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Abstract
To enable collaboration and communication
between humans and agents, this paper inves-
tigates learning to acquire commonsense evi-
dence for action justification. In particular, we
have developed an approach based on the gen-
erative Conditional Variational Autoencoder
(CVAE) that models object relations/attributes
of the world as latent variables and jointly
learns a performer that predicts actions and
an explainer that gathers commonsense evi-
dence to justify the action. Our empirical re-
sults have shown that, compared to a typi-
cal attention-based model, CVAE achieves sig-
nificantly higher performance in both action
prediction and justification. A human sub-
ject study further shows that the commonsense
evidence gathered by CVAE can be commu-
nicated to humans to achieve a significantly
higher common ground between humans and
agents.

1 Introduction

To make AI more accessible, transparent, and
trustworthy, recent years have seen an increas-
ing effort on Explainable AI (XAI) which devel-
ops explainable models that attempts to explain
the agent’s decision making behaviors while main-
taining a high-level of performance. Two types
of explanation have been explored by the research
community: introspective explanation which ad-
dresses the process of decision making (e.g., how
a decision is made) and justification explanation
which gathers evidence to support a certain de-
cision (Park et al., 2018; Biran and McKeown,
2017). In this paper we focus on justification ex-
planation, particularly identifying commonsense
evidence to justify the prediction of an action. The
key question we are addressing is: when an AI
agent makes a prediction about an action in the
world, how can the system justify its prediction
that makes sense to the human?

Humans have tremendous commonsense
knowledge about actions in the world (e.g.,
key constituents of an action) which allows
them to quickly recognize and infer actions
in the environment from millions of available
features (Rensink, 2000). As a first step in our
investigation, we initiated a human study to
observe the kind of commonsense reasoning used
by humans to justify the prediction of an action.
From this study, we identified several dimensions
of commonsense evidence which is commonly
used to explain an action. Motivated by this
study, we frame our task as follows: given all the
symbolic descriptions of the perceived physical
world (e.g., object relations and attributes as a
result of vision or other processing), the goal is
to identify a small set of descriptions which can
justify an action prediction in line with humans’
commonsense knowledge about that action. The
lack of commonsense knowledge is a major
bottleneck in artificial agents which jeopardizes
the common ground between humans and agents
for successful communication. If artificial agents
ever become partners with humans in joint tasks,
the ability to learn and acquire commonsense
evidence for action justification is crucial.

To address this problem, we developed an ap-
proach based on the generative Conditional Vari-
ational Autoencoder (CVAE). This approach mod-
els the perceived attributes/relations as latent vari-
ables and jointly learns a performer which pre-
dicts actions based on attributes/relations and
a explainer which selects a subset of at-
tributes/relations as commonsense evidence to jus-
tify the action prediction. Our empirical results
on a subset of the Visual Genome data (Krishna
et al., 2016) have shown that, compared to a typ-
ical attention-based model, CVAE has a signifi-
cantly higher explanation ability in terms of iden-
tifying correct commonsense evidence to justify
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the predicted action. When adding the supervision
of commonsense evidence during training, both
the explainability and the performance (i.e., action
prediction) are further improved.

As commonsense evidence is intuitive to hu-
mans, the agent’s ability to select the right kind
of commonsense evidence will allow the human
and the agent to come to a common understanding
of actions and their justifications, in other words,
common ground. To evaluate the role of common-
sense evidence in facilitating common ground, we
conducted additional human subject studies. In
these experiments, the agent is given a set of im-
ages and applies our models to predict actions
and select commonsense evidence to justify the
prediction. For each image, the agent communi-
cates the selected commonsense evidence to the
human. The human, who does not have access to
the original image, makes a guess on the action
only based on the communicated evidence. The
agreement between the action guessed by the hu-
man and the action predicted by the agent is used
to measure how well the selected commonsense
evidence serves to bring the human and the agent
to a common ground of perceived actions. Our ex-
perimental results have shown that the common-
sense evidence selected by CVAE leads to a signif-
icantly higher common ground.

The contributions of this paper are three folds.
First we identified several key dimensions of com-
monsense evidence, from a human’s perspective,
to justify concrete actions in the physical environ-
ment. These dimensions provide a basis for jus-
tification explanation that is aligned with human’s
commonsense knowledge about the action. Sec-
ond we proposed a method using CVAE to jointly
learn to predict actions and select commonsense
evidence as action justification. CVAE naturally
models the generation process of both actions and
commonsense evidence. Inferring commonsense
evidence is equivalent to the posterior inference of
the CVAE model, which is flexible and powerful
by incorporating actions as context. Our experi-
mental results have shown a higher explainability
of CVAE in action justification without sacrificing
performance. Finally our dataset of commonsense
evidence for action explanation is available to the
community1. It can serve as a benchmark for fu-
ture work on this topic.

1 The dataset is available at https://github.com/
yangshao/Commonsense4Action

2 Related Work

Advanced machine learning such as deep learning
approaches have shown effectiveness in many ap-
plications, however, they often lack transparency
and interpretability. This makes it difficult for hu-
mans to understand the agent’s capabilities and
limitations. To address this problem, there is a
growing interest in Explainable AI. For example,
previous work has applied high-precision rules
to explain classifiers’ decisions (Ribeiro et al.,
2016, 2018). For Convolutional Neural Networks
(CNNs), recent work attempts to explain model
behaviors by mining semantic meanings of fil-
ters (Zhang et al., 2017a,b) or by generating lan-
guage explanations (Hendricks et al., 2016; Park
et al., 2018). An increasing amount of work on
the Visual Question Answering (VQA) task (An-
tol et al., 2015; Lu et al., 2016) has also looked
into more interpretable approaches, for exam-
ple, by utilizing attention-based models (Fukui
et al., 2016) or reasoning based on explicit evi-
dence (Wang et al., 2017).

Specifically for action understanding, recent
work explicitly models commonsense knowledge
including causal relations (Gao et al., 2016; Forbes
and Choi, 2017; Zellers and Choi, 2017; Gao
et al., 2018) related to concrete actions, which
can facilitate action explanation. Commonsense
knowledge can be acquired from image annota-
tions (Yatskar et al., 2016) or learned from vi-
sual abstraction (Vedantam et al., 2015). Differ-
ent from the above work, our work here focuses
on learning to acquire commonsense evidence for
action justification.

3 A Study on Justification Explanation

While there is a rich literature on explanations in
Psychology, Philosophy, and Linguistics, partic-
ularly for higher-level events and decision mak-
ing (Thagard, 2000; Lombrozo, 2012; Dennett,
1987), explanations for recognition of lower-level
concrete physical actions (e.g., drink, brush, cook,
etc.) occurred in our daily life are rarely studied.
One possible reason is that we humans are so intu-
itive in recognizing these actions, which are often
taken for granted without the need for any further
explanation. However, despite recent advances,
the ability to recognize and understand actions in
the real world is extremely challenging for arti-
ficial agents. Thus it becomes important for the
agent to have an ability to explain and justify its

https://github.com/yangshao/Commonsense4Action
https://github.com/yangshao/Commonsense4Action
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action prediction. What can be used to justify an
action prediction, and more importantly, in a hu-
man understandable way? To address this ques-
tion, we initiated a human study to examine what
kind of evidence humans would gather in justify-
ing their recognition of an action perceived from
the physical world.

More specifically, we selected a set of 12 short
video clips (each about 14 seconds) from the Mi-
crosoft Research Video to Text dataset (Xu et al.,
2016). For each video clip, we asked human sub-
jects to explain why they think a certain action is
happening in the video. The answers were col-
lected via an online interface. A total of about 140
responses from 67 Michigan State University en-
gineering students were collected. From the data,
we identified the following categories of evidence
commonly used by the subjects in their justifica-
tions. Most responses contain multiple categories
of explanation.

• Transitive-Relation. This kind of expla-
nation does not directly focus on the struc-
tural relations between an action and its par-
ticipants, but rather transits to the relation
between the participant of the action and
other related evidence. For example, using a
woman wears an apron to justify the cook ac-
tion. In the collected responses, 64% of them
used transitive relations.

• Subaction-Relation. Lower-level sub-
actions are used to justify a higher-level ac-
tion. For example, the action is cook because
there are sub-actions like cutting and heating
meat. Almost 75% of the responses used sub-
actions.

• Spatial-Relation. Spatial relations between
the participants of the action play an impor-
tant role. For example, the knife is on the
cutting board is used to explain cooking; and
the water is in the bottle to explain drinking.
Around 15% of responses are in this category.

• Effect-Attribute. A change in the state of
an object, in other words the effect state af-
ter the action, is often used as evidence. For
example, cucumber in small pieces is used as
the evidence for chop. Over 28% of the re-
sponses are in this category.

• Associated-Attribute. Other attributes asso-
ciated with the participants of the action, but
not the effect state of the participants as a

(hold, hand, bottle) 

(near, bottle, mouth) 

(in, water, bottle)

(hold, woman, racket)

(racket, orange)

(shirt, white)

Drink Chop

(carve, knife, meat) 

(use, man, knife) 

(on, fork, meat)

(under, stove, pan)

(meat, sliced) 

(fork, long)

Feed

(eat, bird, fruit) 

(on, fruit, hand) 

(on, bird, hand) 

(on, neck, bird)

(apple, green)

(beak, orange)

Figure 1: Examples of commonsense evidence selected
by the crowd (in bold) from the list of relations and
attributes.

result of the action (20%). While these at-
tributes are not directly related to the action,
they are linked to the action by association.
For example, banana is sliced is used as evi-
dence to justify blend.

• Other. Participants have also cited other
commonsense such as the “definition” of the
action (5%), or the manner associated with
different sub actions(12%).

Most of the above categories can be potentially
perceived and represented through symbolic de-
scriptions such as logic predicates to capture ob-
ject attributes and relations between objects. This
study has motivated us to collect additional data
(Section 4) and formulate the task of common-
sense justification as described in Section 5.

4 Data Collection

Motivated by the human study described above,
we created a dataset based on the Visual Genome
(VG) data (Krishna et al., 2016) for our investiga-
tion. Each image in the VG dataset is annotated
with bounding boxes, attributes of the bounding
boxes, and relations between the bounding boxes.
The available annotation provides an ideal setup
for us to focus on commonsense justification.

In this work, we are interested in the concrete
physical actions that involve physical objects that
can be perceived. We selected ten frequently oc-
curred concrete actions: feed, pull, ride, drink,
chop, brush, fry, bake, blend, eat and manually
identified a set of images from the VG dataset de-
picting these actions. This has led to a dataset of
853 images with annotated ground-truth actions.

We conducted a crowd-source study to collect
responses from the crowd in terms of common-
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Table 1: The average number of available relations/attributes and the average number of annotated commonsense
evidence relations/attributes across the corresponding images for each verb in the dataset.

feed pull ride drink chop brush fry bake blend eat

Rel# 15.49
± 7.55

14.62
± 9.36

12.42
± 7.18

15.16
± 9.89

12.00
± 7.22

15.40
± 8.93

14.02
± 7.02

13.31
± 7.27

14.37
± 6.37

15.08
± 6.87

Gold Rel# 2.79
± 1.28

1.86
± 0.84

1.69
± 0.83

2.41
± 1.14

2.41
± 1.66

2.26
± 1.08

2.72
± 2.06

2.25
± 1.69

2.56
± 1.84

2.52
± 1.08

Att# 12.48
± 7.11

13.60
± 7.52

12.20
± 7.13

10.86
± 6.52

15.09
± 6.82

12.31
± 8.91

15.31
± 7.16

13.44
± 6.84

15.22
± 7.18

11.98
± 6.50

Gold Att# 0.26
± 0.48

0.20
± 0.45

0.13
± 0.40

0.30
± 0.56

1.60
± 1.33

0.22
± 0.49

0.91
± 1.26

0.93
± 1.06

0.15
± 0.40

0.41
± 0.70

Table 2: Distributions of the categories of commonsense evidence relations/attributes for each verb.
feed pull ride drink chop brush fry bake blend eat

Transitive-Relation 0.10 0.14 0.15 0.11 0.11 0.13 0.12 0.18 0.15 0.09
Subaction-Relation 0.45 0.46 0.13 0.32 0.29 0.39 0.17 0.11 0.09 0.43

Spatial-Relation 0.45 0.40 0.72 0.57 0.60 0.48 0.71 0.71 0.76 0.48
Effect-Attribute 0.0 0.0 0.0 0.14 0.82 0.05 0.53 0.34 0.22 0.27

Associated-Attribute 1.0 1.0 1.0 0.86 0.18 0.95 0.47 0.66 0.78 0.73

sense evidence for action justification. As shown
in Figure 1, for each image, we showed to the
crowd (through Amazon Mechanical Turk) the im-
age itself, the ground-truth action, and a list of
relations/attributes. The workers were instructed
to select the relations/attributes that were deemed
to justify the corresponding action. We randomly
assigned three workers to each image. The rela-
tions or attributes that were selected by the major-
ity (two or more) workers were considered gold
commonsense evidence for action justification.

Table 1 shows the average number of rela-
tions/attributes available (i.e., Rel# and Att#)
for the corresponding images for each verb. It
also shows the number of relations/attributes se-
lected by the workers as commonsense evidence
(i.e., Gold Rel# and Gold Att#). The average
number of relations and attributes in each image
for different actions varies slightly. However, only
a small percentage of them are considered com-
monsense evidence. What’s interesting is that the
percentage of attributes considered good evidence
is significantly less than the percentage of the re-
lations. The sparsity of gold relations/attributes
shows that it’s a challenging task to learn an ex-
plainer for a target action.

We further inspected the selected gold com-
monsense relations and attributes. As shown in
Table 2, they nicely fall into the categories of
commonsense evidence discussed in Section 3.
The ratios of Transitive-Relation
are similar across different actions. The
ratios of Subaction-Relation and

Spatial-Relation vary for different verbs.
For instance, ride, bake, blend tend to be justified
by spatial relations more often than sub-actions.
In addition, feed, pull, ride are rarely justified
by Effect-Attribute while chop is mainly
explained by the effect state of its direct object.
These results will provide insight for generating
justification explanations for a variety of verbs in
the future.

5 Method

Before we formulate the problem, we will first
give some formal definitions. The set of rela-
tions R is defined as {r1, r2, ..., rm} where each
ri is a tuple (rpi , r

s
i , r

o
i ) corresponding to the pred-

icate, subject, and object; and the set of attributes
E is represented as {e1, e2, ..., en} where each ei
is a tuple (eoi , e

p
i ) corresponding to the object and

attribute. We introduce z as a discrete vector
(z1, z2, ..., zm+n) where zi ∈ {0, 1} represents
the hidden explainable variable. z is interpreted
as an evidence selector: zi = 1 means the cor-
responding relation/attribute justifies the target ac-
tion a. We define A as the vocabulary of target ac-
tions. Based on all these definitions, our goal is to
jointly select evidence z and predict target action
a ∈ A. In other words, to learn the probability
p(a, z|R,E).

5.1 Conditional Variational Autoencoder

The varational autoencoder( VAE) (Kingma and
Welling, 2013) is proposed as a generative model
to combine the power of both directed continuous
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 r1: (on,  knife,  cutting-board)

                ……

 rm: (hold, hand,   knife)

Image

GRU

a1: (banana yellow)

          ……

an: (banana, sliced)

GRU

Relation Embedding

Attribute Embedding

chop

Action Embedding

…

…

Prior Embedding

Posterior Embedding

KL(q||p)

Gumble 
Softmax

Weighted Sum + Relu

chop: 0.6
drink: 0.1
……
pull: 0.1
feed: 0.1

softmax

Glove

pθ(z|R,E)

qφ(z|a,R,E)

Linear 
+Relu

Figure 2: System architecture for the CVAE model. The dotted region is only used during the model training
process.

or discrete graphical models and neural network
with latent variables. The VAE models the gener-
ative process of a random variable x as following:
first the latent variable z is generated from a prior
probability distribution p(z), then a data sample
x is generated from a conditional probability dis-
tribution p(x|z). The CVAE (Zhao et al., 2017)
is a natural extension of VAE: Both the prior dis-
tribution and conditional distribution now are con-
ditioned on an additional context c: p(z|c) and
p(x|z, c).

In our task, we decompose the inference prob-
lem p(a, z|R,E) into two smaller problems. The
first sub-problem is to infer p(a|R,E), which
is a performer. The second problem is to in-
fer p(z|a,R,E) which is an explainer. These
two problems are closely coupled, hence we
model them jointly. The probability distribution
p(a|R,E) can be written as :

p(a|R,E) =
∑
z

pθ(a|z,R,E)p(z|R,E)

Directly optimizing this conditional probability is
not feasible. Usually the Evidence Lower Bound
(ELBO) (Sohn et al., 2015) is optimized, which
can be derived as the following:

ELBO(a,R,E; θ, φ)

= −KL(qφ(z|a,R,E)||pθ(z|R,E))

+Eqφ(z|a,R,E)[log pθ(a|z,R,E)]

≤ logp(a|R,E)

(1)

The first KL divergence term is to minimize the
distance between the posterior distribution and the
prior distribution. The second term is to maximize
the expectation of the target action based on the
posterior latent distribution.

In most previous work using VAE, there is no
explicit meaning for the hidden representation z,
thus it’s hard for humans to interpret. For exam-
ple, z is simply assumed as a Gaussian distribu-
tion or a categorical distribution. In order to have
a more explicit representation for the purpose of
explanation, our latent discrete variable z is used
to indicate whether the corresponding relation or
attribute can be used for justifying the action.

The whole system architecture is shown in Fig-
ure 2. From an image, we first extract a candidate
relation set R and an attribute set E. Every rela-
tion r and attribute e are embedded using a Gated
Recurrent Neural Network (Chung et al., 2014).

remb = GRU([rp, rs, ro])

eemb = GRU([eo, ep])

The action a is represented by a GloVe embed-
ding (Pennington et al., 2014), followed by an-
other non-linear layer:

aemb = ReLU(Wia
glove + bi)

where aglove ∈ Rk is the pre-trained GloVe em-
bedding. Then the latent variable z can be calcu-
lated as:

qφ(z|a,R,E) = softmax(Wz[U;aemb] + bz)
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where U = [remb1 , ..., rembm , eemb1 , ..., eembn ] and
[U,aemb] means the concatenation of U and aemb.
and Wz ∈ R2×2k as we assume each zi belongs to
one of the two classes {0, 1}.

The prior distribution can be calculated as:

pθ(z|R,E) = softmax(W
′
zU+ b

′
z)

The KL divergence between the prior random
variable zprior from pθ(z|R,E) and the posterior
random variable zposterior from qφ(z|a,R,E) is:

KL(zprior, zposterior) = −pi log
pi

p
′
i

− (1− pi) log
1− pi

1− p
′
i

here zprior ∼ Bern (pi), zposterior ∼ Bern
(
p
′
i

)
.

Another challenge is that z is a discrete vari-
able which blocks the gradient and makes the end-
to-end training infeasible. Gumbel-Softmax (Jang
et al., 2016) is a re-parameterization trick to deal
with the discrete variables in the neural network.
We use this trick to sample discrete z. Then we do
a weighted sum pooling between discretized z and
U:

hz = ReLU(
∑
i

zi ∗Ui)

h = ReLU(Whhz + bh)

pθ(a|z,R,E) = softmax(Wh+ b)

During training, we also add a sparsity regulariza-
tion on the latent variable z besides the ELBO. So
our final training objective is

LCV AE = −ELBO(a,R,E; θ, φ)

+ βKL(qφ(z|a,R,E)||Bern(0)) (2)

During testing, we have two objectives. First we
want to infer the target action a, which can be
computed through sampling:

p(a|R,E) =
∑
z

pθ(z|R,E)pθ(a|z,R,E)

≈ 1

S

S∑
s=1

pθ(a|zs,R,E)

(3)

where zs ∼ p(z|R,E) and S is the number
of samples. After obtaining the predicted ac-
tion â, the posterior explanation is inferred as
qφ(z|â,R,E).

Image GRU

a1: (banana yellow)

          ……

an: (banana, sliced)

GRU

Relation Embedding

Attribute Embedding

r1: (hold, hand,   knife)

                ……

rm: (on,  knife,  cutting-board)

Weighted Sum+Relu

chop: 0.6
……

feed: 0.1

softmax

Context Vector v

Attention Score α

Figure 3: The system architecture for attention-based
method.

5.2 Conditional Variational Autoencoder
with Supervision (CVAE+SV)

In this setting, we assume we have the supervision
for the discrete latent variable z, which is more
like a multi-task setting. We optimize both the
action prediction loss and the evidence selection
loss. The final loss function is defined as:

LSV = λLCV AE + (1− λ)Levidence
where

Levidence = −
∑
k

(zk logp(ẑk)+(1−zk) log(1−p(ẑk)))

in which zk ∈ {0, 1} is the ground truth label, ẑk
is the predicted label and λ is a hyper-parameter.

6 Evaluation on Action Explanation

To evaluate our model, we randomly split our
dataset (853 images) into 60% for training, 20%
for validation, and 20% for test. For all the mod-
els we use the Adam optimizer (Kingma and Ba,
2014) with a starting learning rate 1e-4. All other
hyperparameters are tuned on the validation set.

6.1 Baseline: Attention Model
We use an attention-based model as a baseline,
which is similar to the model originally proposed
for document classification (Yang et al., 2016).
The architecture is shown in Figure 3. Different
from the CVAE-based method, this model directly
learns a context parameter instead of learning from
the posterior action context. The attention is cal-
culated as:

αi =
exp(uTi v)∑
j exp(u

T
i v)

where v is the context parameter, and ui is
the GRU embedding of the corresponding rela-
tion/attribute. The learned attention weights are
used for the selection of commonsense evidence.
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Table 3: Action prediction accuracy and evidence se-
lection MAP.

Action Accuracy Evidence MAP
Attention 0.789 0.442

CVAE 0.835 0.572
CVAE+SV 0.871 0.690

Upper Bound 0.918 1.0

6.2 Evaluation Metrics and Comparison
Our evaluation compares the performance from
the following models:

• Baseline. The attention model presented
in Section 6.1.

• CVAE. The conditional variational autoen-
coder model presented in Section 5.1.

• CVAE+SV. The CVAE model with supervi-
sion as presented in Section 5.2.

• Upper Bound. We also calculate the upper
bound of the CVAE model using the human
annotated gold evidence.

For each of the above model, evaluate model
performance on both action prediction (i.e., per-
former) and action justification (i.e., explainer)

• Performer: Accuracy is used to measure the
percentage of actions that are correctly pre-
dicted by the model.

• Explainer: As discussed in Section 5, the
binary random variable z is used to capture
commonsense evidence. The probability of
each z represents the model’s belief that the
corresponding evidence supports the action
decision. As we hope to rank the gold ev-
idence higher, the Mean Average Precision
(MAP) metric is calculated for evaluating ev-
idence selection.

6.3 Evaluation Results
The results are shown in Table 3. Since the Upper
Bound method directly uses the human annotated
gold evidence, its MAP for selecting evidence is
always 1.0.

The CVAE model outperforms the attention-
based model in both action prediction and evi-
dence selection. This indicates that the CVAE
model can incorporate a better guidance for evi-
dence selection during the training process. One

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The Ratio Of The Labeled Training Data

0.58

0.60

0.62

0.64

0.66

0.68

Ev
id

en
ce

 M
ap

Semi CVAE
Naive CVAE+SV

Figure 4: Evidence selection MAP for semi-supervised
learning.

possible explanation is that the CVAE model in-
corporates the target action as the context during
learning instead of directly learning a context pa-
rameter. Furthermore, after adding the evidence
supervision, the CVAE+SV model gives even bet-
ter performance in both action prediction and evi-
dence selection. We notice that for the CVAE+SV
model, its action prediction accuracy is approach-
ing the upper bound 91.8%, however the evidence
selection MAP is still far from the upper bound
even with supervision.

6.4 Semi-Supervised Learning
Although we have shown that adding supervision
on the latent variable z improves the model perfor-
mance, collecting this label information through
human annotation is usually time consuming and
expensive. In this section, we explore how semi-
supervised learning can help to alleviate this diffi-
culty.

As a generative model, VAE has shown its
advantage on semi-supervised learning (Kingma
et al., 2014). Following the method in (Kingma
et al., 2014), our semi-supervised learning loss
function is defined as:

L =
∑

(a,R,E,z)∼pl

LSV +
∑

(a,R,E)∼pu

LCV AE

where LSV is defined in section 5.2 and LCV AE
is detailed in section 5.1. In other words, the data
sample with evidence label is fed to LSV , other-
wise is fed to LCV AE .

The results are shown in Figure 4 where the
x-axis shows the ratio of labeled examples. The
incremental Naive CVAE+SV model only uses
the labeled evidence examples while the Semi
CVAE model also uses unlabeled evidence exam-
ples. The figure shows that the Semi CVAE
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Ground-Truth	Ac,on	A	

CVAE	
Model	

Predicted		
Ac,on	Am	

Commonsense	
Evidence	

Guessed	
Ac,on	Ah	

Am��Ah	=	A	?		

communicated	

Figure 5: The experimental setup for the human subject
study examining the role of commonsense justification
towards common ground.

model outperforms the Naive CVAE+SVmodel.
This indicates that the semi-supervised method
can improve the evidence selection by making use
of unlabeled examples.

7 Commonsense Justification towards
Common Ground

In human-agent communication, the success of
communication is largely dependent on common
ground which captures shared knowledge, beliefs,
or past experience (Clark, 1996). As common-
sense evidence what humans use to justify ac-
tions, To validate this hypothesis, we conducted a
human-subject experiment to examine the role of
commonsense justification in facilitating common
ground.

7.1 Experiment Setup

Figure 5 shows the setup of our experiment. The
agent is provided with an image and applies vari-
ous models (e.g., CVAE) to jointly predict the ac-
tion and identify commonsense evidence. The hu-
man is provided with a list of six action choices
and does not have access to the image. The agent
communicates to the human only the identified
commonsense evidence and the human makes a
guess on the action from the candidate list purely
based on the communicated evidence. The idea is
that, if the human and the agent share the same be-
liefs about evidence to justify an action, then the
action guessed by the human should be the same
as the action predicted by the agent.
Generating Distracting Verbs. For each image,
the human is provided with a list of six action/verb
candidates. To generate this list, we mix four dis-
tracting verbs with the ground-truth action verb
plus a default Other. Most of the distracting
verbs come from the concrete action verbs made
available by (Gao et al., 2018). We first manu-
ally filtered out the verbs which have the same
meaning with the ground-truth verb. We then se-
lected two groups of distracting verbs: an easy

group (where the distracting verbs have larger dis-
tance from the ground-truth verb in the embedding
space, with an average similarity of 0.284) and a
hard group (more close to the ground-truth verbs
with an average similarity of 0.479). The temper-
ature based softmax distribution (Chorowski and
Jaitly, 2016) was used to sample the easy and
the hard distracting verbs based on the pre-trained
GloVe (Pennington et al., 2014) embedding cosine
similarity.

Process. A total of 170 images were used in
this experiment, and 24 workers from AMT par-
ticipated in our study. For each image, we ap-
plied three different models: Attention base-
line, CVAE, and CVAE+SV to generate the com-
monsense evidence. An upper bound based on
gold commonsense evidence was also measured.
Note that, the agent has no knowledge of the hu-
man’s action choices when generating the com-
monsense evidence. Theory of mind is an impor-
tant aspect in human-agent communication. Incor-
porating human’s action choices in justifying ac-
tion is an interesting however a different problem
which requires different solutions. In this paper,
we only focus on the situation where the mind of
the human is opaque to the agent.

For each model and each image under the easy
or hard configurations, the top five predicted com-
monsense evidence (associated with the predicted
action) were shown to a worker. The the worker
was requested to select the most probable action
from the distracting list only based on these five
pieces of evidence. We randomly assigned three
workers to each image. The majority of three se-
lections was considered as the final answer. If
all three selections disagreed, one worker’s choice
was randomly selected as the final answer.

Metrics for Common Ground. We use the agree-
ment between the action guessed by the human
and the action predicted by the agent to mea-
sure how well the selected commonsense evidence
serves to bring the human and the agent to a com-
mon ground of perceived actions. More formally,
as shown in Figure 5, given an image, suppose its
ground-truth action is A, the action predicted by
the agent/machine is Am, and the action guessed
by the human is Ah, the Common Ground is de-
fined as: Am = Ah = A. Here we also enforce
that the predicted action should be the same as
the ground-truth action. The percentage of trials
based on different models that have led to a com-
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Attention CVAE CVAE+SV Gold

Gold Action: Bake
Am: Eat 

Ah: Bake
Am: Bake 
Ah: Bake

Am: Bake 
Ah: Bake

Am: Bake 
Ah: Bake

• The bread is next to the bread.

• The bread is on the rack.

• The bread is on the pan.

• The man has keys.

• The man has the band.

• The bread is on the rack.

• The bread is on the pan.

• The bread is on the tray.

• The bread is next to the 

bread.

• The bread is baked.

• The bread is baked.

• The bread is next to the bread.

• The person is pushing the tray.

• The bread is on the pan.

• The bread is on the rack.

• The bread is on the tray.

• The person is pushing the 

tray.

• The bread is baked.

Gold Action: Brush
Am: Brush 
Ah: Skin

Am: Brush 
Ah: Brush

Am: Brush 
Ah: Brush

Am: Brush 
Ah: Brush

• The baby has a mouth.

• The baby has a hand.

• The baby has eyeballs.

• The baby has fingers.

• The baby has a nose.

• The hand holds the 
toothbrush.


• The toothbrush is in the 
mouth.


• The baby has a mouth.

• The baby has fingers.

• The baby has a nose.

• The hand holds the toothbrush.

• The toothbrush is in the mouth.

• The baby has eyeballs.

• The baby has a mouth.

• The baby has a hand.

• The toothbrush is in the 
mouth.


• The hand holds the 
toothbrush.


Figure 6: Two examples of the common ground study based on different models. In each example, a ranked list
of commonsense evidence generated by different models is shown. Am captures the action predicted by the agent.
Ah captures the action guessed by the human based on the selected commonsense evidence.

Table 4: Results from the human subject study on com-
mon ground.

Attenton CVAE CVAE+SV Gold
Easy 0.665 0.776 0.818 0.888
Hard 0.576 0.718 0.788 0.841

mon ground is measured and compared.

7.2 Experimental Results

Table 4 shows the comparison results among vari-
ous models and the upper bound where the gold
commonsense evidence provided to the human.
It’s not surprising that performance on common
ground is worse in the hard configuration as the
distracting verbs are more similar to the target
action. The CVAE-based method is better than
the attention-based method in facilitating common
ground.

Figure 6 shows two examples of the top five pre-
dicted evidence under different models. For each
model, it also shows the agent predicted action
(Am) and the human guessed action (Ah). In both
examples, all models were able to establish a com-
mon ground except for the attention-based model.
The evidence selected by the CVAE+SV model is
clearly more accurate than the CVAE model and
is more close to the ground-truth evidence. The
second example shows that although the attention-
based model predicts a correct target action, it fails
to convey correct commonsense evidence to estab-
lish a common ground with the human.

8 Conclusion

This paper describes an approach for action justi-
fication using commonsense evidence. As demon-
strated in our experiments, commonsense evi-
dence is selected to align with humans’ justifica-
tion of an action and is therefore critical in es-
tablishing a common ground between humans and
agents.

For all experiments in this paper, we use the an-
notated relations/attributes from the original Vi-
sual Genome data. As the state-of-the-art re-
call@50 on the relation detection with a lim-
ited vocabulary is only around 20% (Liang et al.,
2018). Using annotated relations and attributes al-
lows us to focus on the study of commonsense ev-
idence and its role in action justification and com-
mon ground. Nevertheless, our proposed method
has the potential to handle the erroneous rela-
tions/entities, e.g., as a result of vision processing,
for example, by avoiding to select erroneous re-
lations as they do not correlate with actions and
other indicative relations/attributes. Our future
work will extend the model and findings from this
work to vision processing that will not only iden-
tify commonsense evidence but also explain where
and how in the perceived environment the evi-
dence is gathered.
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