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Abstract

Neural sequence-to-sequence models have
proven very effective for machine translation,
but at the expense of model interpretability. To
shed more light into the role played by lin-
guistic structure in the process of neural ma-
chine translation, we perform a fine-grained
analysis of how various source-side morpho-
logical features are captured at different lev-
els of the NMT encoder while varying the tar-
get language. Differently from previous work,
we find no correlation between the accuracy
of source morphology encoding and transla-
tion quality. We do find that morphological
features are only captured in context and only
to the extent that they are directly transferable
to the target words.

1 Introduction

The advent of Neural Machine Translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2014) has
led to remarkable improvements in machine trans-
lation quality (Bentivogli et al., 2016) but has also
produced models that are much less interpretable.
In particular, the role played by linguistic features
in the process of understanding the source text and
rendering it in the target language remains hard to
gauge. Acquiring this knowledge is important to
inform future research in NMT, especially regard-
ing the usefulness of injecting linguistic informa-
tion into the NMT model, e.g. by using supervised
annotation (Sennrich and Haddow, 2016).

Hill et al. (2014) gave a first answer to this
question, reporting high accuracies by source-side
NMT word embeddings on the well-known anal-
ogy task by Mikolov et al. (2013) which also in-
cludes a number of derivational and inflectional
transformations in the morphologically poor En-
glish language. More recent work (Shi et al.,
2016) has shown that source sentence representa-
tions produced by NMT encoders contain a great

deal of syntactic information. Belinkov et al.
(2017a) focused on the word level and examined
to what extent part-of-speech and morphological
information can be extracted from various NMT
word representations. The latter study found that
source-side morphology is captured slightly bet-
ter by the first recurrent layer than by the word
embedding and the final recurrent layer. Another,
somewhat surprising finding was that source-side
morphology is learned better when translating into
an ‘easier’ target language than into a related one,
even if the ’easier’ language is morphologically
poor.

In this paper, we also focus on source-side mor-
phology but perform a finer-grained analysis of
how morphological features are captured by differ-
ent components of the NMT encoder while vary-
ing the target language. We argue that predicting
generic morphological tags where all features are
mixed, as done by Belinkov et al. (2017a), can
only give us a limited insight into the linguistic
competence of the model. Hence, we predict mor-
phological features independently from one an-
other and ask the following questions:

• Are different morphological features cap-
tured by the NMT encoder to substantially
different extents and, if yes, why?

• Are morphological features captured as a
word type property (i.e. at the word embed-
ding level) or are they mostly computed in
context (i.e. at the recurrent state level)?

• How does source-target language relatedness
affect the morphological competence of the
NMT encoder?

More specifically, we look at whether the NMT
encoder only learns those morphological features
that can be directly transferred to the target words
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FR: Les arbrespl sont hauts.

IT: Gli alberipl sono alti.

DE: Die Bäumepl sind hoch.

EN:The treespl are high.

FR: La pommef est petite.

IT: La melaf è piccola.

DE: Der Apfelm ist klein.

EN: The apple is small.

Figure 1: Two example French sentences translated
to Italian, German, and English. Number (top) is
usually carried over to the three target languages,
while gender (bottom) is less predictable. Colored
fonts mark agreement with the noun in boldface.

(such as number) or whether it also learns features
that are not directly transferable but can still be
useful to correctly parse and infer the meaning of
a sentence (such as gender). See example in Fig. 1.

We focus on French and similarly to previous
work (Shi et al., 2016; Belinkov et al., 2017a) we
use the continuous word representations produced
by a trained NMT system to build and evaluate a
number of linguistic feature classifiers. Classifier
accuracy represents the extent to which a given
feature is captured by the NMT encoder.

2 Methods

We train NMT systems on the following language
pairs: French-Italian (FRIT ), French-German
(FRDE), and French-English (FREN ). We chose
these language pairs for their different levels of
language relatedness and morphological feature
correspondence. Grammatical gender is especially
interesting as it is marked in French, Italian and
German, but not in English (except for a few pro-
nouns). The gender of Italian nouns often cor-
responds to that of French because of their com-
mon language ancestor, whereas German gender
is mostly unrelated from French gender (see ex-
ample in Fig. 1).

The continuous word representations produced
by the three NMT systems while encoding a cor-
pus of French sentences are used to build and eval-
uate several specialized classifiers: one per mor-
phological feature. If a classifier significantly out-
performs the majority baseline, we conclude that
the corresponding feature is captured by the NMT
encoder. While this methodology is similar to that
of previous work (Köhn, 2015; Belinkov et al.,
2017a,b; Dalvi et al., 2017) we make sure that our
results are not affected by overfitting by eliminat-

ing any vocabulary overlap between the classifier’s
training and test sets. We find this step crucial to
ensure that the redundancy in this type of data does
not lead to over-optimistic conclusions. We now
provide more details on the experimental setup.

Parallel corpora. For a fair comparison among
target languages, we extract the intersection of the
Europarl corpus (Koehn, 2005) in our three lan-
guage pairs so that the source side data is identi-
cal for all NMT systems. Sentences longer than
50 tokens are ignored. This data is then split into
an NMT training, validation, and test set of 1.3M,
2.5K, and 2.5K sentence pairs respectively.

NMT model. The NMT architecture is an at-
tentional encoder-decoder model similar to (Lu-
ong et al., 2015) and uses a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
as the recurrent cell. The models have 3 stacked
LSTM layers and are trained for 15 epochs. Em-
bedding and hidden state sizes are set to 1000.
Source and target vocabularies are limited to the
30,000 most frequent words on each side of the
training data.1 The NMT models achieve a test
BLEU score of 32.6, 25.4 and 39.4 for French-
Italian, French-German and French-English re-
spectively.

Continuous word representations. Given a
source sentence, the NMT system first encodes
it into a sequence of word embeddings (context-
independent representations), and then into a se-
quence of recurrent states (context-dependent rep-
resentations). As we are mostly interested in the
impact of context on word representations, we
compare the word embeddings against the final
layer of the stacked LSTMs (corresponding to lay-
ers 0 and 3 in Belinkov et al. (2017a)’s terms)
while disregarding the intermediate layers.

Morphological classification. The continuous
word representations are used to train a logis-
tic regression classifier2 for each morphological
feature: gender and number for noun and adjec-
tives; tense for verbs (with labels: present, fu-

1Subword/character-level representations are not included
in this study since we are interested in the models’ ability to
learn morphology from word usage, rather than word form.

2We use linear classifiers since their accuracies can be
interpreted as a measure of supervised clustering accuracy,
which gives a better insight on the structure of the vector
space (Köhn, 2015). Results with a simple multi-layer per-
ceptron were consistent with the findings by the linear classi-
fier, with slightly better performance overall.
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ture, imperfect, or simple past). Word labels are
taken from the Lefff French morphological lexicon
(Sagot, 2010)3. To ensure a fair comparison be-
tween context-independent and context-dependent
embedding classification, words that are ambigu-
ous with respect to a given feature are excluded
from the respective classifier’s training and test
data.

Classifiers’ training/test data. The classifiers
are trained on a 50K-sentence subset of the NMT
training data and tested on the NMT test sets
(2.5K). For each experiment, we extract one vec-
tor per token from the NMT encoder. While this is
the only possible setup for context-dependent rep-
resentations, it leads to a problematic training/test
overlap in the word embedding experiment be-
cause all occurrences of the same word are associ-
ated to exactly the same vector. We find that, due
to this overlap, a dummy binary feature assigned
to a random half of the vocabulary can be pre-
dicted from the word embeddings with very high
accuracy (86% for a linear, 98% for a non-linear
classifier) leading to over-optimistic conclusions
on the linguistic regularities of these representa-
tions. To avoid this, we split the vocabulary in two
parts of 15K types: the first is used to filter the
training samples and the second to filter the test
samples. We repeat each experiment five times us-
ing five different random vocabulary splits and re-
port mean accuracies. This process is applied to
all experiments (including those on hidden states)
to allow for a fair comparison of the results.

3 Results and Discussion

This section presents our results along three di-
mensions: context-dependency of the word repre-
sentations (§3.1), different morphological features
(§3.2), and target language impact (§3.3). Unless
explicitly stated, all discussed results are statisti-
cally significant (computed using a t-test for a one-
tailed hypothesis and independent means).

3.1 Word embeddings vs recurrent states
One of our goals was to discover whether morpho-
logical features are captured as a word type prop-
erty or in context. Fig. 2 shows the extent to which
the NMT encoder captures different features at the
word level (word embeddings) compared to the
recurrent state level (LSTM state), averaged over

3Lexique des Formes Fléchies du Français: http://
alpage.inria.fr/˜sagot/lefff-en.html
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Figure 2: Classifier accuracy for different morpho-
logical features, averaged over target languages.

all target languages. We can see that each fea-
ture is clearly captured at the recurrent state level,
confirming that source-side morphology is indeed
successfully exploited by NMT models. However,
at the word embedding level, accuracies are com-
parable to the majority class baseline (these dif-
ferences are not significant), which implies that
the source-side lexicon of our NMT systems does
not encode morphology in a systematic way. This
might be partly explained by the fact that learning
morphological features at the word level is diffi-
cult due to data sparsity – indeed the rarest French
words in our dataset are observed only 10 times in
the training data. However, additional experiments
showed that our finding is consistent across differ-
ent word frequency bins: that is, even the embed-
dings of frequent words do not encode morpholog-
ical features better than the majority baseline.

This result is surprising, considering that our
morphological features are usually easy to in-
fer from the immediate context of French words
(see examples in Fig.1) and that morphology was
shown to be well captured by monolingual word
embeddings in various European languages in-
cluding French (Köhn, 2015). By contrast, our
NMT encoders choose not to store morphology at
the word type level, perhaps in order to allocate
more capacity to semantic information.

3.2 Different morphological features
Secondly, we asked whether the NMT encoder
captured different morphological features to dif-
ferent extents. For this question, we disregard the
word embedding results because none of the fea-
tures are significantly captured at this level.

Fig. 2 shows that the mean accuracy of number
is the highest, followed by tense and then by gen-
der. However, it should be noted that the majority
baselines for number and tense are much higher
than the one for gender. In both absolute and rela-

http://alpage.inria.fr/~sagot/lefff-en.html
http://alpage.inria.fr/~sagot/lefff-en.html
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Figure 3: Translation quality (left) and classifier accuracy for each morphological feature in the three
different language pairs. IT* denotes a modified Italian language where gender marking is removed.

tive terms, the best performing feature is number.
This can be explained by the fact that number re-
mains most often unchanged through translation,
and is marked in all target languages – albeit to
different extents. On the other hand, tense is de-
termined by the semantics but also by language-
specific usage, while gender has little semantic
value and is mostly assigned to nouns arbitrarily.

The fact that the results of different morpholog-
ical features are so variable confirms the setup of
examining each feature independently.

3.3 Source-target language relatedness

Fig. 3 shows the impact of the target language on
the encoded morphology accuracy. We again fo-
cus our analysis on the LSTM state level since em-
bedding level results are mostly near the baseline.

Differently from Belinkov et al. (2017a) we do
not find that source-side morphology is captured
better when translating into the ‘easiest’ language,
which in our case is English, both in terms of mor-
phological complexity and BLEU performance.
We note that their findings were based on very
small, possibly not significant differences, and on
the prediction of all morphological features simul-
taneously. By contrast, our fine-grained analysis
reveals that the impact of target language is signif-
icant and even major on only one feature, namely
gender, where it agrees with our linguistic intu-
ition. Indeed this feature differs from the oth-
ers because it varies largely among languages and,
when present, is semantically determined only to a
very limited extent. FRIT , where source gender is
a good predictor of target gender, shows the high-
est accuracy; FREN , where target gender is not
marked, shows the lowest; FRDE , where source
gender is often confounding for target gender, lies
in-between.

Is language relatedness the main explaining

variable? To find that out, we experiment with
a modified Italian target language without gen-
der marking, i.e. all gender-marked words are re-
placed by their masculine form (FRIT ∗). This
language pair achieves a slightly higher BLEU
score than FRIT (33.2 vs 32.6), which can be at-
tributed to the smaller target vocabulary. How-
ever its source gender accuracy is much worse (see
Fig. 3), which indicates that the high performance
of the FRIT encoder is mostly due to the ubiqui-
tous gender marking in the target language, rather
than to language relatedness. All this suggests that
source morphological features contribute to sen-
tence understanding to some degree, but the incen-
tive to learn them mostly depends on how directly
they can be transferred to the target sentence.

Finally, we look at what happens when a sin-
gle NMT system is trained in a multitarget fash-
ion on our three language pairs. Following the
setup of Johnson et al. (2017), we prepend a to-
target-language tag {2it,2de,2en} to the source
side of each sentence pair and mix all language
pairs in the NMT training data. Results are pre-
sented for gender in Fig. 3 (right).4 Note that,
while word embeddings are identical for the three
language pairs, recurrent states change according
to the language tag. In this setup the target lan-
guage impact is less visible and gender accuracy at
the LSTM state level is overall much higher than
that of the mono-target systems (0.77 vs 0.68 on
average) whereas BLEU scores are slightly lower
(−0.9% on average). While this is only an ini-
tial exploration of multilingual NMT systems, our
results suggest that this kind of multi-task objec-
tive pushes the model to learn linguistic features
in a more consistent way (Bjerva, 2017; Engue-
hard et al., 2017).

4Multitarget results for tense and number did not differ
significantly from the corresponding monotarget results.
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4 Conclusion

We have confirmed previous findings that mor-
phological features are significantly captured by
word-level NMT encoders. However, the features
are not captured at the word type level but only
at the recurrent state level where word representa-
tions are context-dependent. Secondly, there is a
visible difference in the extent to which different
morphological features are learned: Semantic cat-
egories like number and verb tense are well cap-
tured in all language pairs, whereas grammatical
gender with its only agreement-triggering func-
tion, is dramatically affected by the target lan-
guage. Source-side gender is encoded well only
when it is a good predictor of target gender and
when target-side marking is extensive, i.e. when
translating from French to Italian.

Our findings indicate that the importance of lin-
guistic structure for the neural translation process
is very variable and language-dependent. They
also suggest that the NMT encoder is rather ‘lazy’
when it comes to learning grammatical features of
the source words, unless these are directly trans-
ferable to their target equivalents.
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