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Abstract

We address the task of visual semantic role la-
beling (vSRL), the identification of the partic-
ipants of a situation or event in a visual scene,
and their labeling with their semantic relations
to the event or situation. We render candi-
date participants as image regions of objects,
and train a model which learns to ground roles
in the regions which depict the corresponding
participant. Experimental results demonstrate
that we can train a vSRL model without re-
liance on prohibitive image-based role anno-
tations, by utilizing noisy data which we ex-
tract automatically from image captions using
a linguistic SRL system. Furthermore, our
model induces frame–semantic visual repre-
sentations, and their comparison to previous
work on supervised visual verb sense disam-
biguation yields overall better results.

1 Introduction

Images of everyday scenes can be interpreted and
described in many ways, depending on the per-
ceiver and the context in which the image is pre-
sented. The latter may be natural language data or
a visual sequence. As an example, consider the two
scenes in Figure 1 and the question What is the man
doing? The interpretation of the first target image
(left) in isolation would allow many answers. Tak-
ing into account the visual context, however, may
disprove many of those answers (e.g., He is ques-
tioning the women.). For the target image on the
right, the reason for Why there is so much food on
the table? can be inferred from its textual context.

As the examples illustrate, the interpretation
of a (visual) scene is related to the determina-
tion of its events, their participants and the roles
they play therein (i.e., distill who did what to
whom, where, why and how), and this may re-
quire a joint processing or reasoning with possi-
bly multiple (extra-)linguistic information sources

(e.g., text, images). In NLP, the well-established
and studied task of semantic role labeling (SRL)
aims to extract such knowledge in the form of shal-
low semantic structures from natural language texts
(e.g., questioning(Agent:man, Theme:women) );
see, e.g., Gildea and Jurafsky (2002); Palmer et al.
(2010), for an overview). It is considered an essen-
tial task towards text understanding, and was shown
to be beneficial for applications such as informa-
tion extraction (see Roth and Lapata (2016) and the
references therein) and question answering (Shen
and Lapata, 2007). In computer vision research,
recent efforts have been made on visual SRL or sit-
uation recognition, a task coined by transferring the
use of semantic roles to produce similar structured
meaning descriptions for visual scenes (e.g., Yang
et al. (2016); Yatskar et al. (2016)). To facili-
tate the endeavor of joint processing over multiple
sources, it is desirable to induce representations of
texts and visual scenes which do encode this kind
of information, and in, essentially, a congruent and
generic way. The latter would furthermore support
the induction of a desired level of abstraction as
needed.

In this paper we propose an approach towards
this goal: We address the task of visual SRL
(vSRL) and learn frame–semantic representations
of images. Specifically, we present a model that
learns to ground the semantic roles of a seman-
tic frame in image regions, which may be crucial
for, e.g., human-robot interaction or surveillance
(e.g., Who/Where is the robber?). For example, the
image shown in Figure 2 evokes the ARREST frame,
and its semantic roles Authorities, Suspect, and
Place are grounded in the image regions (delin-
eated by bounding boxes) which depict their corre-
sponding fillers. While being trained on this task,
our model learns distributed situation representa-
tions (for images and frames), and participant rep-
resentations (for image regions and roles) which
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Well, the fridge
broke, so I had to
eat everything.

TARGET IMAGE CONTEXT TARGET IMAGE CONTEXT

Figure 1: Example images along with their visual (left) or textual (right) contexts.

capture the visual–frame-semantic features of situ-
ations and participants, respectively.

We train our model on data that we automati-
cally extract by running a linguistic SRL system
on image captions—human produced data that is
abundant and requires less time and expertise than
frame-semantic annotations. Supervised SRL has
suffered from data sparsity since it relies on labor-
intensive human annotations. Analogous issues on
manually annotated images have been addressed by
Yatskar et al. (2017). By leveraging existing efforts
made in NLP, we explore whether we can alleviate
the supervision bottleneck in visual SRL

Our experiments yield promising results, and our
models are even able to make correct predictions
for erroneous data points. Furthermore, we eval-
uate the induced situation representations on the
task of supervised visual verb sense disambigua-
tion, where it outperforms or is comparable to pre-
vious work (on motion or non-motion verbs, re-
spectively).

2 Related Work

Yatskar et al. (2016) introduced the ImSitu dataset
for the task of situation recognition, i.e., the prob-
lem of, given an image, predicting a structured out-
put which specifies the depicted activity (e.g., jump-
ing) and its associated semantic roles paired with
their nominal fillers (e.g., {(agent, bear), (obsta-
cle, water)}. To address the task, Yatskar et
al. (2016, 2017) train conditional random field
(CRF) models on ImSitu (Yatskar et al., 2016)
and on additional training data for rarely occurring
noun-role combinations which they source from the
web (Yatskar et al., 2017). Mallya and Lazebnik
(2017) assume that the roles associated with each
activity are in a fixed order, and treat the above task

as one of recognizing activities and generating a
sequence of nouns, for which they use a recurrent
neural network. They show how hereby learned
features can be transferred to tackle image caption
generation. Li et al. (2017) explicitly model role de-
pendencies through a gated graph neural network.
Given an image, they instantiate a fully connected
graph with a verb and its roles as nodes. Each
node’s hidden state vector is initialized with image
features from two CNNs, which were pre-trained
for the prediction of verbs and nouns, respectively.
Using a softmax layer augmented with hidden state
vectors, they predict the verb and the nominal fillers
of its roles.

In contrast to above works on ImSitu, we do
not link the roles of a verb to their lexical fillers.
We address the related task of explicitly grounding
roles in the corresponding image regions, since our
focus is on the relation between semantic roles and
the typical visual features of their fillers (e.g., a
Body part is typically not a bike but arms). Gupta
and Malik (2015) introduced this task as visual se-
mantic role labeling. Similarly, Yang et al. (2016)
formulate a CRF that jointly processes a cooking
video and its natural language descriptions in or-
der to ground the semantic roles associated with
the verbs in corresponding object tracks. Both of
these studies are limited to a small number of activ-
ities performed by people and a few semantic roles
(26 and 11 verbs, 3 and 6 roles, respectively).

Unlike related work, our approach does not rely
on manual role annotations of images, but exploits
a linguistic SRL system for data creation. With
more than 1k frame-specific roles, our data is of
a larger scope than Gupta and Malik (2015) and
Yang et al. (2016). Further, unlike the CRF-based
approaches, our model induces frame-semantic rep-
resentations during training.
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ARRESTARREST PLACINGPLACING

r1, r2r1, r2 AuthoritiesAuthorities r1r1 AgentAgent

r5r5 SuspectSuspect r5r5 ThemeTheme

r3r3 PlacePlace r3r3 PlacePlace

r4r4 GoalGoal

target outputs

Figure 2: Example image (from Flickr30k Entities)
augmented with frame-semantic annotations. Top: Im-
age with objects rendered by bounding boxes. Bottom:
Annotations which show the frames which the image
evokes, and their roles, linked to their filler objects.

3 Grounding Semantic Roles in Images

We first define the task of vSRL and then present
our model and our approach for data creation.

3.1 Task Definition: vSRL

Our approach is based on the linguistic theory of
frame-semantics (Fillmore, 1982), which underlies
the idea that words evoke semantic frames. Frames
describe prototypical situations or events and con-
tain semantic roles. For example, in the sentence
They arrested him for assault, the argument they
fills the Authorities role, him is the Suspect, and
assault the Charges of the ARREST frame, which
was evoked by the verb arrest.

Let F be a set of frames, E be the
set of all semantic role labels, and Ef
be the inventory of roles associated with
the frame f (e.g., EARREST ={Authorities,
Suspect, Charges, Offense, Place})1. As-
sume we are given an image i, which evokes a
frame f , and a set of image regions Ri, which ren-
der one or several objects in i. The task of vSRL
is to link each role e ∈ Ef to the object r ∈ Ri
that fills role e in the situation or event which f
describes. We call a role e to be realized in an
image, if it can be grounded in an image (re-
gion). The object r shown in the image region
is called the filler or realization of e. The struc-
ture Af = {(r, e)|r ∈ Ri, e ∈ Ef} overall repre-

1We use FrameNet 1.5 (Ruppenhofer et al., 2006).

sents the frame f in the image i.
In SRL, the task of identifying the frame which

a predicate evokes is a prerequisite, but it is usually
treated as a subtask of SRL. We follow this ap-
proach and consider the identification of the frames
evoked by an image as a subtask of vSRL. We for-
mulate two further subtasks for vSRL, namely role
prediction—determining the correct role for a rele-
vant image region, and role grounding—linking a
realized role to its filler.

Note that not all roles of a frame may be realized
in an image, and not all objects may play a role in
an evoked frame. Figure 2, for instance, shows an
image with some of its objects delineated by six
bounding boxes Ri = {r1, r2, r3, r4, r5, r6}. The
target outputs (bottom, Fig. 2) are the frames AR-

REST and PLACING, as well as their realized roles
which are aligned with their fillers (marked by col-
ors). The FrameNet roles Charges and Offense

are not realized in the image, i.e., they cannot be
grounded. The vehicle, box r4, in turn, does not
participate in the ARREST frame.

3.2 Model: Visual-Frame–Semantic
Embedder

Our model, illustrated in Figure 3, is formulated
as a neural network architecture. Its input is a
tuple q = (i, r, f, e) ∈ Q of an image i, an ob-
ject which is delineated by bounding box r, a
frame f ∈ F , and a role label e ∈ Ef (e.g., q =
(img1, r5, ARREST, Suspect); cf. Fig. 2). The
model output is a score s(q) ∈ [−1, 1] which quan-
tifies the visual–frame-semantic correspondence
between the box r and the role e of f (Fig. 3, right).

More specifically, the model maps visual en-
codings of i and r (e.g., vectors of a pre-trained
CNN), and frame-semantic representations of f
and e (randomly initialized embeddings) to com-
mon visual–frame-semantic spaces (cross-modal
layers in Fig. 3).

We assume that images capture different frame-
semantic features than image regions—an image
encodes the whole scene and its participants and
thus evokes a frame, while individual image regions
of participants capture the participant-specific fea-
tures of the semantic roles they fill. We there-
fore distinguish between two different cross-modal
spaces: a situation space for images and frames,
and a participant space for regions and roles. Us-
ing the respective representations in these spaces,
the model then estimates the situation similar-
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Figure 3: The ImgObjLoc model which scores the correspondence between a semantic role and its frame, respec-
tively, and a candidate role filler (an image region) and the whole image, respectively.

ity, sims(i, f), between the image and the frame,
and the participant-role similarity, simp(r, e), be-
tween the box and the role. Finally, the overall
frame-semantic score s(q) is the aggregation of
sims and simp:

s(q) = bf sims(i, f) + (1− bf ) simp(r, e), (1)

where parameter bf ∈ θ weights the contribution
of the situation and participant scores to the overall
score and is learned along all model parameters θ.

By definition of the output function s (Equ. 1),
each role-object pair is scored independently of the
decisions made for the other roles and regions of
the same frame and image, respectively. Techni-
cally, this allows for the use of partially labeled
training data, where not every realized role of a
frame has been linked to its filler, as we will ex-
plain in Section 3.3.

Below we describe how we use our model to ad-
dress the subtasks of role prediction and grounding
(Section 3.1), respectively, for which we will report
experimental results in Section 5.2 In any case,
the method is based on the visual-frame–semantic
correspondence s(q) (Equ. 1), where we discard all
candidates of role-filler pairings with a score less
than zero.

Role Prediction Given an image i, we formulate
the role prediction problem as a mapping L:

L :{i} ×Ri → F × E
L(i, r) = arg max

(f,e),f∈F,e∈Ef

s(i, r, f, e) (2)

That is, the predicted role (and the frame it is as-
sociated with) which an image region r ∈ Ri of i
fills is that e ∈ E to which r is most similar in the
visual–frame-semantic space.

2We refer to Appendix A.2 in the supplemental material
for the production of the structure Ai,f of all role–filler pairs
for a frame f evoked by image i.

Role Grounding is the equivalent to linguis-
tic semantic role labeling.3 Given a frame f
realized in i, we ground each role e ∈ Ef in
the region r ∈ Ri with the highest visual–frame-
semantic similarity to e:

G : {i} × {f} × Ef → Ri

G(i, f, e) = arg max
r∈Ri

s(i, r, f, e) (3)

Training We train the model by using a rank-
ing criterion designed to give higher scores
to true cross-modal frame-semantic combina-
tions (i, r, f, e) than to mismatches, by a mar-
gin M . To this end, for each positive exam-
ple q = (i, r, f, e) of a training setQ, we sampleK
negative examples q′k = (i, r, f ′, e′) of a frame f ′

and role e′ ∈ Ef ′ not true for image i and box r,4

and learn model parameters θ by minimizing the
maximum margin hinge loss function on the tu-
ples (q, q′) (Equ. 4) . Ideally, using this loss func-
tion would guide the parameter learning towards
mapping images and the frames they evoke, and
regions and the roles they fill, respectively, nearby
each other in the cross-modal spaces.

θ = arg min
θ

∑
q∈Q

1

K

K∑
k=1

max(0,M−s(q)+s(q′k))

(4)
Margin M is found during hyperparameter opti-
mization on a validation set.

3More formally, the task of SRL is the determination of
the arguments and their semantic roles of a predicate in a
sentence.

4We could extend the model to also sample a negative
image and box for f and e, and a negative role r′ for f that is
filled by another box in the image. We refrain from this since
we create our training data from automatically labeled data,
which hence could contain erroneous role-filler pairs.
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(1a) [r5 A man] is being placed in [r4 a police
car] by [r1 a uniformed officer] .

(1b) [r1,r2 The police] arresting [r5 someone]
on [r3 a busy city street] .

(1c) [r5 A young guy] is getting arrested.

(2a) PLACING (Theme:r5/A man,
Goal:r4/a police car,
Agent:r1/a uniformed officer )

(2b) ARREST (Authorities:r1,r2/The police,
Suspect:r5/someone,
Place:r3/on a busy city street )

(2c) ARREST ( Suspect:r5/A young guy )

Figure 4: Flickr30k captions for the image in Fig. 2. Left: Flickr30k Entities annotations of the mentioned objects
with unique entity ids. Right: Frame-semantic annotations of the sentences, output by PathLSTM (Roth, 2016;
Roth and Lapata, 2016).

3.3 Using Linguistic Knowledge for Data
Creation

SRL systems in NLP research use training data
which have been carefully created by linguistic ex-
perts (e.g., Ruppenhofer et al. (2006); Palmer et al.
(2005)) for many years. To train our model on
the visual SRL task, we build upon the annotation
efforts made in NLP. The exploitation of existing
resources which were developed for the analogous
goal means to get around the time-consuming and
costly annotation effort involved in the creation of
training data. Moreover, adopting an established
framework in NLP for shallow semantic representa-
tions (FrameNet, Ruppenhofer et al. (2006), in our
case), including the therein defined frame and role
labels, could facilitate cross-modal interactions—
advances in vSRL can help to improve SRL and
vice versa, or jointly draw inferences from both
modalities (e.g., a text and its illustration).

Our data creation approach is to use a (linguistic)
SRL system to extract frame-semantic annotations
from a corpus of images paired with captions.
We use the Flickr30k Entities dataset (Plummer
et al., 2015)5 which contains 30k images and five
captions per image. We chose this dataset since
its captions are augmented with entity mention
annotations, associating them with the 276k man-
ually annotated bounding boxes (i.e., entities
are grounded in the image). To create the set
Q = {(i(j), r(kj), f (lj), e(lj ,kj))|j ∈ {1, . . . , 30k}}
of training instances, we run PathLSTM (Roth,
2016; Roth and Lapata, 2016) on all captions, and
extract all semantic frame annotations whose roles
are filled by a grounded entity. As a result, our
training corpus comprises images, the frames they
evoke, and the associated semantic roles paired
with their grounded fillers (i.e., bounding boxes).

Sentences (1a)–(1c) in Figure 4 (left), for ex-

5See web.engr.illinois.edu/˜bplumme2/
Flickr30kEntities

ample, are three human produced captions for the
image in Figure 2, in which entity mentions are
linked to their image regions (indicated by colors).
Using PathLSTM, we extract the grounded frame-
semantic annotations (2a)–(2c) (Fig. 4, right),
which results in the following six instances of our
corpus Q:

(img1, r5, PLACING, Theme)
(img1, r1, PLACING, Agent)
(img1, r4, PLACING, Goal)

(img1, r1 r2, ARREST, Authorities)
(img1, r5, ARREST, Suspect)
(img1, r3, ARREST, Place)

4 Data

Training Data We adopt the training, valida-
tion and test splits provided in the Flickr30k En-
tities dataset (Plummer et al., 2015) and create
our dataset Q with the method described above.
Some verbs and the frame types which they evoke
occur very frequently in the set of annotations
(e.g., BEING LOCATED) and therefore allow the in-
duction of a finer-grained frame inventory. Specifi-
cally, we transform each frame which is evoked
by an individual verb (e.g., stand or sit) for
at least 100 images (as obtained from the cap-
tions) in the Flickr30k Entities training split to
a finer-grained frame type by concatenating it
with the verb (e.g., BEING LOCATED-sit). Finally,
we keep all frame types (fine-grained or coarse)
which had been assigned to at least 100 differ-
ent images. This amounts to an inventory of
252 frame types (102 coarse types, e.g., STATE-

MENT), 1, 409 frame-specific role types (e.g., STATE-

MENT.speaker), 169 role labels (e.g., Speaker) and
76, 939 training instances. We derive our validation
and test splits from the original splits on the basis
of above modifications. See Table 1 for the quanti-
tative details on the dataset, which we henceforth
call Flickr30k Roles.

web.engr.illinois.edu/~bplumme2/Flickr30kEntities
web.engr.illinois.edu/~bplumme2/Flickr30kEntities
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# inst. # types
frame.role frame.role frames roles

fine coarse fine coarse
train 76,939 1,409 426 252 102 169
val 7,171 755 421 239 102 143
test 7,229 756 426 242 102 146

Table 1: Overview of our Flickr30K Roles dataset.

Reference Data Flickr30k Roles may contain
false instances due to its creation on the basis
of automatic frame–semantic annotations. Im-
Situ (Yatskar et al., 2016) is, to the best of our
knowledge, the only existing benchmark dataset
for vSRL. As explained in Section 2, however, it
is image-based, and does not provide explicit links
between roles and the regions which depict their
fillers. It cannot be used for the evaluation of role
prediction and grounding without additional anno-
tations.

We therefore created a set of reference instances
by presenting a subset of the Flickr30k Roles test
data to two human subjects (both students of com-
putational linguistics) for annotation. We chose
all instances which agree in their frame label with
instances extracted from at least two other cap-
tions of the underlying image. This amounts to
201 images and 715 instances. The annotators
were presented with an image with relevant ob-
jects rendered by bounding boxes, along with the
automatically grounded semantic frame annota-
tions. Figure 5 gives an example image along
with the 4 automatically obtained instances. They
were asked to judge the correctness of the frame
(e.g., INGESTION, Fig. 5), the verb (in the case of a
fine-grained frame type; e.g., eat) and each of the
role–filler links (e.g., Ingestor–226403). They
further linked wrong role assignments to their cor-
rect fillers when possible. We created the reference
set as the intersection of all correct instances of
the two annotators (frame and role–filler linkings),
which amounts to 554 instances.

Visual Representations We use high-
dimensional distributed vectors to represent
images and regions (bounding boxes), and repre-
sent the latter by additional contextual features.
These encode a region’s relative location and size
with respect to the whole image (cf. (Mao et al.,
2016)): [

xtl
W
,
ytl
H
,
xbr
W

,
ybr
H
,
w · h
W ·H

]
, (5)

where (xtl, ytl) and (xbr, ybr) are the coordinates
of the top left and bottom right corners of the

INGESTION-eat 1–1
Role Entity ID (obj. name)
Ingestor 226403 woman 1
Ingestibles 226404 lunch/hotdog 1
Place 226408 at diner 1
Ingestor 226409 table/at table 0

instances label

Figure 5: Automatically derived instances in Flickr30k
Roles (colored, left columns) and the human correct-
ness judgments of the frame, verb, and role fillers
(right-most column; 1 is correct, 0 wrong). The object
names were presented to facilitate the annotation, but
are not part of the instance.

bounding box, H and W are the height and width
of the image, and h and w the height and width of
the box. These features have been found useful for
referring expression generation/interpretation for
objects in images (Mao et al., 2016). We hypothe-
size that the relative position and size of an object
can be likewise informative for the roles it can(not)
realize. For example, an object that is located at the
bottom of an image is probably rather the Patient

of a KICKing event than the Agent.

5 Experiments

We first evaluate our model in terms of different
aspects related to visual SRL on the two subtasks
role prediction and grounding (see Section 3).

Our second experiment assesses the usefulness
of the learned frame-semantic image representa-
tions on the task of visual verb disambiguation:
given an image and a verb, assign the correct sense
of the verb, i.e., the one that describes the action de-
picted in the image (e.g., play an instrument; play
sport). This task is different from visual SRL, but
forms a prerequisite for it, since in frame semantics,
roles are defined on the basis of frames evoked by
verb senses.

Model Details For each bounding box and im-
age, we use the VGG16 network (Simonyan and
Zisserman, 2014), trained on ImageNet (Deng et al.,
2009), to extract a 4, 096-dimensional feature vec-
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Fine-grained frame types Coarse frame types
top-1-pred. top-5 preds. gt fr. top-1-pred. top-5 preds.

frame fr.role role frame fr.role role role frame fr.role frame fr.role
te

st
se

t Image-only 19.0 9.4 16.7 44.1 28.6 52.3 47.9 23.7 12.0 55.8 36.3
ImgObject 18.7 12.8 24.1 44.9 33.8 61.2 64.3 22.6 15.5 55.5 41.4
ImgObjLoc 18.6 13.5 25.9 46.8 35.7 62.2 65.7 23.0 16.7 56.5 43.2

re
fe

re
nc

e Image-only 27.8 13.2 17.2 55.2 39.3 57.3 50.2 30.8 14.6 67.8 46.6
ImgObject 22.6 15.7 22.4 59.6 44.3 66.9 69.0 25.1 16.7 68.8 51.0
ImgObjLoc 24.9 17.4 23.6 60.2 47.3 68.6 70.3 28.4 19.7 67.4 53.3

Table 2: Role prediction accuracy on the Flickr30k Roles test data and on its human corrected subset.

tor from the fully connected fc7 layer. To transform
the feature vectors into the visual–frame-semantic
embedding space, we use two two-layer networks
which are composed of a layer with rectified lin-
ear activation units (relu) followed by a layer with
tanh activations (see Fig. 3, top left). We further-
more concatenate the first hidden layer (relu layer)
of each image region (i.e., box) with a vector of
contextual features (relative box size and location,
Equ. 5).

Frames and roles, in turn, are encoded as one-
hot vectors and mapped to randomly initialized
embedding layers, which are then transformed into
the visual–frame-semantic representations using
tanh activation layers (Fig. 3, bottom). We use the
cosine similarity to quantify visual-frame–semantic
correspondences in the cross-modal space (Equ. 1).

Throughout our experiments we compare our
model (ImgObjLoc), which takes into account the
contextual features (Equ. 5), to a model that does
not use contextual box features (ImgObject), and
one that only uses the image as visual input (Image-
only). Image-only derives its cross-modal role
representation by augmenting both, the image and
the box input layers with the image’s fc7 feature
vector.

The network parameters were optimized using
AdaGrad (Duchi et al., 2011) with a learning rate
of 0.003. We monitored the role prediction perfor-
mance on the validation set of Flickr30k Roles and
kept the best performing model. See Appendix A.1
for further details on the model hyperparameters.

5.1 Exp.1: Semantic Role Prediction and
Local Grounding

In the role prediction evaluation, the model is given
an image and a bounding box, which represents a
candidate role filler, and needs to predict the frame
and role which the entity (or entities) in the box

fills.
In the grounding experiment, the model is given

an image, a frame and an associated role which is
realized in the image, and needs to determine the
correct role filler from a list of boxes. We report
results on using ground truth boxes as well as box
proposals, extracted with selective search (Uijlings
et al., 2013). Regarding the latter, we apply the
intersection over union (IoU) metric (e.g., Ever-
ingham et al. (2010)), and consider a role to be
grounded in the correct box proposal r̃ if the area
of overlap between r̃ and the reference box, divided
by the area of their union, exceeds 50%.

Results We report top-1 and top-k accuracy
(i.e., the frame and role is among the top-k scored
predictions) on the Flickr30k Roles test and refer-
ence sets for both subtasks (recall that Flickr30k
Entities provides ground truth alignments between
entity mentions and objects).

Table 2 gives the results on role prediction with
ground truth bounding boxes (i.e., for all entities
which fill at least one semantic role). We report the
accuracy for predicting the correct frame and role
(columns fr.role), for predicting the correct frame
(columns frame), and the correct role regardless
of its frame (columns role; e.g., a prediction of
STATEMENT.Speaker would be considered correct
even if the reference was SPEAK ON TOPIC.Speaker).
We further give results for the coarse frame types,
where verbs are stripped off the frame labels
(i.e., STATEMENT-speak is STATEMENT). Since the
role prediction performance is equal for both frame
types, we report the results for the fine-grained
frames only.

As Table 2 shows, the models which use partic-
ipant representations extracted from the relevant
image regions (ImgObject and ImgObjLoc) per-
form better than Image-only which considers the
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Fine-grained frame types Fine-grained frame types
top-1 pred. filler top-3 pred. fillers top-1 pred. filler top-3 pred. fillers

frame fr.role role frame fr.role role frame fr.role role frame fr.role role

te
st

se
t Random

gt

37.7 23.6 25.3 70.8 56.5 59.4

pr
op

s 5.5 3.7 4.1 15.7 10.6 11.6
ImgObject 55.9 55.1 58.0 83.2 84.0 78.7 10.5 11.3 11.7 21.8 21.4 21.2
ImgObjLoc 56.6 56.6 59.4 83.1 85.1 79.7 11.5 12.8 13.3 22.3 22.6 22.5

re
fe

re
nc

e Random
gt

54.7 25.7 25.7 91.7 65.5 65.5

pr
op

s 8.1 3.8 3.8 22.9 11.8 11.8
ImgObject 78.9 62.1 62.1 95.8 88.2 83.6 13.7 12.8 12.8 39.6 30.9 28.2
ImgObjLoc 80.8 63.9 63.9 97.9 91.8 86.4 18.6 16.9 16.9 43.8 35.5 34.6

Table 3: Role grounding accuracy on the Flickr30k Roles test data and on its human corrected subset. Instances
with less than 2 (for top-1) or 3 (for top-3) gt filler candidates were discarded.

PathLSTM Roles
high prec. Ingestor Source

Carrier Speaker

low prec. Body part Activity Seller

Buyer Manner Purpose

Table 4: Roles which were most difficult to predict by
ImgObjLoc, in the order of their total frequency in the
reference set (top left to bottom right), distinguished by
the prediction precision of PathLSTM.

global image only, except for the top-1 frame pre-
diction. This indicates that the two models are able
to learn useful role-specific visual representations.
Contextual features in the form of the relative size
and location of a region (cf. Equ. 5) seems to be
also beneficial, due to ImgObjLoc yielding the
overall best results.

These features are furthermore beneficial for
role grounding in automatically selected bounding
boxes: When using automatically selected boxes,
ImgObjLoc is significantly more effective than
ImgObject in all settings (rows props, right block
in Table 3). The Random baseline, which assigns
each role randomly to a box in the image, performs
unsurprisingly worst.

Interestingly, the models perform substantially
better on the reference set than on the noisy test set
(top and bottom blocks in Tables 2,3).6 This indi-
cates that they were able to generalize over wrong
role-filler pairs in the training data, and are able
to make correct predictions even for erroneous in-
stances (see the qualitative analysis below). When
assuming that the correct frame has been identi-
fied (columns gt fr.), the best role prediction ac-

6The accuracy scores on the uncorrected instances in the
reference set yield comparable or worse accuracy scores than
those on the test set, except for the top-5 predicted frames.

curacy reaches 70.3% on the reference set, and
grounding accuracy with box proposals is at 35.5%
(ImgObjLoc, Tables 2,3, respectively).

Finally, frame prediction proves to be a diffi-
cult task, especially for fine-grained frame types
(e.g., BEING LOCATED-sit ; left block in Table 2).

Qualitative Analysis Notably, our analysis re-
vealed that ImgObjLoc could correctly predict
roles for cases in which PathLSTM failed, espe-
cially for highly visual entities (e.g., performance
vs. location, goal vs. path). Overall, ImgOb-
jLoc was often able to identify location roles which
PathLSTM had missed, but may confuse the spe-
cific labels (e.g., area vs. path or location) for
reasons discussed below. See Figure 6 for the recall
of ImgObjLoc on the reference set for individual
roles (top-20).

In an error analysis of the predictions of Im-
gObjLoc we identified several classes of errors.
Typical errors in role prediction were in cases
in which an image region contained multiple ob-
jects, and the system predicted a label for an ob-
ject which was occluded by the target or vice
versa (e.g., ingestibles vs. source; clothing

vs. wearer or body part; path vs. area). We
found that this error was propagated from noise in
the training data. Table 4 shows the roles which
were most difficult to predict by ImgObjLoc, and
which the textual SRL system (PathLSTM) could
predict with a high precision (top; as calculated
from the human annotations, cf. Section 4), or with
a low precision (bottom), respectively. As may be
expected, among these are also highly non-visual
roles, such as manner and purpose.

Other noise propagated from the training
data was caused by wrong frame predictions
of PathLSTM (e.g., TRAVERSE-pass instead of
BRINGING-carry; CONTAINING-hold .contents vs. IN-
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Figure 6: Prediction recall of ImgObjLoc on the refer-
ence set for the top-20 roles, ordered by their frequency.

GESTION.ingestibles). Frequent patterns of in-
correct frame predictions were furthermore a fail-
ure of the system to distinguish between fine-
grained frames (e.g., BEING LOCATED-sit vs. -lie or
SELF MOTION-walk vs. -run), or between motion and
non-motion actions (e.g., POSTURE vs. SELF MOTION).

Finally, we observed that often the reference
did not contain an actually valid frame which
had been predicted by the system for an im-
age, due to different levels of frame speci-
ficity, i.e., the output of ImgObjLoc was more
specific (e.g., ASSISTANCE-help.helper vs. WEAR-

ING.wearer; OPERATE VEHICLE-ride.vehicle vs. PER-

CEPTION ACTIVE-look .location of perceiver) or it
was more general (e.g., WEARING.wearer vs. IMPACT-

hit .impactor).

5.2 Exp.2: Visual Verb Sense Disambiguation

We evaluate the effectiveness of the frame-semantic
image representations that can be extracted with
our ImgObjLoc model on the VerSe (visual Verb
Sense disambiguation) dataset (Gella et al., 2018).
It covers 90 verbs and 163 senses used to annotate
3, 510 images. We follow the supervised method
applied in (Gella et al., 2018), divide VerSe into
training and test data, and train logistic regression
classifiers for sense prediction on 19 motion verbs
and 19 non-motion verbs (those which have at least
20 images and at least 2 senses). Input to the sense
classifiers are the frame-semantic image represen-
tations (second top cross-modal layer in Fig. 3)
of the VerSe images, which we extract with the
ImgObjLoc model, trained on Flickr30k Roles.

Table 5 gives the mean accuracy obtained on the
test data (of 100 runs). Our ImgObjLoc vectors
outperform all comparison models on motion verbs,
including CNN-based image features and the best-

Features Motion Non-motion
Random 76.7 ± 0.86 78.5 ± 0.39

MFS+ 76.1 80.0
CNN+ 82.3 80.0
Gella–CNN+O+ 83.0 80.0
Gella–CNN+C+ 82.3 80.3
CNN (reproduced) 83.1 79.8 ± 0.53

ImgObjLoc 84.8 ± 0.69 80.4 ± 0.57

Table 5: Sense prediction accuracy for motion (left)
and non-motion verbs (right) using different image
representations. + marks results taken from Gella et
al. (2018). MFS is the most frequent sense heuristic.

performing models of (Gella et al., 2018), namely
Gella–CNN+O and Gella–CNN+C (CNN features
concatenated with predicted object labels and im-
age captions, respectively). On non-motion verbs,
the best models, including our own, perform only
comparably to the most frequent sense heuristic.
Note that we examine the simplest representation
ImgObjLoc can yield, i.e., frame-semantic repre-
sentations for individual images. More complex
representations are left for future work. See Ap-
pendix A.3 for examples.

6 Conclusions

We addressed the task of grounding semantic roles
of frames which an image evokes in the correspond-
ing image regions of its fillers. We found that our
model can be trained without the need of manual
role annotations of image data, and that the frame-
semantic image representations it learns can be
used for related tasks. Encouraged by our find-
ings, future work includes the exploration of the
model and its learned frame-semantic representa-
tions for tasks such as the interpretation of multi-
modal scenes and stories and referring expressions.
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Algorithm 1 vSRL algorithm which grounds
each semantic role e of a frame f∗ in at most
one region r ∈ Ri of image i. s(.) denotes
the visual-frame–semantic correspondence score
(Equation (1)).
Require: a frame f∗ for image i, Ri // Equ. (6)
Si,f∗ ← ((s(i, r, f∗, e), r, e) : r ∈ Ri, e ∈ Ef∗),
sorted in descending order of s(.)
Ai,f∗ ← ∅, grounded realization of f∗

for all (s, r, e) ∈ Si,f∗ do
if (r, .) /∈ Ai,f∗ ∧ (., e) /∈ Ai,f∗ then

Ai,f∗ ← Ai,f∗ ∪ {(r, e)}
end if

end for
return Ai,f∗

set of Flickr30k Roles and kept the best performing
model, which was obtained after about 20 epochs
for each model. For all models, the first visual
hidden layer has 1000 dimensions, and all other
layers have 250 units. The margin M (Equation 4
in the main paper) was set to 0.3, and K = 10 neg-
ative frame-role examples were sampled for each
training instance.

A.2 Model: vSRL

The full vSRL task requires, given an im-
age i, the computation of the set Ai,f of
role-object pairs which comprises the seman-
tic roles of a frame f grounded to their fillers,
i.e., Ai,f = {(r, e)|r ∈ Ri, e ∈ Ef}. Using our
model, we first determine the frame f∗ which im-
age i evokes on the basis of all role-filler predic-
tions, i.e.,

f∗ = arg max
f∈F

∑
{r∈Ri,e∈Ef}

s(i, r, f, e) (6)

We then apply a simple algorithm (Algorithm 1)
which chooses the filler–role pairs with maxi-
mum similarity from the set Si,f∗ of all scored
frame-specific filler-role pairings for image i given
frame f∗ (cf. Equation 1 in the main paper), such
that every role is grounded in at most one region,
and every region fills at most one role (line 6, Al-
gorithm 1).

A.3 Examples for VSD

Figure 7 shows example images of non-motion
verbs for which ImgObjLoc achieved a high (serve,
95%) and a low accuracy (reach, 50%), their

serve (95%):
dish out, hand out
something, often food
sys: 3

serve (95%):
put a ball into play
sys: 3

reach (50%)
extend physically/by
influence
sys: 3

reach (50%)
extend physically/by
influence
sys: 3

reach (50%):
gt: pass or transfer
something
7sys: attain/arrive at
a state, real or abstract

reach (50%):
gt: pass or transfer
something
7sys: extend physi-
cally/by influence

Figure 7: VSD: Example images of non-motion verbs,
their verb senses (gt) and our system’s predictions (sys).

ground truth senses (gt) and the predictions of Im-
gObjLoc (sys).


