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Abstract

Researchers in computational psycholinguis-
tics frequently use linear models to study
time series data generated by human subjects.
However, time series may violate the assump-
tions of these models through temporal diffu-
sion, where stimulus presentation has a linger-
ing influence on the response as the rest of
the experiment unfolds. This paper proposes a
new statistical model that borrows from digital
signal processing by recasting the predictors
and response as convolutionally-related sig-
nals, using recent advances in machine learn-
ing to fit latent impulse response functions
(IRFs) of arbitrary shape. A synthetic exper-
iment shows successful recovery of true la-
tent IRFs, and psycholinguistic experiments
reveal plausible, replicable, and fine-grained
estimates of latent temporal dynamics, with
comparable or improved prediction quality to
widely-used alternatives.

1 Introduction

Time series are abundant in many naturally-
occurring phenomena of interest to science, and
they frequently violate the assumptions of linear
modeling and its generalizations. One confound
that may be widespread in psycholinguistic data
is temporal diffusion: the dependent variable may
evolve slowly in response to its inputs, with the
result that a particular predictor observed at a par-
ticular time may continue to exert an influence on
the response as the rest of the process unfolds. If
not properly controlled for, such a confound could
have a detrimental impact on parameter estima-
tion, model interpretation, and hypothesis testing.

The problem of temporal diffusion remains
largely unsolved in the general case.1 A stan-

1Although recent work in computational psycholinguis-
tics has begun to address separate but related problems in
time series modeling (auto-correlation and non-stationarity)

dard approach for handling the possibility of tem-
porally diffuse relationships between the predic-
tors and the response is to use spillover or lag
regressors, where the observed predictor value is
used to predict subsequent observations of the re-
sponse (Erlich and Rayner, 1983). But this strat-
egy has several undesirable properties. First, the
choice of spillover position(s) for a given predic-
tor is difficult to motivate empirically. Second, in
experiments with variably long trials the use of
relative event indices obscures potentially impor-
tant details about the actual amount of time that
passed between events. And third, including mul-
tiple spillover positions per predictor quickly leads
to parametric explosion on realistically complex
models over realistically sized data sets, especially
if random effects structures are included.

As a solution to the problem of temporal diffu-
sion, this paper proposes deconvolutional time se-
ries regression (DTSR), a technique that directly
models diffusion by learning parametric impulse
response functions (IRFs) of the predictors that
mediate their relationship to the response variable
over time. Parametric deconvolution is difficult
in the general case because the likelihood surface
depends on the choice IRF kernel, requiring the
user to re-derive estimators for each unique model
structure. Furthermore, arbitrary IRF kernels are
not guaranteed to afford analytical estimator func-
tions or unique real-valued solutions. However,
recent advances in machine learning have led to
libraries like Tensorflow (Abadi et al., 2015) —
which uses auto-differentiation to support opti-
mization of arbitrary computation graphs — and
Edward (Tran et al., 2016) — which enables black
box variational inference (BBVI) on Tensorflow
graphs. While these libraries are typically used to
build and train deep networks, DTSR uses them

using generalized additive models (GAM) with a particular
structure (Baayen et al., 2017, 2018).
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Figure 1: Effects in a linear time series model
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Figure 2: Linear time series model with spillover

to overcome the aforementioned difficulties with
general-purpose temporal deconvolution by elim-
inating the need for hand-derivation of estimators
and sampling distributions for each model.

The IRFs learned by DTSR are interpretable
as estimates of the temporal shape of predictors’
influence on the response variable. By convolv-
ing predictors with their IRFs, DTSR is able to
consider arbitrarily long histories of independent
variable observations in generating a given predic-
tion, and (in contrast to spillover) model complex-
ity is constant on the length of the history win-
dow. DTSR is thus a parsimonious technique for
directly measuring temporal diffusion.

Figures 1–3 illustrate the present proposal and
how it differs from linear time series models. As
shown in Figure 1, a standard linear model as-
sumes conditional independence of the response
from all preceding observations of the predictor.
This independence assumption can be weakened
by including additional spillover predictors (Fig-
ure 2), at a cost of requiring additional parameters.
In both cases, only the relative order of events is
considered, not their actual distance in time. By
contrast, DTSR recasts the predictor and response
vectors as streams of impulses and responses (re-
spectively) localized in time. It then fits latent
IRFs that govern the influence of each predictor
value on the response as a function of time (Fig-
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Figure 3: Effects of predictors in DTSR

ure 3).
This paper presents evidence that DTSR can

(1) recover known underlying IRFs from synthetic
data, (2) discover previously unknown temporal
structure in human data (psycholinguistic reading
time experiments), (3) provide support for the ab-
sence of temporal diffusion in settings where it
might exist in principle, and (4) provide compara-
ble (or in some cases improved) prediction quality
to standard linear mixed-effects (LME) and gener-
alized additive (GAM) models.

2 Related work

2.1 Non-deconvolutional time series modeling
The two most widely used tools for analyzing psy-
cholinguistic time series are linear mixed effects
regression (LME) (Bates et al., 2015) and gener-
alized additive models (GAM) (Hastie and Tib-
shirani, 1986; Wood, 2006). LME learns a lin-
ear combination of the predictors that generates
a given response variable. GAM generalizes lin-
ear models by allowing the response variable to be
computed as the sum of smooth functions of one
or more predictors.

In both approaches, responses are modeled
as conditionally independent of preceding obser-
vations of predictors unless spillover terms are
added, with the attendant drawbacks discussed in
Section 1. To make this point more forcefully, take
for example Shain et al. (2016), who find signif-
icant effects of constituent wrap-up (p = 2.33e-
14) and dependency locality (p = 4.87e-10) in the
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Natural Stories self-paced reading corpus (Futrell
et al., 2018). They argue that this constitutes the
first strong evidence of memory effects in broad-
coverage sentence processing. However, it turns
out that when one baseline predictor — probabilis-
tic context free grammar (PCFG) surprisal — is
spilled over one position, the reported effects dis-
appear: p = 0.816 for constituent wrap-up and p =
0.370 for dependency locality. Thus, a reasonable
but ultimately inaccurate assumption about base-
line effect timecourses can have a dramatic im-
pact on the conclusions supported by the statistical
model. DTSR offers a way forward by bringing
temporal diffusion under direct statistical control.

2.2 Deconvolutional time series modeling

Deconvolutional modeling has long been used in
a variety of scientific fields, including economics
(Ramey, 2016), epidemiology (Goldstein et al.,
2011), and neuroimaging (Friston et al., 1998).
Non-parametric deconvolutional models quantize
the time series and fit estimates for each time point
within some window, similarly to the spillover
approach discussed above. These estimates can
be unconstrained, as in finite impulse response
models (FIR) (H. Glover, 1999; Ward, 2006),
or smoothed with some form of regularization
(Goutte et al., 2000; Pedregosa et al., 2014). Ad-
ditional post-hoc interpolation is necessary in or-
der to obtain a closed-form continuous IRF. These
non-parametric approaches are prone to paramet-
ric explosion as well as sparsity problems when
trials are variably spaced in time.

Parametric deconvolutional approaches (i.e.
specific instantiations of DTSR) have evolved
in certain fields (e.g. fMRI modeling) to solve
particular problems, generally with some
independently-motivated IRF kernel like the
hemodynamic response function (HRF) (Friston
et al., 1998; Lindquist and Wager, 2007; Lindquist
et al., 2009). However, to our knowledge DTSR
constitutes the first mathematical formulation
and software implementation of general-purpose
mixed effects parametric deconvolutional re-
gression for arbitrary impulse response kernels.
DTSR also supports Bayesian inference, enabling
quantification of uncertainty in the absence of
analytic formulae for standard errors. With these
properties, DTSR expands the range of possible
applications of parametric deconvolution beyond
those fields for which appropriate formulations

have already been developed.

3 Model definition

This section presents the mathematical definition
of DTSR. For readability, only a fixed effects
model is presented below, since mixed modeling
substantially complicates the equations. The full
model definition is provided in Appendix A. Note
that the full definition is used to construct all read-
ing time models reported in subsequent sections,
since they contain random effects.

Let X ∈ RM×K be a design matrix of M ob-
servations for K predictor variables and y ∈ RN
be a vector of N responses, both of which contain
contiguous temporally-sorted time series. DTSR
models the relationship between X and y using
parameters consisting of:

• a scalar intercept µ ∈ R
• a vector u ∈ RK of K coefficients

• a matrix A ∈ RR×K of R IRF kernel param-
eters for K fixed impulse vectors

• a scalar variance σ2 ∈ R of the response

To define the convolution step, let gk for k ∈
{1, 2, . . . ,K} be a set of parametric IRF kernels,
one for each predictor; let a ∈ RM and b ∈ RN be
vectors of timestamps associated with each obser-
vation in X and y, respectively; and let c ∈ NM
and d ∈ NN be vectors of series ID’s associated
with each observation in X and y, respectively. A
filter F ∈ RN×M admits only those observations
in X that precede y[n] in the same time series:

F[n,m]
def
=

{
1 c[m] = d[n] ∧ a[m] ≤ b[n]

0 otherwise
(1)

The inputs X can be convolved with each IRF
gk by premultiplication with sparse matrix Gk ∈
RN×M for k ∈ {1, 2, ...,K} as defined below:

Gk = gk

(
b1> − 1a>;A[∗,k]

)
� F (2)

The convolution that yields the design matrix of
convolved predictors X′ ∈ RN×K is then defined
using products of the G matrices and the design
matrix X:2

X′[∗,k]
def
= GkX[∗,k] (3)

2This implementation of convolution is only exact when
the predictors fully describe a discrete impulse signal. Exact
convolution of samples from continuous signals is generally
not possible because the signal is generally not analytically
integrable. For continuous signals, DTSR can approximate
the convolution as long as the predictor is interpolated be-
tween sample points at a fixed frequency prior to fitting.
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Following convolution, DTSR is simply a linear
model. The full model mean is the sum of (1) the
intercept µ and (2) the product of the convolved
predictor matrix X′ and the coefficient vector u:

y ∼ N
(
µ+ X′u, σ2

)
(4)

4 Implementation

The present implementation defines the afore-
mentioned equations3 as a Bayesian computation
graph in Tensorflow and Edward and trains it with
black box variation inference (BBVI) using the
Nadam optimizer (Dozat, 2016)4 with a constant
learning rate of 0.01 and minibatches of size 1024.
For computational efficiency, histories are trun-
cated at 128 timesteps. Prediction from the net-
work uses an exponential moving average of pa-
rameter iterates with a decay rate of 0.998. Con-
vergence was visually diagnosed.

The present experiments use a ShiftedGamma
IRF kernel:

f(x;α, β, δ) =
βα(x− δ)α−1e−β(x−δ)

Γ(α)
(5)

This is simply the PDF of the Gamma distribution
augmented with a shift parameter δ allowing the
lower bound of the support of the distribution to
deviate from 0. We constrain δ to be strictly neg-
ative, thereby allowing the model to find a non-
zero instantaneous response. We also constrain k
to be strictly greater than 1, which deconfounds
the shape and shift parameters. All bounded vari-
ables are constrained using the softplus bijection:

softplus(x) = log(ex + 1) (6)

The ShiftedGamma kernel is used here because
it can fit a wide range of response shapes and
has precedent in the fMRI literature, where HRF
kernels are often assumed to be Gamma-shaped
(Lindquist et al., 2009).5

All parameters are given normal priors with unit
variance. Prior means for the fixed IRF kernel

3As noted above, for expository purposes the definition in
Section 3 only supports fixed-effects models. The full def-
inition for mixed-effects DTSR models is provided in Ap-
pendix A. Mixed models are used throughout the experiments
reported below.

4The Adam optimizer (Kingma and Ba, 2014) with Nes-
terov momentum (Nesterov, 1983)

5Other IRF kernels, including spline functions and com-
position of convolutions, are supported by the current imple-
mentation of DTSR but are not explored in these experiments.
More details are provided in the software documentation.

parameters are domain-specific and discussed in
the experiments sections below. To center the
prior at an intercept-only model,6 prior means for
the intercept µ and variance σ2 are set (respec-
tively) to the empirical mean and variance of the
response, and prior means for both fixed coeffi-
cients and random effects7 are set to 0. Although
the Bayesian implementation of DTSR is used for
this study because it provides quantification of un-
certainty, placing priors on the IRF kernel param-
eters is not crucial to the success of the system. In
all experiments reported below, the MLE imple-
mentation arrives at similar solutions and achieves
slightly better error.

In the interests of enabling the use of DTSR
by the scientific community, the implementation
of DTSR used here is offered as a documented
open-source Python package with support for (1)
Bayesian, variational Bayesian, and MLE infer-
ences and (2) a variety model structures and im-
pulse response kernels. The Tensorflow back-
end also enables GPU acceleration where avail-
able. Source code and links to documenta-
tion are available at https://github.com/
coryshain/dtsr.

5 Experiment 1: Synthetic data

An initial experiment fits DTSR estimates to syn-
thetic data to determine whether the model can re-
cover known ground truth IRFs. Synthetic data
were synthesized using the following procedure.
First, 20 input vectors of size 10,000 were drawn
from a standard normal distribution. These values
synthesize an impulse stream containing 20 co-
variates, each with 10,000 observations. A Shift-
edGamma IRF was then drawn for each of the 20
covariates. Coefficients were drawn from a uni-
form distribution U(−50, 50), and IRF parame-
ters were drawn from the following distributions:
α ∼ U(1, 6), β ∼ U(0, 5), δ ∼ U(−1, 0). The
prior means for the corresponding IRF kernel pa-
rameters are placed at the centers of these ranges.
The stream of responses was generated by con-
volving the covariates with their corresponding
IRFs. Gaussian noise with standard deviation 20
was injected into the response following genera-
tion. The 10,000 trials were spaced 100ms apart.
As shown in Figure 4, the DTSR estimates for the

6A model in which the response is insensitive to the model
structure.

7See Appendix A for the definition of the mixed-effects
DTSR model, which includes random effects.

https://github.com/coryshain/dtsr
https://github.com/coryshain/dtsr


2683

R
es

po
ns

e

Time (s)

Figure 4: Synthetic data. True IRFs (left) and estimated IRFs with 95% credible intervals (right).

synthetic data are very similar to the ground truth,
confirming that when the data-generating model
matches the assumptions of DTSR, DTSR can re-
cover its latent structure with high fidelity.

6 Experiment 2: Human reading times

6.1 Background and experimental design

The main interest of DTSR is the potential to bet-
ter understand real-world dynamical systems like
the human sentence processing response. There-
fore, Experiment 2 applies DTSR to three exist-
ing datasets of naturalistic reading: Natural Sto-
ries (Futrell et al., 2018), Dundee (Kennedy et al.,
2003), and UCL (Frank et al., 2013).

Natural Stories is a self-paced reading (SPR)
corpus consisting of narratives designed to provide
context-rich, fluent-sounding stimuli that nonethe-
less contain many grammatical constructions that
rarely occur naturally in texts. The public release
of the corpus contains data collected from 181
subjects. The stimulus set contains 10 stories with
a total of 485 sentences and 10,245 tokens, for a
total 848,768 fixation events.

Dundee is an eye-tracking (ET) corpus con-
taining newspaper editorials read by 10 subjects,
with incremental eye fixation data recorded during
reading. The stimulus set contains 20 editorials
with a total of 2,368 sentences and 51,502 tokens,
for a total of 260,065 fixation events.

UCL is a reading corpus containing individual
sentences that were extracted from novels written
by amateur authors. The sentences were shuffled
and presented in isolation to 42 subjects. The eye-
tracking portion of the UCL corpus used in these
experiments contains 205 sentences with a total of
1,931 tokens, for a total of 53,070 fixation events.

In all experiments, the response variable is log

fixation duration (go-past duration for ET). Mod-
els use the following set of predictor variables in
common use in psycholinguistics: Sentence posi-
tion (index of word in sentence), Trial (index of
trial in series),8 Saccade Length (in words, ET
only), Word Length (in characters), Unigram Log-
prob, and 5-gram Surprisal. Unigram Logprob
and 5-gram Surprisal are computed by the KenLM
toolkit (Heafield et al., 2013) trained on Gigaword
4 (Parker et al., 2009). In addition, DTSR enables
fitting of a Rate predictor, which is simply a vec-
tor of ones, one for each observation, that is con-
volved using a latent IRF. Rate thus measures the
response to density of stimulus presentation in the
recent past. Since without deconvolution Rate is
identical to the intercept, it is excluded from non-
deconvolutional baseline models. Following stan-
dard practice in psycholinguistics, by-subject ran-
dom coefficients for each of these predictors are
included in all models (baseline and DTSR).9

ShiftedGamma IRFs are fitted to all predic-
tors except Sentence Position, which is assigned
a Dirac delta IRF (i.e. a linear coefficient) since it
increases linearly within the sentence and is not
expected to have a diffuse response. In plots,
the Sentence Position estimate is shown as a stick
function at time 0s. Prior means used for the
IRF kernel parameters are α = 2, β = 5, and
δ = −0.5. Together, these priors define an ex-
pected exponential-like IRF which decays to near-
zero in about 1s, which seems plausible for human
reading times. In practice they do not appear to be
very constraining, since posterior means of fitted

8Except UCL, which contains isolated sentences, in
which case Trial is identical to Sentence Position.

9By-subject IRF parameters were not used for this study
because they substantially complicate the model and initial
experiments using them showed little benefit on training data.
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Figure 5: Human data. Estimated IRFs with 95% credible intervals for Natural Stories (left), Dundee
(center) and UCL (right). Intervals are too tight to be seen.

models often deviate quite far from these values.
Existing work provides some expectations

about the relationships of these variables to read-
ing time. Processing difficulty is expected to in-
crease with Saccade Length, Word Length, and 5-
gram Surprisal, and positive linear relationships
have been shown experimentally (Demberg and
Keller, 2008). Unigram Logprob is expected to
be negatively correlated with reading times, since
more frequent words are expected to be easier to
process. Sentence Position, Trial, and Rate index
different kinds of change in the response over time
and their relationship has not been carefully stud-
ied, in part for lack of deconvolutional regression
tools. Although reading times tend to decrease
over the course of the experiment (Baayen et al.,
2018), suggesting an expected negative effect of
Trial, this may be partially explained by temporal
diffusion. For the present study, all predictors are
rescaled by their standard deviations.10

In all reading experiments, data are partitioned
into training (50%), development (25%) and test
(25%) sets. Outlier filtering is also performed.
For Natural Stories, following Shain et al. (2016),
items are excluded if they have fixations shorter
than 100ms or longer than 3000ms, if they start
or end a sentence, or if subjects missed 4 or
more subsequent comprehension questions. For
Dundee, following van Schijndel and Schuler
(2015), unfixated items are excluded as well as
(1) items following saccades longer than 4 words
and (2) starts and ends of sentences, screens, doc-
uments, and lines. For UCL, unfixated items are

10Except Rate, which has no variance and therefore cannot
be scaled by its standard deviation of 0.

excluded as well as (1) items following saccades
longer than 4 words and (2) sentence starts and
ends. Partitioning and filtering are applied only to
the response series. The entire predictor history
remains visible to the model.

From a modeling perspective, the primary re-
sults of interest in Experiment 2 are the IRFs them-
selves and the insights they provide into human
sentence processing. However, to check the re-
liability of the DTSR estimates, prediction qual-
ity on unseen data is compared to that of non-
deconvolutional baseline models fitted with LME
and GAM.11 Both baselines are fitted with and
without three preceding spillover positions for
each predictor (baselines with spillover are desig-
nated throughout this paper with the suffix -S).12

6.2 Results

The fitted IRFs for Natural Stories, Dundee, and
UCL are shown in Figure 5. Effect sizes by corpus
— computed here as the integral of each IRF over
the first 10s — are shown in Table 1, along with

11Formulae used to construct each model reported in this
study are available in the associated code repository.

12This number of spillover positions is among the largest
attested in the psycholinguistic literature because model com-
plexity in LME and GAM increases substantially with each
spillover position added, especially when by-subject random
slopes are included for each spillover position for each vari-
able. Indeed, many of the baseline models run for these ex-
periments are already at the limits of tractability, as shown by
the non-convergence reported in certain cells of Table 2. An
advantage of the DTSR approach is that it can consider arbi-
trarily long histories at no cost to model complexity. While
this permits DTSR to consider longer histories than its com-
petitors (in these experiments, 128 timepoints vs. 4), DTSR
is more constrained in its use of history since it must apply
the same set of IRFs to all datapoints, while the baselines es-
sentially fit separate models for each spillover position.
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Natural Stories Dundee UCL
Predictor Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Trial -0.0053 -0.0057 -0.0049 -0.0085 -0.0010 -0.0071 — — —
Sent pos 0.0154 0.0148 0.0160 0.0004 -0.0013 0.0022 0.0340 0.0301 0.0379

Rate -0.1853 -0.1858 -0.1848 -0.0649 -0.0659 -0.0640 -0.0806 -0.0832 -0.0781
Sac len — — — 0.0249 0.0216 0.0207 0.0217 0.0209 0.0225

Word len 0.0020 0.0019 0.0021 0.0107 0.0105 0.0109 -8e-07 -1.7e-5 1.4e-5
Unigram 2.6e-6 -5e-6 2.2e-5 -2.0e-6 -3.9e-5 2.8e-5 1e-06 -4e-6 1.2e-5
5-gram 0.0057 0.0056 0.0059 0.0139 0.0134 0.0145 0.0159 0.0148 0.0171

Table 1: Effect sizes by corpus with 95% credible intervals based on 1024 posterior samples

95% credible intervals (CI). The IRFs (curves) in
these plots represent the expected change in the
response over time from observing a unit impulse
of the predictor. For example, the Dundee model
estimates that observing a standard deviation of
5-gram surprisal engenders a slowdown of about
0.05 log ms instantaneously and a slowdown of
about 0.03 log ms 250 ms after stimulus presen-
tation. Because the response is reading time, pos-
itive IRFs represent inhibition and negative IRFs
represent facilitation. Detailed interpretation of
these curves is provided below in Section 6.3.

Table 2 shows prediction error from DTSR vs.
baselines fitted to the same feature set. As shown,
DTSR provides comparable or improved predic-
tion performance to the baselines, even against the
-S models which are more heavily parameterized.
DTSR outperforms LME models on unseen data
across all corpora and generally improves upon or
closely matches the performance of GAM (with
no spillover). Compared to GAM-S (with three
additional spillover positions), there is a clear ad-
vantage of DTSR for Natural Stories but not for
the eye-tracking (ET) datasets. This is likely due
to more pronounced temporal confounds in Natu-
ral Stories (especially of Rate, which the baseline
models cannot estimate) compared to the other
corpora.13 However, even in the absence of suf-
ficiently diffuse effects to afford prediction im-
provements, the ability to measure diffusion di-
rectly is a major advantage of the DTSR model,
since it can be used to detect the absence of dif-
fusion in settings where it might in principle ex-
ist. Further discussion of the DTSR IRF estimates
themselves is provided in Section 6.3.

As shown in Table 3, pooling across corpora,
permutation testing reveals a significant improve-

13Note that GAM-S is more heavily parameterized than
DTSR in that it fits multidimensional spline functions of each
spillover position of each predictor. This makes it difficult to
generalize information about effect timecourses from GAM
fits, motivating the use of DTSR for studies in which time-
courses are a quantity of interest.

ment in MSE on test data of DTSR over each base-
line system (p = 0.0001 for all comparisons).14

6.3 Discussion

Some key generalizations emerge from the DTSR
estimates shown in Figure 5. The first is the pro-
nounced facilitative role of Rate in all three mod-
els, but especially in Natural Stories. This means
that fast reading in the recent past engenders
fast reading in the present, because (1) observ-
ing a stimulus exerts a large-magnitude, diffuse,
and negative (facilitative) influence on the sub-
sequent response, and (2) the Rate contributions
of the stimuli are additive. This result demon-
strates an important pre-linguistic influence of in-
ertia — a tendency toward slow overall change
in base response rate. This effect is especially
large-magnitude and diffuse in Natural Stories,
which is self-paced reading and therefore differs
in modality from the other datasets (which are
eye-tracking). This suggests that SPR participants
strongly habituate to repeated button pressing and
stresses the importance of deconvolutional regres-
sion for bringing this low-level confound under
control in analyzing SPR data, since it appears to
have a large influence on the response and might
otherwise confound model interpretation.

Second, effects are generally consistent with ex-
pectations: positive effects for Saccade Length,
Word Length, and 5-gram Surprisal, and a nega-
tive effect of Trial. The null influence of Unigram
Logprob is likely due to the presence in the model
of both 5-gram Surprisal (which interpolates uni-
gram probabilities) and Word Length (which is in-
versely correlated with Unigram Logprob). The
biggest departure from prior expectations is the
null estimate for Word Length in UCL. It appears

14To ensure comparability across corpora with different er-
ror variances, per-datum errors were first scaled by their stan-
dard deviations within each corpus. Standard deviations were
computed over the joint set of error values in each pair of
DTSR and baseline models.
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Natural Stories Dundee UCL
System Train Dev Test Train Dev Test Train Dev Test

LME 0.0803 0.0818 0.0815 0.2135 0.2133 0.2128 0.2613 0.2776 0.2561
LME-S 0.0789† 0.0807† 0.0804† 0.2099† 0.2103† 0.2095† 0.2509† 0.2754† 0.2557†

GAM 0.0798 0.0814 0.081 0.212 0.2116 0.2111 0.2576 0.2741 0.2538
GAM-S 0.0784 0.0802 0.0799 0.2083 0.2085 0.2078 0.2440 0.2661 0.2457

DTSR 0.0648 0.0655 0.0650 0.2100 0.2094 0.2088 0.2590 0.2752 0.2543

Table 2: Mean squared prediction error by system (daggers indicate convergence warnings)

Baseline DTSR improvement (z-units) p-value
LME 0.059 0.0001∗∗∗

LME-S 0.054 0.0001∗∗∗

GAM 0.057 0.0001∗∗∗

GAM-S 0.051 0.0001∗∗∗

Table 3: Overall pairwise significance of prediction
improvement from DTSR vs. baselines

that the contribution of Word Length in this corpus
can be effectively explained by other variables.

Third, the response estimates for Dundee and
UCL (both of which are eye-tracking) are very
similar, which suggests that DTSR is discovering
replicable population-level features of the tempo-
ral profile for eye-tracking data.

Fourth, there is a general asymmetry in degree
of diffusion between low-level perceptual-motor
variables like Saccade Length and Word Length,
whose responses tend to decay quickly, and the
high-level 5-gram Surprisal variable, whose re-
sponse tends to decay more slowly. This is consis-
tent with expectations from the sentence process-
ing literature. Perceptual-motor variables involve
rapid bottom-up computation (e.g. visual process-
ing or motor planning/execution) and are there-
fore not expected to have a diffuse response, while
surprisal involves top-down computation of future
words given context, which might be more com-
putationally expensive and therefore engender a
slower response. While this outcome is suggested
e.g. by the aforementioned finding that spillover 1
winds up being a stronger position for a surprisal
predictor in the Shain et al. (2016) models, DTSR
permits direct investigation of these dynamics.

7 A note on hypothesis testing

As a Bayesian model, DTSR supports hypothesis
testing by querying the variational posterior. For
example, as shown in Table 1, the credible interval
(CI) for 5-gram Surprisal in Natural Stories does
not include zero (rejecting the null hypothesis of
no effect), while the CI for Unigram logprob does
(failing to reject). To control for effects of mul-

ticolinearity, one could perform ablative tests of
fitted null and alternative models using (1) likeli-
hood comparison or (2) predictive performance on
unseen data.

However, DTSR estimates are obtained through
non-convex stochastic optimization, which com-
plicates hypothesis testing because of possible es-
timation noise due to (1) convergence to a lo-
cal but not global optimum, (2) imperfect con-
vergence to the local optimum, and/or (3) Monte
Carlo estimation of the test statistic via posterior
sampling. It cannot therefore be guaranteed that
hypothesis testing results are due to differences in
model structure rather than differences in relative
amounts of estimation noise introduced by the fit-
ting procedure. Thus, p-values (and, consequently,
hypothesis tests) based on direct comparison of
DTSR models should be considered approximate.

However, even in situations where such un-
certainty in hypothesis testing is not acceptable,
DTSR is appropriate for certain important use
cases. First, DTSR can be used for exploratory
data analysis in order to empirically motivate the
spillover structure of the linear model. Spillover
variables can be excluded or included based on the
degree of temporal diffusion revealed by DTSR,
permitting construction of linear models that are
both parsimonious and effective for controlling
temporal diffusion. Second, DTSR can be used
to fit a data transform which is then applied to
the data prior to statistical analysis. This approach
is identical in spirit to e.g. the use of the canon-
ical HRF to convolve predictors in fMRI models
prior to linear regression. However, since DTSR
is domain-general, it can be a valuable component
in any analysis toolchain for time series.

8 Conclusion

This paper presented a variational Bayesian de-
convolutional time series regression method as a
solution to the problem of temporal diffusion in
psycholinguistic time series data and applied it to
both synthetic and human responses in order to
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better understand and control for latent temporal
dynamics. Results showed that DTSR can yield
a plausible, replicable, parsimonious, insightful,
and predictive model of a complex dynamical sys-
tem like the human sentence processing response
and therefore support the use of DTSR for psy-
cholinguistic time series modeling. While the
present study explored the use of DTSR to under-
stand human reading times, DTSR can in princi-
ple also be used to deconvolve other kinds of re-
sponse variables, such as the HRF in fMRI model-
ing or the power/coherence response in oscillatory
measures like electroencephalography, suggesting
a rich array of potential applications of DTSR in
computational psycholinguistics.
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A Definition of mixed effects DTSR

For expository purposes, in Section 3 the DTSR
model was defined only for fixed effects. How-
ever, DTSR is compatible with mixed modeling
and the implementation used here supports ran-
dom effects in the model intercepts, coefficients,
and IRF parameters. The full mixed-effects DTSR
equations are presented below.

The definitions of X, y, µ, σ2, a, b, c, d, F,M ,
N , K, and R presented in Section 3 are retained
for the mixed model definition. The remaining
variables and equations must be redefined to some

extent. Mixed-effects DTSR models additionally
contain the following parameters:

• a vector o ∈ RO of O random intercepts

• a vector u ∈ RU of U fixed coefficients

• a vector v ∈ RV of V random coefficients

• a matrix A ∈ RR×L of R fixed IRF kernel
parameters for L fixed impulse vectors

• a matrix B ∈ RR×W ofR random IRF kernel
parameters for W random impulse vectors

Random parameters o, v, and B are constrained
to be zero-centered within each random grouping
factor.

To support mixed modeling, the fixed and ran-
dom effects must first be combined using addi-
tional utility matrices. Let O ∈ {0, 1}N×O be
a mask matrix for random intercepts. A vector
q ∈ RN of intercepts is:

q
def
= µ+ Oo (7)

Let U ∈ {0, 1}L×U be an indicator matrix for
fixed coefficients, V ∈ {0, 1}L×V be an indi-
cator matrix for random coefficients, and V′ ∈
{0, 1}N×V be a mask matrix for random coeffi-
cients. A matrix Q ∈ RN×L of coefficients is:

Q
def
= 1 (Uu)> + V′ diag(v)V> (8)

Let W ∈ {0, 1}L×W be an indicator matrix
for random IRF parameters and W′

1, . . . ,W
′
n ∈

{0, 1}R×W be mask matrices for random IRF pa-
rameters. Then matrices Pn ∈ RR×L for n ∈
{1, 2, . . . , N} are:

Pn
def
= A + (W′

n �B)W> (9)

In each equation above, the random effects param-
eters are masked using the random effects filter
associated with each data point. Q and Pn are
then transformed into the impulse vector space us-
ing the indicator matrices V and W, respectively.
This procedure sums the random effects associ-
ated with each data point and adds them to the
population-level parameters.

To define the convolution step, let gl for l ∈
{1, 2, . . . , L} be parametric IRF kernels, one for
each impulse. Convolution of X with each IRF
kernel is performed by premultiplying the inputs
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X with sparse matrix Gl ∈ RN×M for l ∈
{1, 2, ..., L}:

(Gl)[n,∗]
def
= gl

(
b[n] − a>; (Pn)[∗,l]

)
� F[n,∗]

(10)
Finally, let L ∈ {0, 1}K×L be an indicator ma-
trix mapping the K predictors of X to the corre-
sponding L impulse vectors of the model.15 The
convolution that yields the design matrix of con-
volved predictors X′ ∈ RN×L is then defined us-
ing a product of the convolution matrices G, the
design matrix X, and the impulse indicator L:

X′[∗,l]
def
= GlXL[∗,l] (11)

The full model mean is the sum of (1) the in-
tercepts and (2) the sum-product of the convolved
predictors X′ with the coefficient parameters Q:

y ∼ N
(
q + (X′ �Q)1, σ2

)
(12)

15Predictors and impulse vectors are distinguished because
in principle multiple IRFs can be applied to the same predic-
tor. In the usual case where this distinction is not needed, L
is identity and K = L.


