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Abstract

Autoregressive decoding is the only part of
sequence-to-sequence models that prevents
them from massive parallelization at inference
time. Non-autoregressive models enable the
decoder to generate all output symbols inde-
pendently in parallel. We present a novel non-
autoregressive architecture based on connec-
tionist temporal classification and evaluate it
on the task of neural machine translation. Un-
like other non-autoregressive methods which
operate in several steps, our model can be
trained end-to-end. We conduct experiments
on the WMT English-Romanian and English-
German datasets. Our models achieve a signif-
icant speedup over the autoregressive models,
keeping the translation quality comparable to
other non-autoregressive models.

1 Introduction

Parallelization is the key ingredient for making
deep learning models computationally tractable.
While the advantages of parallelization are ex-
ploited on many levels during training and infer-
ence, autoregressive decoders require sequential
execution.

Training and inference algorithms in sequence-
to-sequence tasks with recurrent neural networks
(RNNs) such as neural machine translation (NMT)
have linear time complexity w.r.t. the target se-
quence length, even when parallelized (Sutskever
et al., 2014; Bahdanau et al., 2014).

Recent approaches such as convolutional
sequence-to-sequence learning (Gehring et al.,
2017) or self-attentive networks a.k.a. the Trans-
former (Vaswani et al., 2017) replace RNNs with
parallelizable components in order to reduce the
time complexity of the training. In these models,
the decoding is still sequential, because the
probability of emitting a symbol is conditioned on
the previously decoded symbols.

In non-autoregressive decoders, the inference
algorithm can be parallelized because the decoder
does not depend on its previous outputs. The
apparent advantage of this approach is the near-
constant time complexity achieved by the paral-
lelization. On the other hand, the drawback is that
the model needs to explicitly determine the target
sentence length and reorder the state sequence be-
fore it starts generating the output. In the current
research contributions on this topic, these parts are
trained separately and the inference is done in sev-
eral steps.

In this paper, we propose an end-to-end non-
autoregressive model for NMT using Connec-
tionist Temporal Classification (CTC; Graves
et al. 2006). The proposed technique achieves
promising results on translation between English-
Romanian and English-German on the WMT
News task datasets.

The paper is organized as follows. In Sec-
tion 2, we summarize the related work on non-
autoregressive NMT. Section 3 describes the ar-
chitecture of our proposed model. Section 4
presents details of the conducted experiments. The
results are discussed in Section 5. We conclude
and present ideas for future work in Section 6.

2 Non-Autoregressive NMT

In this section, we describe two methods for non-
autoregressive decoding in NMT. Both of them are
based on the Transformer architecture (Vaswani
et al., 2017), with the encoder part unchanged.

Gu et al. (2017) use a latent fertility model to
copy the sequence of source embeddings which
is then used for the target sentence generation.
The fertility (i.e. the number of target words for
each source word) is estimated using a softmax
on the encoder states. In the decoder, the input
embeddings are repeated based on their fertility.
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The decoder has the same architecture as the en-
coder plus the encoder attention. The best re-
sults were achieved by sampling fertilities from
the model and then rescoring the output sentences
using an autoregressive model. The reported infer-
ence speed of this method is 2–15 times faster than
of a comparable autoregressive model, depending
on the number of fertility samples.

Lee et al. (2018) propose an architecture with
two decoders. The first decoder generates a can-
didate translation from a source sentence padded
to an estimated target length. The explicit length
estimate is done with a softmax over possible sen-
tence lengths (up to a fixed maximum). The output
of the first decoder is then fed as an input to the
second decoder. The second decoder is used as a
denoising auto-encoder and can be applied itera-
tively. Both decoders have the same architecture
as in Gu et al. (2017). They achieved a speedup of
16 times over the autoregressive model with a sin-
gle denoising iteration. They report the best result
in terms of BLEU (Papineni et al., 2002) after 20
iterations with almost no inference speedup com-
pared to their autoregressive baseline.

3 Proposed Architecture

Similar to the previous work (Gu et al., 2017; Lee
et al., 2018), our models are based on the Trans-
former architecture as described by Vaswani et al.
(2017), keeping the encoder part unchanged. Fig-
ure 1 illustrates our method and highlights the dif-
ferences from the Transformer model.

In order to generate output words in parallel, we
formulate the translation as a sequence labeling
problem. Neural architectures used for encoding
input in NLP tasks usually generate sequences of
hidden states of the same or shorter length as the
input sequence. For this reason, we cannot apply
the sequence labeling directly over the states be-
cause the target sentence might be longer than the
source sentence.

To enable the labeler to generate sentences that
are longer than the source sentence, we project the
encoder output states h into a k-times longer se-
quence s, such that:

sci+b =
(
Wsplhc + bspl

)
bd:(b+1)d

(1)

for b = 0 . . . k−1, and c = 0 . . . Tx where d is the
Transformer model dimension, Tx is the length of
the source sentence, and Wspl ∈ Rd×kd and bspl ∈
Rkd are trainable projection parameters. In other
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Output tokens / null symbols

Figure 1: Scheme of the proposed architecture. The
part between the encoder and the decoder is expressed
by Equation 1.

words, after a linear projection, each state is sliced
to k vectors, creating a sequence of length kTx.

In the next step, we process the sequence s with
a decoder. Unlike the Transformer architecture,
our decoder does not use the temporal mask in the
self-attention step.

Finally, the decoder states are labeled either
with an output token or a null symbol. The num-
ber of combinations of the possible positions of
the null symbols in the output sequence given ref-
erence sequence length Ty is

(
kTx

Ty

)
. Because there

is no prior alignment between the input and out-
put symbols, we consider all output sequences that
yield the correct output in the loss function. Be-
cause summing the exponential number of com-
binations directly is not tractable, we we use the
CTC loss (Graves et al., 2006) which employs dy-
namic programming to compute the negative log-
likelihood of the output sequence, summed over
all the combinations.

The loss can be computed using a linear al-
gorithm similar to training Hidden Markov Mod-
els (Rabiner, 1989). The algorithm computes and
stores partial log-probabilities sums for all pre-
fixes and suffixes of the output symbol sequence
using dynamic programming. The table of pre-
computed log-probablities allows us to compute
the probability of being a part of a correct output
sequence by combining the log-probabilities of its
prefix and suffix.

An appealing property of training using the
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CTC loss is that the models support left-to-right
beam search decoding by recombining prefixes
that yield the same output. Unlike the greedy
decoding this can no longer be done in parallel.
However, the linear computation is in theory still
faster than autoregressive decoding.

4 Experiments

We experiment with three variants of this archi-
tecture. All of them have the same total number of
layers. First, the deep encoder uses a stack of self-
attentive layers only. We apply the state splitting
and the labeler on the output of the last encoder
layer. In contrast to Figure 1, this variant omits the
decoder part. Second, the encoder-decoder con-
sists of two stacks of self-attentive layers – en-
coder and decoder. The outputs of the encoder
are transformed using Equation 1 and processed
by the decoder. In each layer, the decoder part at-
tends to the encoder output. Third, we extend the
encoder-decoder variant with positional encoding
(Vaswani et al., 2017). The positional encoding
vectors are added to the decoder input s.

In all the experiments, we used the same hyper-
parameters. We set the model dimension to 512
and the feed-forward layer dimension to 4096. We
use multi-head attention with 16 heads. In the
deep encoder setup, we use 12 layers in the en-
coder, in the encoder-decoder setup, we use 6 lay-
ers for the encoder and 6 layers for the decoder.
We set the split factor k to 3, so the encoder states
are projected to vectors of 1536 units.

We conduct our experiments on English-
Romanian and English-German translation. These
language pairs were selected by the authors of the
previous work because the training datasets for
these language pairs are of considerably different
sizes. We follow these choices in order to present
comparable results.

For English-Romanian experiments, we used
the WMT16 (Bojar et al., 2016) news dataset. The
training data consists of 613k sentence pairs, vali-
dation 2k and test 2k. We used a shared vocabulary
of 38k wordpieces (Wu et al., 2016; Johnson et al.,
2017).

The English-German dataset consists of 4.6M
training sentence pairs from WMT competitions.
As a validation set, we used the test set from
WMT13 (Bojar et al., 2013), which contains 3k
sentence pairs. To enable comparison to other
non-autoregressive approaches, we evaluate our

models on the test sets from WMT14 (Bojar et al.,
2014) with 3k sentence pairs and WMT15 (Bojar
et al., 2015) with 2.1k sentence pairs. As in the
previous case, we used shared vocabulary for both
languages which contained 41k wordpieces.

The experiments were conducted using Neural
Monkey1 (Helcl and Libovický, 2017). We evalu-
ate the models using BLEU score (Papineni et al.,
2002) as implemented in SacreBLEU,2 originally
a part of the Sockeye toolkit (Hieber et al., 2017).

5 Results

Quantitative results are tabulated in Table 1. In
general, our models achieve a similar performance
to other non-autoregressive models. In case of
English-German, our results in both directions are
comparable on the WMT 14 test set and slightly
better on the WMT 15 test set. This might be
given by the fact that our autoregressive baseline
performs better for this language pair than for
English-Romanian.

The encoder-decoder setup outperforms the
deep encoder setup. Including positional encod-
ing seems beneficial when translating into Ger-
man. Weight averaging from the 5 models with
the highest validation score during the training im-
proves the performance consistently.

We performed a manual evaluation on 100
randomly sampled sentences from the English-
German test sets in both directions. The results
of the analysis are summarized in Table 2.

Non-autoregressive translations of sentences
that had errors in the autoregressive translation
were often incomprehensible. In general, less than
a quarter of the sentences was completely cor-
rect and over two thirds (one half in the de→en
direction) were comprehensible. The most fre-
quent errors include omitting verbs at the end of
German sentences and corruption of named enti-
ties and infrequent words that are represented by
more wordpieces. Most of these errors can be
attributed to insufficient language-modeling capa-
bilities of the model. The results suggest that in-
tegrating an external language model into an effi-
cient beam search implementation could boost the
translation quality while preserving the speedup
over the auto-regressive models.

We also evaluated the translations using
sentence-level BLEU score (Chen and Cherry,

1https://github.com/ufal/neuralmonkey
2https://github.com/mjpost/sacreBLEU

https://github.com/ufal/neuralmonkey
https://github.com/mjpost/sacreBLEU
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WMT 16 WMT 14 WMT 15
en-ro ro-en en-de de-en en-de de-en

autoregressive b = 1 31.93 31.55 22.71 26.39 23.40 26.49
autoregressive b = 4 32.40 32.06 23.45 27.02 24.12 27.05
Gu et al. (2017) greedy 27.29 29.06 17.69 21.47 — —
Gu et al. (2017) NPD w/ 100 samples 29.79 31.44 19.17 23.20 — —
Lee et al. (2018) 1 iteration 24.45 23.73 — — 12.65 14.48
Lee et al. (2018) best result 29.49 30.41 — — 19.13 21.69
our autoregressive b = 1 21.19 29.64 22.94 28.58 25.12 28.89
deep encoder 17.33 22.85 12.21 12.53 13.14 18.34

+ weight averaging 18.47 24.68 14.65 16.72 16.74 18.47
+ beam search 18.70 25.28 15.19 17.58 17.59 18.70

encoder-decoder 18.51 22.37 13.29 17.98 16.01 19.55
+ weight averaging 19.54 24.67 16.56 18.64 19.46 21.74
+ beam search 19.81 25.21 17.09 18.80 20.59 22.55

encoder-decoder w/ pos. encoding 18.13 22.75 12.51 11.35 15.35 19.30
+ weight averaging 19.31 24.21 17.37 18.07 20.30 19.64
+ beam search 19.93 24.71 17.68 19.80 20.67 20.43

Table 1: Quantitative results in terms of BLEU score of the proposed methods compared to other non-
autoregressive models. Note that our method uses only a single pass through the network and should be compared
with greedy decoding by Gu et al. (2017) and 1 model iteration by Lee et al. (2018).

en→ de de→ en
AR NAR AR NAR

Correct 65 23 67 13
Comprehensible 93 71 92 51
Too short 1 16 0 36
Missing verb 4 35 0 8
Corrupt. named entity 1 27 8 21
Corrupt. other words 1 20 0 46

Table 2: Results of manual evaluation of the autore-
gressive (AR) and non-autoregressive (NAR) models
(in percents).

2014) and measure the Pearson correlation with
the length of the source sentence and the number
of null symbols generated in the output. With a
growing sentence length, the scores degrade more
in the non-autoregressive model (r = −0.42) than
in its autoregressive counterpart (r = −0.39).
The relation between sentence-level BLEU and
the source length is plotted in Figure 2. The
sentence-level score is mildly correlated with the
number of null symbols in the non-autoregressive
output (r = 0.15). This suggests that increasing
the splitting factor k in Equation 1 might improve
the model performance. However, it also reduces
the efficiency in terms of GPU memory usage.

Figure 3 shows the comparison of the decod-
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Figure 2: Comparison of the sentence-level BLEU of
our English-to-German autoregresssive (AR) and non-
autoregressive (NAR) models given the length of the
source sentence.

ing time by autoregressive and non-autoregressive
models. The average times of decoding a single
sentence are shown in Table 3. We suspect that
the small difference between CPU and GPU times
in the non-autoregressive setup is caused by the
CPU-only implementation of the CTC decoder in
TensorFlow (Abadi et al., 2015).

6 Conclusions

In this work, we presented a novel method for
training a non-autoregressive model end-to-end
using connectionist temporal classification. We
evaluated the proposed method on neural machine
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Figure 3: Comparison of CPU decoding time by
our autoregressive (AR) and non-autoregressive (NAR)
models based on the source sentence length.

CPU GPU
AR, b = 1 2247 ms 1200 ms
NAR 386 ms 350 ms

Table 3: Average per sentence decoding time for en-de
translation.

translation in two language pairs and compared the
results to the previous work.

In general, the results match the translation
quality of equivalent variants of the models pre-
sented in the previous work. The BLEU score is
usually around 80–90% of the score of the au-
toregressive baselines. We measured a 4-times
speedup compared to our autoregressive baseline,
which is a smaller gain than reported by the au-
thors of the previous work. We suspect this might
be due to a larger overhead with data loading and
processing in Neural Monkey compared to Ten-
sor2Tensor (Vaswani et al., 2018) used by others.

As a future work, we can try to improve the per-
formance of the model by iterative denoising as
done by Lee et al. (2018) while keeping the non-
autoregressive nature of the decoder.

Another direction of improving the model
might be efficient implementation of beam search
which can contain rescoring using an external lan-
guage model as often done in speech recogni-
tion (Graves et al., 2013). The non-autoregressive
model would play a role a of the translation model
in the traditional statistical MT problem decompo-
sition.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Pro-
ceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 1–44, Sofia, Bulgaria. As-
sociation for Computational Linguistics.
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