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Abstract

The rapid development of knowledge graphs
(KGs), such as Freebase and WordNet, has
changed the paradigm for AI-related applica-
tions. However, even though these KGs are
impressively large, most of them are suffering
from incompleteness, which leads to perfor-
mance degradation of AI applications. Most
existing researches are focusing on knowl-
edge graph embedding (KGE) models. Nev-
ertheless, those models simply embed entities
and relations into latent vectors without lever-
aging the rich information from the relation
structure. Indeed, relations in KGs conform
to a three-layer hierarchical relation structure
(HRS), i.e., semantically similar relations can
make up relation clusters and some relations
can be further split into several fine-grained
sub-relations. Relation clusters, relations and
sub-relations can fit in the top, the middle and
the bottom layer of three-layer HRS respec-
tively. To this end, in this paper, we extend ex-
isting KGE models TransE, TransH and Dist-
Mult, to learn knowledge representations by
leveraging the information from the HRS. Par-
ticularly, our approach is capable to extend
other KGE models. Finally, the experiment re-
sults clearly validate the effectiveness of the
proposed approach against baselines.

1 Introduction

Knowledge Graphs (KGs) are extremely useful
resources for many AI-related applications, such
as question answering, information retrieval and
query expansion. Indeed, KGs are multi-relational
directed graphs composed of entities as nodes and
relations as edges. They represent information
about real-world entities and relations in the form
of knowledge triples, which is denoted as (h, r, t),
where h and t correspond to the head and tail enti-
ties and r denotes the relation between them, e.g.,
(Donald Trump, presidentOf, USA). Large

scale, collaboratively created KGs , such as Free-
base (Bollacker et al., 2008), WordNet (Miller,
1994), Yago (Suchanek et al., 2007), Gene On-
tology (Sherlock, 2009), NELL (Carlson et al.,
2010) and Google’s KG1, have recently become
available. However, despite the impressively large
sizes, the coverage of most existing KGs are far
from complete. This has motivated research in
knowledge base completion task, which includes
KGE methods aiming to embed entities and rela-
tions in KGs into low-dimensional embeddings.

In the literature, there are a number of studies
about KGE models. These models embed enti-
ties and relations into latent vectors and complete
KGs based on these vectors, such as TransE (Bor-
des et al., 2013), TransH (Wang et al., 2014) and
TransR (Lin et al., 2015b). However, most of the
existing works simply embed relations into vec-
tors. Less efforts have been made for investigating
the rich information from the relation structure.
Indeed, in this research, we define a three-layer hi-
erarchical relation structure (HRS), which can be
conformed by relation clusters, relations and sub-
relations in KGs.

• Relation clusters: Semantically similar rela-
tions are often observed in Large-scales KGs.
For example, the relation ’producerOf’ and ’di-
rectorOf’ may be semantically related if both of
them describe a relation between a person and
a film. These semantically similar relations can
make up relation clusters. We believe the in-
formation from semantically similar relations is
of great value, and relations in the same group
can be trained in a collective way to facilitate
the knowledge sharing when learning the em-
beddings of related relations.

• Relations: A relation connects the head and
1https://www.google.com/intl/es419/insidesearch/features/

search/knowledge.html
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tail entities in a knowledge triple, denoted as
(h, r, t), where h and t correspond to the head
and tail entities and r denotes the relation be-
tween them.

• Sub-relations: There are relations that have
multiple semantic meanings and can be split
into several sub-relations. For example, the
relation partOf has at least two seman-
tics: location-related as (New Y ork, partOf ,
USA) and composition-related as (monitor,
partOf , television). We believe the sub-
relations can give fine-grained descriptions for
each relation.

The relation clusters, relations and sub-relations
correspond to the top, middle and bottom layer of
the three-layer HRS.

In this paper, we extend state-of-the-art models
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014) and DistMult (Yang et al., 2015) to learn
knowledge representations by leveraging the rich
information from the HRS. Moreover, the same
technique can easily be used to extend other state-
of-the-art models and utilize the HRS information.
In the proposed models, for each knowledge triple
(h, r, t), the embedding of r is the sum of three
embedding vectors, which correspond to the three
layers of the HRS respectively and therefore, the
information from the HRS is leveraged. Particu-
larly, instead of using additional information like
text or paths, our model simply use the knowledge
triples in KGs and the rich information from the
HRS. Extensive experiments on popular bench-
mark data sets demonstrate the effectiveness of our
models.

In summary, we highlight our key contributions
as follows,

1. We propose a technique by making use of the
HRS information to conduct the KGE task, and
extend three state-of-the-art models to utilize
this technique. The technique can be easily ap-
plied to other KGE models.

2. Our proposed models don’t use additional in-
formation like text or paths, instead, we only
use the knowledge triples in KGs and take ad-
vantage of the rich information from the HRS.

3. We evaluate our models on popular bench-
mark data sets, and the results show that our

extended models achieve substantial improve-
ments against the original models as well as
other state-of-the-art baselines.

2 Preliminaries and Related Work

We extend three popular KGE models by lever-
aging the HRS information in this study. There-
fore, in this section, we first introduce the three
existing models TransE (Bordes et al., 2013),
TransH (Wang et al., 2014) and DistMult (Yang
et al., 2015) in detail. Then, we further summarize
other state-of-the-art models on the topic of KGE.

2.1 TransE, TransH and DistMult
Recently, a number of KGE models have been pro-
posed. These methods learn low-dimensional vec-
tor representations for entities and relations (Bor-
des et al., 2013; Wang et al., 2014; Lin et al.,
2015b).

TransE (Bordes et al., 2013) is one of the most
widely used model, which views relations as trans-
lations from a head entity to a tail entity on the
same low-dimensional hyperplane, i.e, h + r ≈ t
when (h, r, t) holds. This indicates that t should
be the nearest neighbor of h+ r. In this case, the
score function of TransE is defined as

fr(h, t) = ‖h+ r− t‖Ln
, (1)

which can be measured by L1 or L2 norm. Posi-
tive triples are supposed to have lower scores than
negative ones.

TransH (Wang et al., 2014) introduces a mech-
anism of projecting entities into relation-specific
hyperplanes that enables different roles of an en-
tity in different relations. TransH models the rela-
tion as a vector r on a hyperplane wr and assumes
that h⊥ + r ≈ t⊥ when (h, r, t) holds, where h⊥
and t⊥ are the projection of h and t in the relation-
specific hyperplane. The score function of TransH
is defined as

fr(h, t) = ‖h⊥ + r− t⊥‖22 , (2)

where h⊥ = h−w>r hwr, t⊥ = t−w>r twr and
‖wr‖2 = 1. Like triples in TransE, positive triples
in TransH should have lower scores than negative
ones.

DistMult (Yang et al., 2015) adopts a bilinear
score function to compute the scores given (h, r, t)
triples. The score function is defined as

fr(h, t) = hMrt, (3)
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where Mr is a relation-specific diagonal matrix,
which represents the characteristics of a relation.
Different from TransE and TransH, positive triples
should have larger scores than negative ones.

2.2 Other KGE Models

Besides TransE, TransH and DistMult, there
are also many models on the topic of KGE.
TransR (Lin et al., 2015b) embeds entities and
relations into separate entity space and relation-
specific spaces. ComplEx (Welbl et al., 2016)
extends DistMult to embed entities and relations
into complex vectors instead of real-valued ones.
HolE (Nickel et al., 2016) employs circular cor-
relations to create compositional representations.
ProjE (Shi and Weninger, 2017) adopts a two-
layer network to embed entities and relations.
Other KGE models also try to embeds entities and
relations in various ways, such as Unstructured
Model (Bordes et al., 2012a, 2014), Structured
Embedding (Bordes et al., 2012b), Single Layer
Model (Socher et al., 2013), Semantic Match-
ing Energy (Bordes et al., 2012a, 2014), NTN
Model (Socher et al., 2013), etc.

Many efforts have been devoted to building
models using additional information like paths or
text. For instance, PTransE (Lin et al., 2015a) and
R-GCN (Schlichtkrull et al., 2017) use paths as
additional information, while DKRL (Xie et al.,
2016) and SSP (Xiao et al., 2017) adopt text to as-
sist the embedding task.

Some KGE works focus on making use of the
information from relations. CTransR (Lin et al.,
2015b), TransD (Ji et al., 2015) and TransG (Xiao
et al., 2016) try to find fine-grained representations
for each relation. However, these works didn’t uti-
lize the information from semantically similar re-
lations and the HRS is also not exploited. Dif-
ferent from the above studies, we believe seman-
tically similar relations can make up relation clus-
ters, and some relations may have multiple seman-
tic meanings and can be split into fine-grained sub-
relations. In this paper, we take advantage of the
three-layer HRS and conduct the KGE task by ex-
tending three widely used models.

3 Methodology

In this section, we provide the technical details of
how to extend existing KGE models by leveraging
the HRS information. We first formally define the
HRS and its integration with existing models.Then

we introduce the new loss functions of extended
models TransE-HRS, TransH-HRS and DistMult-
HRS. Finally, two variants of the HRS models and
implementation details are provided.

3.1 Hierarchical Relation Structure
Given a KG G = {(h, r, t)} ⊆ E × R× E , where
E and R are the entity (node) set and relation
(edge) set respectively. We believe the relations
in KGs can make up relation clusters as well as
be split into fine-grained sub-relations. On the one
hand, large scale KGs always have semantically
related relations. The information from semanti-
cally similar relations is of great value and these
relations should be trained in a collective way. In
this way, meaningful associations among related
relations can be utilized and less frequent relations
can be enriched with more training data. On the
other hand, some relations may have multiple se-
mantic meanings and can be split into several sub-
relations, which can provide fine-grained descrip-
tions for each relation. In general, relations in KGs
conform to a three-layer HRS, as shown in Fig-
ure 1. The HRS include a relation cluster layer, a
relation layer and a sub-relation layer, which are
denoted in yellow, green and blue in Figure 1 re-
spectively.

For a triple (h, r, t) in the HRS model, the em-
bedding of r is comprised of three parts: the re-
lation cluster embedding rc, relation-specific em-
bedding r′ and sub-relation embedding rs, which
is denotes as

r = rc + r′ + rs. (4)

According to the above equation, the embedding
of each relation can leverage the information from
the three-layer HRS. The relation clusters and sub-
relations are determined by k-means algorithm
based on the results of TransE:

• Relation clusters. We first run TransE on a
given data set and obtain the embeddings of re-
lations r1, r2, r3, ..., r|R|, where |R| is the num-
ber of relations. Then, the k-means algorithm is
applied on these embeddings. In this way, we
get relation clusters C1, C2, C3, ..., C|C|, where
C is the set of relation clusters. Previous stud-
ies have shown that the embeddings of semanti-
cally similar relations locate near each other in
the latent space (Yang et al., 2015). In this way,
we are able to find relation clusters composed of
semantically related relations.



3201

Figure 1: Hierarchical Relation Structure

• Sub-relations. TransE assumes that t − h ≈ r
when (h, r, t) holds. For each triple (h, r, t), we
define that r̂ = t−h, where h and t are obtained
from the results of TransE. For each relation, we
collect all the r̂ and adopt the k-means algorithm
to cluster these vectors into several groups Sr1 ,
Sr2 , Sr3 , ..., Srnr

, where nr is the number of sub-
relations for relation r. Each group corresponds
to a fine-grained sub-relation.

3.2 Loss Function
The loss of the extended HRS model is comprised
of two parts, as is shown in Equation (5),

LTotal = LOrig + LHRS , (5)

where LOrig is the loss function of the original
model, while LHRS is the loss function for the
HRS information.

We know that TransE, TransH and DistMult all
adopt a margin-based ranking loss. Taking TransE
as an example, the loss function of TransE for the
first part LOrig is shown as Equation (6),

LOrig =

|C|∑
c=1

∑
r∈Cc

∑
(h,r,t)∈4r

∑
(h′,r,t′)∈4′

r

[γ + fr(h, t)

− fr(h′, t′)]+,
(6)

where [x]+ = max(0, x), 4r denotes the set
of positive triples for relation r and 4′r =
{(h′, r, t)|h′ ∈ E}∪{(h, r, t′)|t′ ∈ E} is the set of
negative ones for relation r. γ is the margin sep-
arating the positive triples from the negative ones.
fr(h, t) is the score function as shown in Equation
(7),

fr(h, t) =
∥∥h+ rc + r′ + rs − t

∥∥
Ln
, (7)

which can be measured by L1 or L2 norm. Posi-
tive triples are supposed to have lower scores than
negative ones.

The second part, LHRS , is composed of three
regularized terms, which is shown in Equation (8),

LHRS = λ1
∑
rc∈C
‖rc‖22 + λ2

∑
r′∈R

∥∥r′∥∥2
2

+ λ3
∑
rs∈S
‖rs‖22 ,

(8)

where C = {C1, C2, ..., C|C|} is the set of relation
clusters, S = {Sr1 , Sr2 , Sr3 , ..., Srnr

|r ∈ R} is the
set of fine-grained sub-relations, nr is the number
of sub-relations for relation r. λ1, λ2 and λ3 are
trade-off parameters. Large value of λ1 will re-
sult in the separate training of each relation, while
large value of λ2 will lead to all relations in the
same relation cluster sharing the same embedding
vector. λ3 should be larger than λ1 and λ2 to re-
strict rs to be a small value, i.e., the sub-relations
from the same relation should be close.

3.3 Variants of the HRS Model and
Implementation details

Additionally, we introduce two variants of the
HRS model: the top-middle model and the
middle-bottom model. The top-middle model only
uses the HRS by leveraging the information from
the top to the middle layer. For this model, the re-
lation embedding and the loss for HRS is defined
as Equation (9) and (10).

r = rc + r′, (9)

LHRS = λ1
∑
rc∈C
‖rc‖22 + λ2

∑
r′∈R

∥∥r′∥∥2
2
. (10)

While the middle-bottom model only utilizes the
information from the middle to the bottom layer.
The relation embedding and HRS loss are defined
as Equation (11) and (12).

r = r′ + rs, (11)
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LHRS = λ2
∑
r′∈R

∥∥r′∥∥2
2
+ λ3

∑
rs∈S
‖rs‖22 . (12)

The learning process of the extended models
is carried out by using the Adam (Kingma and
Ba, 2014) optimizer. For the extended models
of TransE, all the entity and relation embedding
parameters are initialized with a uniform distri-
bution U

[
− 6√

k
, 6√

k

]
following TransE, where k

is the dimension of the embedding space. For
the extended models of TransH and DistMult,
we initialize these parameters with the results of
TransE. For the relation cluster embeddings and
sub-relation embeddings, we initialize all the pa-
rameters with the value of zero.

4 Experiments

4.1 Data Sets
In this research, we evaluate the performances
of our extended models on popular bench-
marks FB15k (Bordes et al., 2013), FB15k-
237 (Toutanova and Chen, 2015), FB13(Socher
et al., 2013), WN18 (Bordes et al., 2013) and
WN11 (Socher et al., 2013). FB15k, FB15k-
237 and FB13 are extracted from Freebase (Bol-
lacker et al., 2008), which provides general facts
of the world. WN18 and WN11 are obtained from
WordNet (Miller, 1994), which provides seman-
tic knowledge of words. FB15k-237 and WN18
are used for the task of link prediction, FB13 and
WN11 are used for the triple classification task,
while FB15k is used for both tasks. The statistics
of the five data sets are summarized in Table 1.

Table 1: Statistics of the Five Datasets.
Dataset |E| |R| #triples in Train/Valid/Test
FB15k 14,951 1,345 483,142 / 50,000 / 59,071
FB15k-237 14,541 237 272,115 / 17,535 / 20,466
FB13 75,043 13 316,232 / 5,908 / 23,733
WN18 40,943 18 141,442 / 5,000 / 5,000
WN11 38,696 11 112,581 / 2,609 / 10,544

4.2 Baselines
To demonstrate the effectiveness of our models,
we compare results with the following baselines.

• TransE (Bordes et al., 2013): one of the most
widely used KGE models.

• TransH (Wang et al., 2014): a KGE model
which adopts relation-specific hyperplanes to
lay entities and relations.

• DistMult (Yang et al., 2015): a state of the art
model which uses a bilinear score function to
compute scores of knowledge triples.

• CTransR (Lin et al., 2015b): a pioneering KGE
model which exploits fine-grained sub-relations
for each relation.

• TransD (Ji et al., 2015): an improvement of
CTransR, which embeds KGs using dynamic
mapping matrices.

• TransG (Xiao et al., 2016): the first generative
KGE model that uses a non-parametric bayesian
model to embed KGs.

4.3 Link Prediction

Link prediction, a.k.a. knowledge graph comple-
tion, aims to fill the missing values into incom-
plete knowledge triples. More formally, the goal
of link prediction is to predict either the head en-
tity in a given query (?, r, t) or the tail entity in a
given query (h, r, ?).

4.3.1 Experimental Settings
All the parameters are set by some preliminary
test. For TransE-HRS, TransE-top-middle and
TransE-middle-bottom, λ1, λ2, λ3 and the mar-
gin γ are set as λ1 = 1e − 5, λ2 = 1e − 4, λ3 =
1e−3, γ = 2. For the extended models of TransH,
we set the parameters as λ1 = 1e − 5, λ2 =
1e − 5, λ3 = 1e − 3, γ = 1. For the extended
models of DistMult, the parameters are set as λ1 =
1e − 5, λ2 = 1e − 4, λ3 = 1e − 3, γ = 1. For all
the above models, the learning rate ς , batch size b
and embedding size k are set as ς = 1e − 3, b =
4096, k = 100. The L1 norm is adopted by the
score function of TransE and its extended models.
The number of relation clusters are set as 300, 120
and 10 for FB15k, FB15k-237 and WN18 respec-
tively. For all the data sets, we generate 3 sub-
relations for relations that have more than 500 oc-
currences in the training set. For all the extended
models and baselines, we produce negative triples
following the “bern” sampling strategy which was
introduced in TransH (Wang et al., 2014). For
baselines TransE, TransH and DistMult, the em-
bedding parameters of entities and relations are
initialized the same way as the extended models
for a fair comparison.

In the test phase, we replace the head and tail
entities with all the entities in KG in turn for each
triple in the test set. Then we compute a score for
each corrupted triple. Note that for each corrupted
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triple (h′, r, t′), the sub-relation is determined by
t′ − h′, i.e., the k-means model is adopted to as-
sign t′−h′ to a specific sub-relation of r. We rank
all the candidate entities according to the scores.
Specifically, positive candidates are supposed to
precede negative ones. Finally, the rank of the cor-
rect entity is stored. We compare our models with
baselines using the following metrics: (1) Mean
Rank (MR, the mean of all the predicted ranks);
(2) Mean Reciprocal Rank (MRR, the mean of all
the reciprocals of predicted ranks); (3) Hits@n
(Hn, the proportion of ranks not larger than n).
Lower values of MR and larger values of MRR
and Hn indicate better performance. All the re-
sults are reported in the “filtered” setting (Bordes
et al., 2013).

4.3.2 Experimental Results
Evaluation results are shown in Table 2. We di-
vide all the results into 4 groups. The second, third
and forth group are results of TransE, TransH,
DistMult and their extended models respectively,
while the first group are results of other state-of-
the-art competitors. Results in bold font are the
best results in the group and the underlined results
denote the best results in the column. From Ta-
ble 1, we have the following findings: (1) Our
extended models outperform the original mod-
els, which indicates that the information learned
from the HRS is valuable; (2) For WN18, the re-
sults from ‘top-middle’ models of TransE, TransH
and DistMult are worse than the original models,
and HRS models can’t outperform middle-bottom
ones. We conjecture the reason lies as follows:
WN18 has only 18 relations and the semantic cor-
relation among relations is small. In this case,
the information learned from the top to the mid-
dle layer of the HRS may lead to worse results
since for each relation, even though the informa-
tion learned from semantically similar relations
are useful, the information learned from unrelated
relations may damage the results. The results in-
dicate that HRS models are especially useful for
KGs with dense semantic distributions over rela-
tions; (3) For WN18, TransE-middle-bottom and
DistMult-middle-bottom achieve the best results
on MRR, Hits@10, Hits@3 and Hits@1 while
failing to get the best results on MR in the same
group. Further analysis shows that in the results
of TransE-middle-bottom, 56 test triples get ranks
more than 10000, leading to more than 110 MR
loss. While in the results of DistMult-middle-

bottom, there exist 37 test triples whose ranks are
more than 7000, which would lead to about 50 MR
loss. Indeed, MR is sensitive to these high ranks,
which lead to worse results on the metric of MR;
(4) From all the results, based on the good basic
model DistMult, the extended models of DistMult
can achieve the best performance compared with
other state-of-the-art baselines CTransR, TransD
and TransG.

We also provide some case studies on rela-
tion clusters and sub-relations. Table 3 shows
some relation clusters of FB15k. Cluster 1 to
3 are Olympics-related, basketball-related and
software-related relations respectively. From Ta-
ble 3 we can see that semantically related relations
can join the same cluster. Table 4 shows some
(head, tail) pairs for the sub-relations of ‘/educa-
tional institution/education/degree’. Sub-relation
1 to 3 are about the degree of Doctor, Master
and Bachelor respectively. Table 5 gives some
(head, tail) pairs for the sub-relations of ’/mu-
sic/artist/genre’. Sub-relation 1 and 2 are about
rock music and pop music respectively while sub-
cluster 3 is about other kinds of music. From Ta-
ble 4 and 5, we can see that different sub-relations
give fine-grained descriptions for each relation.

4.3.3 Parameter Study

In this section, we study the performance affected
by the number of relation clusters N1 as well
as the number of sub-relations for each relation
N2. The results in Figure 2 and 3 clearly show
that there exists an optimal value of N1 and N2

for each dataset. All three models keep achiev-
ing better results as we increase the number of
clusters from 0 to the optimal value. Then, after
N1 and N2 exceed the optimal point, the perfor-
mance starts falling down. The reason lies as: (1)
Smaller value of N1 leads to large-sized relation
clusters. Some unrelated relations may join in the
same large-sized cluster and degrade the perfor-
mance of our models. Larger value of N1 leads
to small-sized relation clusters, thus less informa-
tion can be leveraged by each relation, leading to
the unsatisfying performance; (2) Smaller value
of N2 can’t provide sufficient representations for
each relation and degrade the performance of our
models. Larger value ofN2 may lead to lacking of
training data for each sub-relation and also result
in the unsatisfying performance.
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Table 2: Link prediction results on FB15k, FB15k-237 and WN18. We implement TransE,
TransH, DistMult and their extended models by ourselves. The code of CTransR, TransD and
TransG are taken from https://github.com/thunlp/TensorFlow-TransX, https://github.com/thunlp/KB2E and
https://github.com/BookmanHan/Embedding respectively.

FB15k FB15k-237 WN18

MR MRR H10 H3 H1 MR MRR H10 H3 H1 MR MRR H10 H3 H1

CTransR 81 0.408 0.740 0.573 0.314 279 0.298 0.469 0.301 0.198 228 0.816 0.923 0.842 0.316
TransD 90 0.658 0.781 0.586 0.324 256 0.286 0.453 0.291 0.179 215 0.823 0.928 0.851 0.336
TransG 101 0.672 0.802 0.591 0.322 309 0.304 0.471 0.298 0.182 466 0.830 0.936 0.876 0.764

TransE 91 0.404 0.688 0.493 0.251 375 0.207 0.377 0.227 0.125 387 0.408 0.925 0.725 0.067
TransE-top-middle 61 0.463 0.730 0.556 0.315 286 0.258 0.440 0.286 0.170 609 0.402 0.919 0.710 0.058
TransE-middle-bottom 51 0.493 0.738 0.582 0.355 232 0.310 0.486 0.332 0.202 474 0.496 0.945 0.890 0.112
TransE-HRS 49 0.510 0.767 0.610 0.361 230 0.311 0.487 0.353 0.215 477 0.490 0.943 0.883 0.106

TransH 63 0.394 0.713 0.519 0.210 311 0.211 0.386 0.224 0.132 388 0.437 0.919 0.832 0.039
TransH-top-middle 65 0.477 0.737 0.561 0.308 275 0.272 0.461 0.291 0.185 411 0.416 0.890 0.813 0.034
TransH-middle-bottom 50 0.469 0.742 0.583 0.343 271 0.269 0.466 0.286 0.191 283 0.491 0.942 0.880 0.113
TransH-HRS 47 0.509 0.783 0.639 0.390 243 0.309 0.491 0.346 0.216 296 0.482 0.940 0.861 0.097

DistMult 95 0.642 0.813 0.726 0.523 251 0.244 0.423 0.261 0.159 261 0.806 0.931 0.904 0.713
DistMult-top-middle 85 0.677 0.830 0.746 0.589 243 0.286 0.461 0.291 0.192 246 0.769 0.903 0.853 0.681
DistMult-middle-bottom 83 0.682 0.828 0.758 0.606 246 0.291 0.475 0.306 0.199 226 0.912 0.947 0.913 0.879
DistMult-HRS 72 0.739 0.846 0.799 0.661 232 0.315 0.496 0.350 0.241 206 0.891 0.932 0.901 0.736

Table 3: Examples of Relation Clusters in FB15k
relations

1
/olympics/olympic athlete/medals won./olympics/olympic medal honor/country
/olympics/olympic athlete/country./olympics/olympic athlete affiliation/country

2
/sports/sports team/roster./basketball/basketball roster position/player,
/basketball/basketball team/roster./sports/sports team roster/player
/basketball/basketball team/roster./basketball/basketball roster position/player

3
/computer/software/developer, /computer/operating system/developer,
/cvg/computer videogame/developer

Table 4: Examples of Sub-relations for Relation ‘/educational institution/education/degree’ in FB15k
(head, tail)

1 (Munich Institute of Technology, Doctors of Medicine), (California Institute of Technology, Higher Doctorate), ...
2 (Central Michigan College of Education, M.Sc.), (The University of Pittsburgh, M.Sc.), ...
3 (University of Massaschusetts, Amherst, Bachelor’s Degree), (New Mexico State College, Bachelor’s Degree), ...

Table 5: Examples of Sub-relations for Relation ‘/music/artist/genre’ in FB15k
(head, tail)

1 (Steve Stills, Rock Music), (Velvet Underground, Rock Music), (Benjamin Chase Harper, Rock Music), ...
2 (Justin Beiber, Pop Music), (Natalie Maria Cole, Pop Music), (Peter Thorkelson, Pop Music), ...
3 (Billy Preston, R & B), (Earth Wind Fire, Funk Rap), (Alvin Joiner, Hip-hop), ...

4.4 Triple Classification

In order to testify the discriminative capability of
our models, we conduct a triple classification task
aiming to predict the label (True or False) of a
given triple (h, r, t).

4.4.1 Experimental Settings

In this paper, we use three datasets WN11, FB13
and FB15k to evaluate our models. The data sets
WN11 and FB13 released by NTN (Socher et al.,
2013) already have negative triples. The test set
of FB15k only contains correct triples, which re-

quires us to construct negative triples. In this
study, we construct negative triples following the
same setting used for FB13 (Socher et al., 2013).
For the extended models of TransE, λ1, λ2, λ3 and
γ are set as λ1 = 1e−5, λ2 = 1e−5, λ3 = 1e−3
and γ = 4. For the extended models of TransH,
we set λ1 = 1e − 5, λ2 = 1e − 4, λ3 = 1e − 3
and γ = 5. While for the extended models of
DistMult, parameters are set as λ1 = 1e − 5,
λ2 = 1e− 4, λ3 = 1e− 2 and γ = 4. For WN11
and FB13, we generate 2 sub-relations for each re-
lation. For FB15k, we generate 3 sub-relations for
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(a) FB15k (b) FB15k-237

Figure 2: The Change of Hits@10 with The Value of N1 Increasing.

(a) FB15k (b) FB15k-237

Figure 3: The Change of Hits@10 with The Value of N2 Increasing.

relations that have more than 500 occurrences in
the training set. Other parameters are set as in-
troduced in Section 4.3.1. We follow the same
decision process as NTN (Socher et al., 2013):
for TransE and TransH, a triple is predicted to be
positive if fr(h, t) is below a threshold, while for
DistMult, a triple is regarded as a positive one if
fr(h, t) is above a threshold; otherwise negative.
The thresholds are determined on the validation
set. We adopt accuracy as our evaluation metric.

4.4.2 Experimental Results
Finally, the evaluation results in Table 6 lead to
the following findings: (1) Our models outperform
other baselines on WN11 and FB15k, and obtain
comparable results with baselines on FB13, which
validate the effectiveness of our models; (2) The
extended models TransE-HRS, TransH-HRS and
DistMult-HRS achieve substantial improvements
against the original models. On WN11, TransE-

Table 6: Triple Classification Results. The results of
baselines on WN11 and FB13 are directly taken from
the original paper except DistMult. We obtain other
results by ourselves.

Model WN11 FB13 FB15k Avg
CTransR 85.7 - 84.4 -
TransD 86.4 89.1 88.2 87.9
TransG 87.4 87.3 88.5 87.7
TransE 75.9 81.5 78.7 78.7
TransH 78.8 83.3 81.1 81.1

DistMult 87.1 86.2 86.3 86.5
TransE-HRS 86.8 88.4 87.6 87.6
TransH-HRS 87.6 88.9 88.7 88.4

DistMult-HRS 88.9 89.0 89.1 89.0

HRS outperforms TransE with a margin as large
as 10.9%. These improvements indicates the tech-
nique of utilizing the HRS information is capable
to be extended to different KGE models. Figure 4
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shows the classification accuracy of different rela-
tions on WN11. We can see that extended models
significantly improve the original models in each
relation classification task, which again validate
the effectiveness of our models.
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Figure 4: Classification Accuracies of Different Rela-
tions on WN11

5 Conclusion

In this paper, we found that relations in KGs con-
form to a three-layer HRS. This HRS model pro-
vides a critical capacity for embedding entities and
relations, and along this line we extended three
state-of-the-art models to leverage the HRS infor-
mation. The technique we used can be easily ap-
plied to extend other KGE models. Moreover, our
proposed models don’t need additional informa-
tion like text or paths, instead, we made full use
of the knowledge triples in KGs and the rich in-
formation from the HRS. We evaluate our model
on the link prediction task and triple classification
task. The results show that our extended models
achieve substantial improvements against the orig-
inal models as well as other baseline competitors.

In the future, we will utilize more sophisticated
models to leverage the HRS information, e.g, (1)
utilize the embeddings of the three layers in a more
sophisticated way instead of sum them together;

(2) determine the number of relation clusters and
sub-relations automatically instead of manually.
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