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Abstract

English part-of-speech taggers regularly make
egregious errors related to noun-verb ambigu-
ity, despite having achieved 97%+ accuracy on
the WSJ Penn Treebank since 2002. These
mistakes have been difficult to quantify and
make taggers less useful to downstream tasks
such as translation and text-to-speech synthe-
sis. This paper creates a new dataset of over
30,000 naturally-occurring non-trivial exam-
ples of noun-verb ambiguity. Taggers within
1% of each other when measured on the WSJ
have accuracies ranging from 57% to 75%
accuracy on this challenge set. Enhancing
the strongest existing tagger with contextual
word embeddings and targeted training data
improves its accuracy to 89%, a 14% absolute
(52% relative) improvement. Downstream, us-
ing just this enhanced tagger yields a 28% re-
duction in error over the prior best learned
model for homograph disambiguation for text-
to-speech synthesis.

1 Introduction

Whether a word is functioning as a noun or a verb
in a particular linguistic context critically affects
the output of tasks including translation and text-
to-speech synthesis. The English word close may
be translated as either nah (adjective/non-verb) or
schließen (verb) (example from Sennrich and Had-
dow (2016)). In text-to-speech, the homograph
lives is pronounced /laIvz/ (noun) or /lIvz/ (verb;
example from Sproat et al. (1992)).

While downstream applications require taggers
be sensitive to non-local linguistic context, it is
difficult to measure such sensitivity with current
tagging evaluation. In the past 15 years since
Collins (2002), many models have accuracy ex-
ceeding 97% when measured on the WSJ Penn
Treebank, which is within the level of human
inter-annotator agreement for the corpus. Incorpo-

rating non-local context via sentence-based repre-
sentations (Collobert et al., 2011) or state-of-the-
art contextual representations of tokens (ELMo,
Peters et al. (2018)) yields the same tagging ac-
curacy as Collobert et al.’s limited window-based
representation (97.3%). However, existing local
models “regularly make egregious errors” (Man-
ning, 2011), notably on imperative detection1.
That is, the applicability of the part-of-speech la-
beling task is limited by its standard evaluation not
reflecting difficult cases which require contextual
reasoning to resolve ambiguity.

In this paper, we address this mismatch by cre-
ating a targeted intrinsic evaluation: a challenge
dataset of over 30,000 naturally-occurring non-
trivial examples of noun-verb ambiguity spanning
multiple domains and containing many impera-
tives that non-expert humans can annotate with
high agreement (Section 2). We will publicly re-
lease both the training and evaluation data2.

We further contribute a series of modeling ex-
periments on this data. We first show that state-
of-the-art taggers perform poorly on this challenge
(Table 1) and then investigate two simple and or-
thogonal approaches to enhancing a state-of-the-
art tagger: incorporating generic contextual em-
beddings trained on billions of words, and incor-
porating thousands of examples of training data
targeted for this task. Both of these approaches
yield large and complementary improvements: the
combined methods give an accuracy of 89.1%, a
14% absolute improvement over a state-of-the-art
tagger and a 31% absolute improvement over the
widely used Stanford tagger. Section 3 provides an
overview of the investigated taggers, experiments,
and results.

1In experiments with recipe data in Kiddon et al. (2015),
an unsupervised system had an F1 score over 20% higher in
absolute terms than supervised taggers.

2http://goo.gl/language/noun-verb

http://goo.gl/language/noun-verb
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Model WSJ NV
Existing Taggers
Toutanova et al. (2003) 97.24 57.6
Choi (2016) 97.64 71.2
Dozat et al. (2017) 97.33 70.4
Bohnet et al. (2018) 98.00±.12 74.0±1.2
Enhancements

+ELMo 97.94±.08 82.1±0.9
+NV Data 97.98±.11 86.4±0.4
+ELMo+NV Data 97.97±.09 88.9±0.3

Table 1: Empirical Results. All investigated new
and existing taggers are within 1% of each other
when measured on the WSJ test set. When evalu-
ated on the Noun-Verb dataset, however, existing
taggers range from 57% to 74%. Adding enhance-
ments to the Bohnet et al. (2018) tagger gives
over 14% absolute improvement. Best results and
results insignificantly different from the best are
bolded (two-tailed t-test).

Finally, we demonstrate that these tagging im-
provements make a positive impact on the down-
stream task of homograph disambiguation for text-
to-speech (Section 4).

2 Noun-Verb Dataset

Consider the ambiguous examples below:

(1) Certain insects can damage plumerias,
such as mites, flies, or aphids. NOUN

(2) Mark which area you want to distress.
VERB

All tested existing part-of-speech taggers (Table 1)
mistag both of these examples, tagging flies as a
verb and Mark as a noun3. Looking at only the
WSJ Penn Treebank, all occurrences of Mark are
nouns, so a part-of-speech tagger that ignores con-
text completely could appear to do quite well on
this word type. Similarly, all occurrences of the
word type share in the WSJ development set are
noun instances.

A baseline of selecting the most frequent tag per
word type (ignoring all context) achieves 93.0%
accuracy on the ambiguous tokens in the WSJ (Ta-
ble 2). A simple tagger based on a single hidden
layer feed-forward neural network with 128 units
that uses a three word window around the focus

3The enhanced tagger that uses both contextual word em-
beddings and data augmentation (+ELMo+NV Data in Table
1) gets both Example (1) and Example (2) correct.

Type NN ±3
Train Dev Majority Words
WSJ:NV WSJ:NV 93.0 97.0
NV NV 70.1 77.6

Table 2: Taggers that use no context (Type Ma-
jority) or very little context (NN ±3 words) can
achieve high accuracies on the ambiguous tokens
in the WSJ (WSJ:NV), but would fare much worse
on the Noun-Verb dataset.

token as features achieves an accuracy of 97.0%
on the WSJ ambiguous words (WSJ:NV).

We therefore aim to create a dataset in which
taggers would have to take into account the sur-
rounding context in order to correctly tag ambigu-
ous words, rather than relying on skewed priors
per word type. We design a methodology for iden-
tifying and labeling hard cases of noun-verb am-
biguity. The result is a dataset of over 30,000
hand-labeled, natural, and non-trivial examples of
noun-verb ambiguity, which we will make pub-
licly available to facilitate research on modeling
for this task.

2.1 Collection Methodology
Our goal is to build a resource which captures a
wide range of challenges that a part-of-speech tag-
ger needs to handle in the wild. To produce this
resource, we find large sources of naturally occur-
ring examples with a diversity of challenges, iden-
tify noun-verb ambiguity, find the non-trivial ex-
amples, and finally acquire high-precision labels
from humans.

2.1.1 Naturally Occurring Sources
All examples come from naturally occurring En-
glish web text from three distinct genres. Typical
examples from each are shown in Table 3. These
genres present a diverse range of challenges: genre
1 has long well-edited sentences, genre 2 makes
heavy use of imperative verbs, and genre 3 con-
tains largely headline style short sentences.

2.1.2 Ambiguous Token Detection
We used an online dictionary to identify ambigu-
ous word types (such as play) that can be either
a noun or a verb.4 To find ambiguous instances
of these types, we ran a CRF-based tagger simi-
lar to Toutanova et al. (2003) over the input sen-

4We exclude a short stop list (do, name, state); the final
list contains 24,170 word types.
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Representative Examples Label
Genre 1

“Man With a Vision” peaked at #91 in the UK, spending two weeks on the chart. NOUN
40.7% of the population benefit from public assistance as of 2004, up from 23.0% VERB
in 2000.

Genre 2
Your doctor may recommend a diet or exercise routine. NOUN
Use within 3 days of cooking. VERB

Genre 3
Safeguard Infrastructure From Electrical Surges & Limit Downtime. NOUN
Stop In Today Or Shop Online! VERB

Table 3: Noun and Verb examples from each genre. All examples are taken from the development set.

tences. We selected tokens tagged as either a noun
or a verb5 and for which the k-best list for that to-
ken contained both noun and verb6 tags with close
scores. We used a heuristic that the lower scoring
tag had to have a score within 20% of the score of
the higher.

2.1.3 Filtering Trivial Examples
Part-of-speech tagging is already a well-
established task with plenty of existing labeled
examples. Adding more examples similar to
John watched a play would not affect the output
predictions of taggers, which already tend to
correctly label tokens as nouns if they follow
determiners. Inspired by work on active learning
(Tomanek and Hahn, 2009; Small and Roth,
2010), we focused our data collection efforts
on difficult examples. To remove easy contexts,
we excluded tokens preceded by a determiner or
modal verb. Tokens7 were additionally restricted
to be neither adjectival modifiers8 nor components
of noun-compounds9.

2.1.4 Diversification
Noun-verb disambiguation is a challenge for mod-
ern POS taggers both because words can look si-
multaneously noun- and verb-like to a model, but
also because verbs (nouns) can falsely present as
nouns (verbs). Our extraction methodology is

5Nouns and verbs were identified by mapping the
fine-grained part-of-speech tag to its coarse-grained
category (Petrov et al., 2012): https://github.
com/slavpetrov/universal-pos-tags/blob/
master/en-ptb.map

6We excluded VBN from the set of verb tags, as it often
functions more similarly to non-verbs

7Specifically, non-sentence initial tokens
8Labeled as amod according to a dependency parser
9Labeled as nn according to a dependency parser

Agreement Type # %
Unanimous 23,908 71.4%
Majority 9,122 27.3%
Disagreement 432 1.3%

Table 4: Inter-annotator agreement rates. Unani-
mous examples had 3/3 agreement, while majority
examples had 2/3, 3/5, or 4/5 in agreement.

well-designed to identify the former. To identify
tokens on which models are falsely confident, we
manually reviewed a sample of tokens discarded in
extraction. We found that sentence-initial impera-
tive verbs were very likely to be confidently tagged
as nouns. To ensure that this important class of
ambiguous tokens was included in our dataset, we
made it a special extraction case and did not apply
the above filters for trivial examples.

2.1.5 Crowdsourced Annotation
We presented annotators with the extracted to-
kens in their full sentence context. Annotators
were asked to select whether the target word was
a “Noun”, a “Verb”, “Ambiguous”, or “Neither”
(a noun or a verb). Full annotation guidelines
will accompany the dataset release. Each exam-
ple was annotated by at least three annotators for
quality assurance. For batches with larger than av-
erage proportions of non-unanimous annotations,
the non-unanimous examples were sent to an ad-
ditional two annotators for a total of five annota-
tions. Table 4 shows that annotators generally had
a high level of agreement with each other, with
unanimous agreement on 71.4% of the examples
and majority agreement on 98.7% of the exam-
ples. Annotators achieved an average pace of 40
seconds per sentence.

https://github.com/slavpetrov/universal-pos-tags/blob/master/en-ptb.map
https://github.com/slavpetrov/universal-pos-tags/blob/master/en-ptb.map
https://github.com/slavpetrov/universal-pos-tags/blob/master/en-ptb.map
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Genre Train Dev Test
1 8621 1081 2711
2 6160 919 2289
3 9473 400 1000
All 24254 2400 6000

Table 5: Noun-Verb dataset statistics.

2.2 Final Dataset

To compile the final dataset, we rejected exam-
ples in which there was no majority agreement
or in which the majority label was “Ambiguous”
or “Neither”. This excluded 808 sentences and
yielded a final dataset size of 32,654. We divided
this into training, development, and test sets. Table
5 shows the dataset sizes and genre distributions.
The genre distribution of the training set is inten-
tionally different from that of the development and
test sets, as realistically one will often have differ-
ent distributions at training and test time, and fu-
ture work may want to model this difference (Don-
mez et al., 2010; Steinhardt and Liang, 2016).

We asked a professional linguist to indepen-
dently label 200 examples and adjudicate any dif-
ferences from the crowd-sourced labels with other
professional linguists. The linguists found only 7
actual mistakes (3.5% of examples). Of the re-
maining 96.5% plausible annotations, the linguist
agreed with the crowd in 167 cases (83.5%), and
found 26 disparities between PTB-style guidelines
and plausible intuitive judgments (13%). All but
one of the disparities involved a word ending in
“ing” inside a noun phrase, such as “Manufactur-
ing defects”). Also, all but two of the disparities
were cases which the crowd source annotators la-
beled as nouns while the PTB-style guidelines la-
beled as verbs.

While humans can do well on these instances,
Table 2 shows that baseline taggers that use little
or no context have high error rates on this dataset,
in contrast to the WSJ.

3 Empirical Evaluation of Taggers

In this section, we demonstrate empirically the
limitations of several existing taggers on the new
challenge dataset. We then take the most accu-
rate, Bohnet et al. (2018), and investigate how it
can be enhanced to be much more discriminative
in ambiguous contexts. We finish with some error
analysis to inspire future work.

3.1 Experimental Setup
Training All experiments used the standard
splits of the WSJ Penn Treebank and the new
Noun-Verb dataset. Specifically, WSJ Sections 2-
21 were used to train all models; where indicated,
this was augmented with the training portion of the
Noun-Verb dataset. Neural models (Dozat et al.
(2017), Bohnet et al. (2018), and extensions) used
WSJ Section 22 for early stopping, and were run
with n = 10 random restarts to compute standard
deviations.

Evaluation Models are evaluated on the Noun-
Verb test set. The development set was used for
developing the proposed enhancements, as well as
to do error analysis. To verify performance on the
standard task, we also evaluate accuracy on WSJ
Section 23, cf. Table 1 first column.

Our evaluation metric is VERB/NON-VERB
classification accuracy over tokens which have
gold annotations. To evaluate the taggers we
map the fine-grained tag output using Petrov et al.
(2012): tags with a coarse-grained VERB category
map to the VERB label, and all other tags to the
NON-VERB label.

3.2 Existing Taggers
We evaluated four commonly used and/or state-of-
the-art taggers on our task. The first investigated
tagger is the Stanford POS tagger10 (Toutanova
et al., 2003), part of the Stanford CoreNLP Toolkit
(Manning et al., 2014) and widely used. This pre-
trained model is a log-linear model with features
over the surrounding words and tags in a local win-
dow around the focus word.

The second investigated tagger is the pub-
licly available NLP4J, a pre-trained tagging model
(Choi, 2016)11. It used feature induction to expand
the feature set during training by adding combina-
tions of low-dimensional features. The approach
achieved 97.64% on WSJ evaluation. It is worth
noting that this model used a large automatically
tagged corpus to get ambiguity classes for each
word and Choi (2016) showed that this extra piece
of information was responsible for the largest part
of the improvement.

The third tagger is Dozat et al. (2017), which
won the UPOS portion of the CoNLL 2017 Shared
Task on Universal Dependencies (Zeman et al.,

10https://nlp.stanford.edu/software/
tagger.shtml

11https://github.com/emorynlp/nlp4j

https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/tagger.shtml
https://github.com/emorynlp/nlp4j
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2017) by a wide margin. It represents each word
by a sum of its pretrained word embedding (glove
Pennington et al. (2014)), trained word embed-
ding, and the output from an LSTM runs over
word’s characters. Those representations are sup-
plied to a deep BiLSTM followed by a Multi-
Layer Perceptron (MLP) layer. The output from
the MLP layer is multiplied by a learned embed-
ding for tags and the tag with the highest score is
selected as the output.

Finally the fourth existing tagger is the Meta-
BiLSTM (Bohnet et al., 2018) which is the cur-
rent state of the art on both WSJ and CoNLL
2017 POS tagging evaluation. This model con-
sists of three components, all of which run over
the entire input sentence: a word-BiLSTM that
takes a sum of pretrained (GloVe (Pennington
et al., 2014)) and trained word embeddings, a char-
BiLSTM that consumes trained characters embed-
ding and a Meta component that takes a concate-
nation of word and character representations (at
word boundaries) and feeds it to a Bi-LSTM fol-
lowed by a MLP layer. The final output is com-
puted using softmax over the Meta-MLP represen-
tation but a multi-loss is also optimized at the char
and word representations level.

For Dozat et al. (2017) and Bohnet et al. (2018),
we trained the model on WSJ PTB training data to
get comparable models to the two previous sys-
tems. For Dozat et al. (2017) we used the default
hyperparameters. For Bohnet et al. (2018), the
hyperparameters used are almost identical to the
original paper.12

The first two taggers are linear models (with
feature combinations) while the second two are
neural models. Both Dozat et al. (2017) and
Bohnet et al. (2018) take non-local context into
account through BiLSTMs over the full sentence.
However, these models might not use this model-
ing power when trained on the WSJ, since local
context is usually sufficient (Table 2).

3.3 Enhancements

We take the best existing tagger (Bohnet et al.,
2018) as our starting point to investigate the ef-
ficacy of two simple enhancements and their com-
bination for improving noun-verb disambiguation.

The first enhancement is to add generic, contex-

12Two hyperparameter differences: we used two layers in-
stead of three for the word component and a learning rate de-
cay of 0.99994 instead of 0.999994. These were fixed early
on and not tuned.

tual word embeddings trained on a billion words
of language modeling data (Peters et al., 2018).
The second enhancement is to add task-specific
targeted training data, with thousands of examples
derived from the Noun-Verb training set.

Contextual Word Embeddings (ELMo) The
statistics of the new dataset, shown in Table 2,
suggest that this dataset might benefit from more
contextual modeling. Although the basic Meta-
BiLSTM model is already contextual, one can sus-
pect based on the first row in Table 2 that WSJ
training might lead the model to ignore wider con-
text. One way to make the model use more con-
textual information is to replace the word embed-
ding layer with a contextual embedding. We used
ELMo embeddings (Peters et al., 2018), which
are generated by training a bi-directional language
model on a large corpus of unlabeled data. The
aim of using ELMo here is that we expect to get
different embeddings for a word like “play” when
it is used as a verb, as in “I will come and play”,
versus when it is used as a noun, as in “I liked the
two-act play”.

We replaced the word embedding layer in the
Word component with ELMo.13 As in Peters et al.
(2018), we trained a task specific weighting of the
three ELMo layers:

v(word)
i = γ

2∑
j=0

sjh
ELMo
i,j , (1)

where hELMo
i,j is the j-th layer ELMo embedding

of word i, sj are softmax-normalized weights over
the layers, and γ is a scalar parameter. We trained
this model on the WSJ training data only.

Targeted Data Augmentation (NV Data) Our
Noun-Verb training data comes with gold binary
labels (“Noun” or “Verb”). To add them to our
current model, we took a simple approach to map
the Noun-Verb labels into the fine-grained POS
tagset used in the WSJ dataset. To do that, we
ran the baseline tagger used to extract the anno-
tated examples in §2.1 over the Noun-Verb train-
ing data, and extracted all possible tags for the
annotated words, sorted by their score. We then
assigned to that word the highest scoring tag con-
sistent with the coarse-grained tags. This resulted
in a silver training dataset containing partially la-
beled sentences, each with one word tagged by its

13We used the “Original” model from https://
allennlp.org/elmo.

https://allennlp.org/elmo
https://allennlp.org/elmo


2567

Model SI ¬ SI
Majority class per word 74.6 69.3
type using Noun-Verb
training set

Existing Taggers
Toutanova et al. (2003) 47.4 59.6
Choi (2016) 67.8 71.0
Dozat et al. (2017) 68.3 70.7
Bohnet et al. (2018) 68.4±4.0 74.4±0.9
Enhancements

+ELMo 73.4±2.2 82.1±1.0
+NV Data 89.3±0.5 85.4±0.5
+ELMo+NV Data 90.0±0.8 87.6±0.6

Table 6: Development set accuracies on sentence
initial (SI) tokens compared with non-sentence-
initial (¬SI) tokens.

fine-grained POS tag. We used this dataset to aug-
ment the WSJ training data. Since the Noun-Verb
examples only contain one labeled token per sen-
tence, we assigned the unlabeled tokens a cost of
zero in the cost function at training time.

ELMo and Data Augmentation Together Fi-
nally, we experimented with using both enhance-
ments together. We trained the ELMo-enhanced
model on the dataset augmented with the Noun-
Verb training set examples. The motivating in-
tuition for combining them is that the inclusion
of the difficult Noun-Verb training set examples
could encourage the model to make more use of
ELMo embeddings than the model trained on the
WSJ only. Another possibility is that these two
types of enhancements are redundant and that one
dominates the other.

3.4 Results

Table 1 shows the main results of both existing
taggers and the enhanced models on both WSJ and
the Noun-Verb Challenge Set.

Existing Taggers While all four selected tag-
gers achieve accuracies above 97% on WSJ, they
all struggle on our noun-verb challenge (Table 1).
The widely used tagger of Toutanova et al. (2003)
has an accuracy of just 57.6%, below the 70.1%
accuracy of a per-word type majority class base-
line (Table 2). The best performing tagger (Bohnet
et al., 2018) was 3.9% above the next best model.
However it still has an error rate of 25%.

The ranking of the four taggers stays the same

whether one uses the WSJ or the Noun-Verb Chal-
lenge Set for evaluation. However, the magnitude
of differences changes drastically. For example,
on the WSJ test set, the differences between Dozat
et al. (2017) and Toutanova et al. (2003) appear
insignificant: Dozat et al. (2017) improves over
Toutanova et al. (2003) by 0.09% absolute (3%
relative reduction in error). When measured on
the Noun-Verb Challenge Set, the differences are
stark: the tagger of Dozat et al. (2017) is 12.8%
absolute more accurate, which is a 30% relative
reduction in error.

Enhancements Experimental results in Table 1
show that ELMo gave 7.2% absolute improvement
and did not significantly affect the WSJ results14.
This is further evidence that WSJ evaluation does
not model ambiguities in cases where context mat-
ters. Adding the silver Noun-Verb data to the
baseline model gave 10% absolute improvement
over the baseline. This is significant given that the
model capacity remained unchanged. By contrast,
hooking up ELMo added a very large multi-layer
BiLSTM language model to the parameters.

The best model was the model which used both
ELMo embeddings and data augmentation. It
achieved 13.1% absolute improvement over the
state-of-the-art baseline of Bohnet et al. (2018),
equivalent to over a 52% error reduction. This
demonstrates that the improvement from ELMo is
complementary to that from the additional Noun-
Verb data.

Sentence-Initial Examples The trend in Table 1
is magnified in Table 6, which shows develop-
ment set accuracies separately for tokens that are
sentence-initial (SI), which are often imperatives,
and for tokens that are not SI.

On SI accuracy, none of the WSJ-trained base-
lines could beat the most-frequent-tag baseline
from the Noun-Verb training data. This shows
that these sorts of examples, which are mostly im-
peratives, are underrepresented in the WSJ cor-
pus. ELMo embeddings were able to improve
both SI and non-SI accuracies by roughly the same
amount, but again, not as much as adding the
Noun-Verb data, which gave a 21.7% boost to SI
accuracy. The efficacy of the Noun-Verb data in
this case shows that directed training examples can

14We also ran the experiment using the “Original (5.5B)”
ELMo model, trained on a larger and more diverse corpus.
We did not find any significant difference between the two.
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Tuning Set
Model WSJ NV

WSJ Test Set
Bohnet et al. (2018) 98.00±0.12 97.98±0.13
+ELMo 97.94±0.08 97.85±0.16
+NV Data 97.98±0.11 97.94±0.14
+ELMo+NV Data 97.97±0.09 97.94±0.13

Noun-Verb Test Set
Bohnet et al. (2018) 74.0±1.2 76.9±0.6 †
+ELMo 82.1±0.9 83.4±0.5 †
+NV Data 86.4±0.4 86.8±0.4
+ELMo+NV Data 88.9±0.3 89.3±0.2 ‡

Table 7: Effect of using different tuning sets. As
usual with early stopping, the best tuning set per-
formance was used to evaluate the test set. Here,
we evaluated the same experimental runs at two
points: when the performance was best on the
WSJ development set, and again when the perfor-
mance was best on the Noun-Verb development
set. The increase in Noun-Verb results is signif-
icant at the p < 0.001(†) and p < 0.01(‡) levels.

be especially beneficial for fixing some common
error patterns.

Impact of Tuning Set Table 7 compares perfor-
mance of the same experiments on the WSJ and
Noun-Verb Challenge test sets, tuned either us-
ing the WSJ or the Noun-Verb development set.
The only effect of the change in tuning set was for
the Noun-Verb tuning to cause the early stopping
to sometimes be a little earlier. When we tuned
on the Noun-Verb development set, the WSJ re-
sults remained almost unchanged, while the Noun-
Verb test set results increased significantly. We
see that the performance on each dataset is best
when matched with its tuning data. The effect
was greatest on the unenhanced model, which im-
proved 2.9% absolute on the Noun-Verb evalua-
tion. The best overall Noun-Verb test set result
was 89.3±0.2 when tuned this way.

3.5 Error Analysis
Table 8 shows representative examples that the
best baseline run got wrong, along with the pre-
dictions from the best runs for each of the differ-
ent enhancements. While each enhancement re-
duces all error types, adding Noun-Verb data im-
proves imperatives in particular when compared
with adding ELMo. This holds true even when im-
peratives are not sentence-initial, like the practice

example in Table 8.
Of the errors made by our best model, roughly a

quarter occurred when the focus word was a con-
junction. This provides additional evidence for the
importance of modeling non-local context in this
dataset.

4 Homograph Disambiguation

To show the impact of our best models on a down-
stream task, we used the text-to-speech homo-
graph disambiguation task described in Gorman
et al. (2018). The dataset contains 161 word types,
each of which has up to three possible pronun-
ciations. In that work, the authors built a linear
model that used lexical features of the focus word
and its surrounding words, POS tags, and capital-
ization, to achieve 95.4% on this task. Here, we
want to see the effectiveness of our taggers by us-
ing just the POS tag of each word to determine
its pronunciation category. To do this, we anno-
tated the homograph disambiguation train and test
data with with POS tags using each of our taggers.
We collected counts from the training corpus of
the form <word, POS tag, word_sense, Count>.
These counts show how many times a given word
got assigned to a certain word sense when it has a
certain POS tag. We used those counts to select the
most frequent pronunciation for each <word, POS
tag> pair on the test data. Note that this approach
will miss some word senses that cannot be deter-
mined from the word and POS tag only, like the
difference in pronunciation of the word "jesus" be-
tween English: /"dZi:z@s/ and Spanish: /heI"su:s/.

Table 9 shows results for the micro and macro
accrucies among different word types in the same
way (Gorman et al., 2018) reported their results.
The overall results show similar trend to what is
observed in the Noun-Verb evaluation results. The
Choi (2016), and Bohnet et al. (2018) baseline tag-
gers perform close to the full model in Gorman
et al. (2018), which uses a wider context and more
features. This is probably due to having a stronger
POS tagger than the one used in that model. It is
also interesting to see the gap between Toutanova
et al. (2003) and the rest of baseline taggers which
was measured only on the Noun-Verb evaluation
and not in WSJ evaluation. The rest of the re-
sults show that using either ELMo achieves a 1.3%
absolute improvement over the baseline. while
adding data augmentation achieves 0.3% absolute
improvement over the baseline. Using both ELMo
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+ELMo
Example Gold Base +ELMo +Data +Data
Will gets his revenge by masquerading as Sue’s NOUN MD NNP MD NNP

hairdresser and forcibly shaving her head bald.
Will putting a patch over my eye help to get the VERB NN VB NN VB

object out of it?
If you don’t have a table, you can mount the frame NOUN VB VB NN NN

on a desk, stand, or other structure that will hold
the bike off the ground.

For best results, practice hitting one note higher VERB NN NN VB VB
than your standard range.

Spirit actually suggests unpacking their smokes by NOUN VB VB VB NN
rolling the cigarette between your fingers, filter to
end, so that a pinch or so of tobacco comes out.

Choose the highest combat level and duel. VERB NN NN NN VB

Table 8: Development set examples that reflect the types of errors the enhancements address. Base is the
tagger of Bohnet et al. (2018), while the remaining columns show the impact of the enhancements. Tags
consistent with the gold annotations are in bold and inconsistent are in italics.

Model Micro Macro
Best ML system
Gorman et al. (2018) 95.4 95.1
Existing Taggers
Toutanova et al. (2003) 91.1 91.5
Choi (2016) 95.8 95.8
Dozat et al. (2017) 94.6 94.7
Bohnet et al. (2018) 95.9±0.2 95.9±0.2
Enhancements

+ELMo 96.7±0.2 96.7±0.2
+NV Data 96.2±0.2 96.2±0.2
+ELMo+NV Data 96.7±0.3 96.7±0.3

Table 9: Accurcies of different models on the ho-
mograph disambiguation test set. All enhance-
ments’ improvements over (Bohnet et al., 2018)
baseline are statistically significant p < 0.008.
Standard deviations are estimated from n = 10
random restarts, and p-values were computed us-
ing a heteroscedastic two-tailed t-test.

and data augmentation was not better than just us-
ing ELMo. Those improvements correspond to
a 28% error reduction compared to the machine-
learned model in Gorman et al. (2018).

5 Discussion and Related Work

Dataset Creation Prior work in crowd-sourcing
syntactic annotations and using them in mod-
els motivated the dataset creation portion of this

work. Jha et al. (2010) showed that non-linguists
could reliably do aspects of syntactic annota-
tion, and Hovy et al. (2014) showed that non-
experts could annotate universal part-of-speech
tags (Petrov et al., 2012) almost as well as experts.
He et al. (2016) then showed that incorporating
crowd-sourced annotations improves parsing by a
noticeable margin on the subset of sentences in
which the human judgments affected the parser’s
output. Inspired by this result, we focused our ef-
forts on collecting annotations that were likely to
change a tagger’s predictions and humans can an-
notate reliably.

This work filtered out trivial examples via hand-
written heuristics targeted towards examples that
taggers generally get correct (Section 2.1). One
interesting direction for future work would be to
eliminate this manual step. One option could be to
instead use automatically produced high-precision
interpretable rules to filter out these examples,
such as the Anchor explanations output by Ribeiro
et al. (2018). Table 1 in that paper shows how
the system can automatically induce that a part-of-
speech tagging system will tag the word play as a
NOUN in the sentence I went to a play yesterday
because the previous word is a determiner.

Measurement Manning (2011) performed an
error analysis for WSJ and discovered that 19% of
the errors fall under "Difficult linguistics" which
need non-local context modeling to be able to
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solve them. The negative results of Kiddon et al.
(2015) on using existing supervised part-of-speech
taggers for imperative detection provided motiva-
tion for focusing on noun-verb confusion. How-
ever we are not aware of any prior work on try-
ing to measure part-of-speech-tagging accuracy on
hard ambiguities that are easily recognized by hu-
man using diverse corpora.

6 Conclusion and Future Work

This paper proposes a challenge set approach to
evaluating part-of-speech taggers, and builds a
new resource for doing so. We show that a part-of-
speech tagger can be trained to be better at noun-
verb ambiguity by using extra Noun-Verb targeted
training data or by adding contextual word em-
bedding. We also show that our evaluation data
can measure improvements in Noun-Verb disam-
biguation that standard evaluation dataset was not
able to capture. Those previously unmeasured
improvements in the Noun-Verb disambiguation
are shown to lead to improvements in a down-
stream task. Improvements were especially large
on sentence-initial tokens, which are often imper-
atives. Even with these improvements, there is
still a large gap between the noun-verb accuracies
and overall WSJ tagging accuracy. We expect that
closing this gap will make incorporating syntax
more useful across natural language understand-
ing applications.

Future work can include exploring ways to in-
corporate more context into the tagger, possibly
by using information from dependency tree. Also
investigating more downstream tasks and explore
if this dataset can be used directly in downstream
tasks in a way similar to what have been done in
Swayamdipta et al. (2017) and (Eriguchi et al.,
2017; Niehues and Cho, 2017; Kiperwasser and
Ballesteros, 2018) for injecting syntax in seman-
tic role labeling and translation tasks. A third di-
rection for research would be using this dataset to
evaluate different contextual modeling approaches
and investigate the creation and using such con-
text sensitive dataset to create simpler and smaller
models that can capture a lot of contextual word
representation.

Future work on dataset creation can include
generating similar challenge datasets for differ-
ent key ambiguities in NLP. A collection of such
datasets could be one way to cover hard exam-
ples that models do not get right but humans are

good at. Such targeted datasets can complement
the use of large unsupervised contextual embed-
ding models. This can open an avenue to improve
core NLP tasks on hard relevant ambiguities that
allows making progress on downstream tasks.

Acknowledgments

The authors gratefully acknowledge their anony-
mous reviewers for their insightful questions and
feedback. We are grateful to Alexander Clines,
Kazoo Sone, Ashwin Kakarla, Daphne Luong, and
Austin Tarango for their assistance in the creation
of the dataset. Thanks also go to members of the
Google AI Language group for their input to this
work, including Slav Petrov, Michael Collins, and
all who provided feedback in reading group ses-
sions.

References
Bernd Bohnet, Ryan McDonald, Gon¸calo Simões,

Daniel Andor, Emily Pitler, and Joshua Maynez.
2018. Morphosyntactic tagging with a meta-bilstm
model over context sensitive token encodings. In (To
Appear) Proceedings of ACL.

Jinho D. Choi. 2016. Dynamic feature induction: The
last gist to the state-of-the-art. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 271–
281, San Diego, California. Association for Com-
putational Linguistics.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8.
Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Pinar Donmez, Guy Lebanon, and Krishnakumar Bala-
subramanian. 2010. Unsupervised supervised learn-
ing i: Estimating classification and regression errors
without labels. Journal of Machine Learning Re-
search, 11(Apr):1323–1351.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
20–30, Vancouver, Canada. Association for Compu-
tational Linguistics.



2571

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
72–78, Vancouver, Canada. Association for Compu-
tational Linguistics.

Kyle Gorman, Gleb Mazovetskiy, and Vitaly Nikolaev.
2018. Improving homograph disambiguation with
supervised machine learning. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2337–2342.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
Experiments with crowdsourced re-annotation of a
pos tagging data set. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (volume 2: Short Papers), volume 2,
pages 377–382.

Mukund Jha, Jacob Andreas, Kapil Thadani, Sara
Rosenthal, and Kathleen McKeown. 2010. Corpus
creation for new genres: A crowdsourced approach
to pp attachment. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, pages 13–20.
Association for Computational Linguistics.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
982–992.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to
translation. In Transactions of the Association
for Computational Linguistics, volume 6, page
225–240.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics: system demonstrations, pages 55–60.

Christopher D Manning. 2011. Part-of-speech tagging
from 97% to 100%: is it time for some linguistics?
In International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 171–
189. Springer.

Jan Niehues and Eunah Cho. 2017. Exploiting linguis-
tic resources for neural machine translation using
multi-task learning. WMT 2017, pages 80–89.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC-2012).

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. In Proceedings of AAAI.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation, pages 83–91, Berlin, Germany. Associ-
ation for Computational Linguistics.

Kevin Small and Dan Roth. 2010. Margin-based active
learning for structured predictions. International
Journal of Machine Learning and Cybernetics, 1(1-
4):3–25.

Richard Sproat, Julia Hirschberg, and David Yarowsky.
1992. A corpus-based synthesizer. In Second Inter-
national Conference on Spoken Language Process-
ing.

Jacob Steinhardt and Percy S Liang. 2016. Unsuper-
vised risk estimation using only conditional inde-
pendence structure. In Advances in Neural Infor-
mation Processing Systems, pages 3657–3665.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A Smith. 2017. Frame-semantic parsing with
softmax-margin segmental rnns and a syntactic scaf-
fold. arXiv preprint arXiv:1706.09528.

Katrin Tomanek and Udo Hahn. 2009. Semi-
supervised active learning for sequence labeling. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 1039–
1047. Association for Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,



2572

Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martínez Alonso,
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