

(b) Attention weights for aspect “cosi sandwiches” for IARM.

(c) Attention weights for aspect “coffee” for IARM.

Figure 3: Attention weights for IAN and IARM for the sentence “Coffee is a better deal than overpriced
cosi sandwiches”.

wiches”, shown in Fig. 3b and Fig. 3c respec-
tively, where the network emphasizes the correct
sentiment-bearing words for each aspect, “better”
and “overpriced”, respectively. Again, the mem-
ory network compares the target aspect-aware sen-
tence representation for “cosi sandwiches” with
the same for “coffee” and incorporates relevant in-
formation into the target-aspect representation q in
Eq. (16) along several hops.

This phenomenon is indicated in Fig. 4a, where
the degree of incorporation of the aspect terms is
measured by the attention weights β in Eq. (11).
Here, the network is incorporating information
from aspect “coffee” into aspect “cosi sandwiches”
over three hops. We surmise that this information
is related to the sentiment-bearing word “better”
of the aspect “coffee”, because a comparison using
the word “better” implies the presence of a good
(“coffee”) and a bad (“cosi sandwiches”) object.
However, this semantics is misconstrued by IAN,
which leads to aspect misclassification.

IARM performs considerably well when con-
junction plays a vital role in understanding the
sentence structure and meaning for sentiment
analysis. For example, “my favs here are the tacos
pastor and the tostada de tinga” where the aspects

“tacos pastor” and “tostada de tinga” are con-
nected using conjunction “and” and both rely on
the sentiment bearing word favs. Such complex
relation between the aspects and the correspond-
ing sentiment-bearing word is grasped by IARM
as shown in Fig. 4b. Another example where the
inter-aspect relation is necessary for the correct
classification is shown in Fig. 5, where the aspects
“atmosphere” and “service” both rely on the sen-
timent bearing word “good”, due to the conjunc-
tion “and”.

(a) Memory network atten-
tion weights for the sen-
tence “Coffee is a better deal
than overpriced cosi sand-
wiches.”.

(b) Memory network atten-
tion weights for the sentence
“my favs here are the tacos
pastor and the tostada de
tinga.”.

Figure 4: Memory network attention weights for
IARM.
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Figure 5: Memory network attention weights for
IARM for the sentence “service was good and
so was the atmosphere.” The word importance
heatmap is for the aspect “atmosphere”.

Figure 6: Hop-Accuracy plot for both domains.

5.2 Error Analysis

IARM also fails to correctly classify in some
cases, e.g., in the sentence “They bring a sauce
cart up to your table and offer you 7 or 8 choices
of sauces for your steak (I tried them ALL).”, the
aspect “choices of sauces” is misclassified by our
network as neutral. This happened due to the
IARM’s inability to correctly interpret the positive
sentiment behind “7 or 8 choices of sauces” .

Again, the IARM could not correctly classify
aspect the “breads” to be positive in the sentence
“Try the homemade breads.”. This happened, be-
cause the word “try” itself is not sentimentally
charged, but can carry sentimental meaning given
the right context. This context was not recognized
by IARM, which led to misclassification.

5.3 Hop-Performance Relation

In our experiments, we tried different hop counts
of the memory network. We observed that the net-
work performs best with three hops for restaurant
domain and ten hops for laptop domain, which is
shown in the hop count - performance plot in Fig-
ure Fig. 6. It can be observed that the plot for
restaurant domain is smoother than the plot for
laptop domain. We assume that this is due to the
restaurant domain having higher number of sam-
ples than laptop domain, as shown in Table 2.

Also, the plot for restaurant domain shows a
downward trend over the increasing number of
hops, with spikes in hop 3, hop 10. This sug-
gests a irregular cyclic nature of the memory net-
work where those certain hop counts yields higher
quality representations than their neighbor. The
same cannot be said for laptop domain as the plot
presents a zig-zag pattern.

6 Conclusion

In this paper, we presented a new framework,
termed IARM, for aspect-based sentiment analy-
sis. IARM leverages recurrent memory networks
with multihop attention mechanism. We empiri-
cally illustrate that an aspect in a sentence is influ-
enced by its neighboring aspects. We exploit this
property to obtain state-of-the-art performance in
aspect-based sentiment analysis in two distinct do-
mains: restaurant and laptop. However, there
remains plenty of room for improvement in the
memory network, e.g., for generation of better
aspect-aware representations.
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