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Abstract

Referring to entities in situated dialog is a col-

laborative process, whereby interlocutors of-

ten expand, repair and/or replace referring ex-

pressions in an iterative process, converging

on conceptual pacts of referring language use

in doing so. Nevertheless, much work on ex-

ophoric reference resolution (i.e. resolution of

references to entities outside of a given text)

follows a literary model, whereby individual

referring expressions are interpreted as unique

identifiers of their referents given the state of

the dialog the referring expression is initiated.

In this paper, we address this collaborative na-

ture to improve dialogic reference resolution

in two ways: First, we trained a words-as-

classifiers logistic regression model of word

semantics and incrementally adapt the model

to idiosyncratic language between dyad part-

ners during evaluation of the dialog. We then

used these semantic models to learn the gen-

eral referring ability of each word, which is

independent of referent features. These meth-

ods facilitate accurate automatic reference res-

olution in situated dialog without annotation

of referring expressions, even with little back-

ground data.

1 Introduction

A crucial part of dialog situated in a physical en-

vironment is exophoric references, i.e. language

used by the participants to make entities in the

shared environment salient to each other for the

purposes of communication (Poesio and Vieira,

1998). Several studies in exophoric reference res-

olution have investigated how referential seman-

tics can be learned automatically via the relation-

ship of a referent’s features to the language refer-

ring to it (cf. Kennington et al., 2015; Shore and

Skantze, 2017) or the state of the interaction a di-

alog is situated in (cf. Prasov and Chai, 2008; Iida

† Deceased 2 July 2018.

et al., 2010), inferring a relationship between e.g.

the word red and the individual features it refers

to, e.g. a particular range of hue values.

Speaker Utterance

A it’s the one to the left

B the purple pinkish uh weird?

A the pinkish one yeah it looks

like an asteroid or something

big

B the very big?

A yeah

Figure 1: Collaborative reference in dialog situated in

a reference communication task (cf. Krauss and Wein-

heimer, 1964).

Most works in exophoric reference resolution

have assumed the identification of certain sub-

sets of language known as referring expres-

sions (REs) that have been either manually or

automatically annotated (cf. Schutte et al., 2011;

Meena et al., 2012; Zarrieß et al., 2016; Shore

and Skantze, 2017). However, discerning REs

from non-referring language in dialog is not triv-

ial. For example, Figure 1 illustrates an interaction

between two participants in a reference commu-

nication task like that of Krauss and Weinheimer

(1964), whereby speaker A describes a particular
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referent which must be resolved by speaker B. 1.

While REs are idealized as contiguous, single

noun phrases (NPs) such as the pinkish one, ref-

erence in unrestricted, natural dialog is in fact a

collaborative process to which both partners in a

dyad contribute (Clark and Wilkes-Gibbs, 1986),

and not all referring language (RL) is nominal, e.g.

big in Figure 1. Both participants contribute RL in

a cumulative fashion, but often no complete nomi-

nal RE is produced, e.g. the big pinkish asteroid to

the left. Due to this, it is difficult to infer from syn-

tax alone the referring ability (RA) of language,

i.e. the overall ability of a subset of language to un-

ambiguously refer to entities in discourse (Ariel,

1988; Reboul, 1997). In context (e.g. given the

set of possible abstract shapes to choose from),

it is easy to infer which words have the greatest

RA, but without context this is more difficult. This

makes recognizing “non-ideal” cases of RL diffi-

cult, as the boundary between RL and non-RL is

often fuzzy.

Moreover, participants in dialog tend to develop

so-called conceptual pacts, which means that

they converge on commonly-used RL for unique

referents in dialog (Brennan and Clark, 1996). As

an example, they may repeatedly refer to a given

entity as e.g. the asteroid even though asteroid

may only rarely be used to refer to similar enti-

ties in the general population. Thus, RL varies less

within a given dialog than across dialogs, and vari-

ation of RL has an inverse relationship with the

length of the time two participants interact due to

alignment of dialog participants’ use of language

(Clark and Wilkes-Gibbs, 1986; Garrod and An-

derson, 1987; Brennan, 1996).

In this paper, we present two contributions to

the automatic learning of referential semantics for

reference resolution in situated dialog that address

these problems: Firstly, we show the benefits of

adapting models of RL semantics to a specific di-

alog as it progresses to accommodate the dyad’s

idiosyncratic use of RL. Secondly, we present a

method for deriving a gradient (non-binary) mea-

sure of RA in situated dialog. Thus, instead of

first identifying REs and then resolving which en-

tity they refer to, we treat all language in the di-

alog as being more or less referential, and use

this gradual measure together with the referential

semantics to derive which entity is being talked

about. Our assumption is that while the exact

1Examples are from the dataset of Shore et al. (2018)

referential semantics of words vary greatly across

dyads, the general ability of a given word to suc-

cessfully refer to entities varies little across dyads.

Thus, it should be possible to statistically measure

the ability of a set of language to refer to entities

in general, irrespective of the language’s seman-

tic content (e.g. the exact hue understood as pink

by a dyad). This knowledge, combined with dia-

logic adaptation, facilitates accurate automatic ref-

erence resolution in situated dialog without anno-

tation of REs, even with little background data.

2 Background

Both behavioral studies on reference resolution

and RL and computational models thereof have il-

lustrated the context-sensitive nature of reference

resolution and RL and the gradient nature of RA.

2.1 Collaboration in Reference Resolution

Traditionally, reference resolution in dialog was

analyzed using a literary model of reference,

whereby individual REs are seen as unique iden-

tifiers of a referent as in written discourse, i.e.

each RE is assumed to be “atomic” in its ref-

erence to a particular entity (Clark and Wilkes-

Gibbs, 1986, 3). However, shortcomings in this

approach have long since been identified (cf. Ol-

son, 1970): REs often do not unambiguously iden-

tify their referent when initiated but rather com-

prise a larger process of collaborative reference

resolution, whereby multiple dialog participants

iteratively extend, repair and even replace REs ini-

tiated by themselves or others (Clark and Wilkes-

Gibbs, 1986; Heeman and Hirst, 1995).

In Figure 1, speaker A initiates the RE the one to

the left and immediately expands it in an episodic

manner (Clark and Wilkes-Gibbs, 1986, 4, 17).

Given a literary model of reference, they should

have supplied exactly enough information to iden-

tify the referent and no more (the big pinkish aster-

oid to the left), adhering to Grice’s (1975) maxim

of quantity. However, RL can undergo not only ex-

pansion but also replacement: For color, speaker B

proposes both purple and pinkish, but only pinkish

is then accepted by A.

In contrast to a literary model of reference, a

collaborative model represents reference resolu-

tion as a process of iteratively presenting RL to

the other participant(s) in a dialog, which is then

either accepted as being sufficient to identify a ref-

erent or rejected as insufficient (Clark and Wilkes-
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Gibbs, 1986, 9). This more accurately models ref-

erence observed in spoken dialog.

2.2 Referring Language Syntax

Literary reference models fail to account not only

for the collaborative nature of reference resolution

but also for the syntactic structure of RL itself:

Ideally, a reference is expressed linguistically as

an NP, but this ideal does not hold in unrestricted

dialog (Clark and Wilkes-Gibbs, 1986).

Since an RE cannot be defined as an atomic re-

ferring unit, a model of RL should ideally be able

to measure the RA of any given set of language

rather than simply classifying language as (part of)

an RE in a binary decision, such as by using hand-

crafted rules (cf. Shore and Skantze, 2017) or ex-

pert annotation (cf. Spanger et al., 2009; Kenning-

ton et al., 2015).

2.3 Modeling Referring Language

There have already been some efforts in auto-

matic annotation of REs: For example, Schutte

et al. (2011) algorithmically extracted RL as ut-

terance(s) preceding a discrete event in a shared

environment within a certain timeframe. However,

one drawback to this method is that “the references

must be contained in instructions that cause events

involving the referents” and “it must be possible to

automatically detect these events” (Schutte et al.,

2011, 189). Thus, REs not referring to a detectable

event cannot be detected in this manner. More-

over, not all language extracted is that of REs: For

example, in the instruction go through that door,

only half of the tokens constitute RL (that door).

This means that this method must either be sup-

plemented with additional methods to extract RL

or tolerate a high noise-to-signal ratio.

Other approaches use language structure to in-

fer RL, namely in parsing said language using a

combination of statistical or rule-based methods.

However, both entail that a solution be special-

ized for language specific to a given domain, such

as for route-following instructions (Meena et al.,

2012) or for a specific instructor-manipulator pair

task (Shore and Skantze, 2017): Meena et al.

(2012) used the highly-structured nature of route-

following instructions to great effect, while Shore

and Skantze (2017) used a phrase-structure parser

pre-trained on out-of-domain data and supple-

mented it with hand-crafted rules to extract NPs

according to the literary ideal of RL.

Finally, many works simply ignore the distinc-

tion between RL and non-RL and focus solely on

learning reference resolution as a function of lan-

guage and extra-linguistic knowledge such as en-

tity features (cf. Kennington et al., 2015; Shore

and Skantze, 2017), discourse and action history

(cf. Iida et al., 2010), perception (cf. Matuszek

et al., 2012) or gesture (cf. Matuszek et al., 2014).

Although these methods improve the resolution of

what RL refers to, they do not resolve what lan-

guage is RL. Moreover, none of these works ad-

dress the strong dyadic and dialogic entrainment

effects on RL which include the formation of CPs,

reinforcing the use of RL specific to a given dialog

even if it diverges from population RL use.

3 Data Description

Speaker Round Utterance

B 4 eh it looks like a blue crab

sticking up his claws

. . .

A 7 it’s the same the

the little crab again

Figure 2: Example of repeated reference across rounds;

the referent the participants have to collaboratively re-

solve is indicated here with a magenta square.

The data used is that of Shore et al. (2018), a

set of |D| = 42 task-oriented dialogs (mean du-

ration µ = 15:25 minutes, standard deviation

SD = 1:13, total 647:35) in which one partici-

pant is an instructor referring to specific pieces on

a shared game board which the other participant,

the manipulator, must then attempt to resolve by

selecting without the aid of extra-linguistic cues

(see Figures 1–2): They sit at different locations

and communicate solely through an audio chan-

nel. Upon successful selection, the piece moves

to a random free place on the board and the par-

ticipants alternate roles. This dataset is some-

what larger than that for similar tasks (cf. Iida

et al., 2010; Matuszek et al., 2012; Malinowski

and Fritz, 2014; Kennington et al., 2015). How-

ever, unlike in many other works, participants
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were allowed to refer to pieces in any way they

wish and both were allowed to speak freely.

Each dialog d ∈ D has |R| = 20 randomly-

generated game pieces and is divided into individ-

ual game rounds d , 〈d′1 . . . d
′
n〉, in each of which

d′ , (R, r̂, T ) a single entity is pre-selected by the

game as the entity r̂ ∈ R which must be success-

fully resolved for that round. Each dialog presents

the same 20 referents aside from their changing

position, so participants must also refer to pieces

which have already been referenced before: After

40 rounds, all pieces are guaranteed to have been

referred to and so every reference thereafter is a

coreference (see Figure 2).

Each entity r ∈ R has features representing

shape, size, color and position during the given

round. A sequence of tokens T was transcribed

from the speech of both participants using Penn

Treebank tokenization rules (Marcus et al., 1993).

See the Supplementary Material for further infor-

mation on the dataset.

4 Baseline

The reference resolution method used as a base-

line was a words-as-classifiers (WaC) regres-

sion model (cf. Kennington et al., 2015). In

this framework, an individual logistic regression

model pt(r) , σ(wT
t r + bt) is trained for each to-

ken type t, predicting the probability of a given

entity r being the token’s TRUE referent r̂, given

the feature vector r representing shape, size, color

and position (see the Supplementary Material for

details). For example, if trained successfully, the

model for the token ”red” should be sensitive to

the entity’s hue, but not to its size. Common non-

descriptive words such as ”the” should not be sen-

sitive to any of the entity’s properties, yielding an

output of 0.5 for all entities. The score of a given

entity r being the referent r = r̂ of a set of RL to-

kens T is defined as the normalized linear com-

bination of the tokens’ corresponding classifiers

pt(r):

p′(r = r̂, T ) ,
1

n

n∑

t∈T

pt(r) (1)

For training, language in each round (R, r̂, T )
is defined as a bag of words T referring to the ref-

erent r̂. For each token t ∈ T , a training example

is defined for the referent r̂ (with a target score of

1) as well as for each non-referent entity r ∈ R \ r̂
(with a target score of 0). To address model bias,

the training example for r̂ is weighted by its com-

plement set size, |R \ r̂| = 19.

Initial experiments showed that lemmatization

did not affect the performance on our dataset.

Thus, each inflected lexical form is considered a

unique word (i.e., vocabulary item). Unlike Ken-

nington et al. (2015), no smoothing was used, in-

stead ignoring words of fewer than α , 3 oc-

currences. The motivation for this is that a gen-

eral out-of-vocabulary model is not expected to in-

crease the performance, since it basically learns to

ignore entity properties, similar to the models for

common words such as ”the”. This was also con-

firmed in our initial experiments.

Note that all language from both the instructor

and the manipulator in each round is used. This

is unlike Kennington et al. (2015), who only used

language from (manually annotated) REs. As ar-

gued above, REs cannot easily be identified in

the type of dialog data we are addressing. This

of course makes the task much more challenging,

and the baseline performance can be expected to

be lower than that reported in Kennington et al.

(2015).

We did 42-fold cross-validation, in each fold us-

ing 40 dialogs for training as background data,

one for testing and one for use as random data

to compare the effects of dialog-specific data to

(see Section 5 below). Each round in the test di-

alog is evaluated by the reciprocal rank (RR) of

the referent r̂ in the set of entities R ordered by

their combined score for all word classifiers in the

round
∑

t∈T pt(r), and its mean (MRR) is then

calculated.

Statistic Mean SD SEM

Rank 2.8060 3.2427 0.0566
RR 0.6892 0.3648 0.0064

Table 1: Baseline results for 42-fold cross-validation.

The cross-validation results for the baseline

WaC model are shown in Table 1. As expected,

this is indeed worse than e.g. Kennington et al.

(2015)’s reported mean rank of 2.16 when only us-

ing speech features. The WaC model is neverthe-

less a simple and effective representation of ref-

erential semantics in domains where features for

each individual referent can be easily represented

(cf. Kennington and Schlangen, 2015). Still, it has

two shortcomings: Firstly, it infers a static model

of referential semantics which is good across di-
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alogs but is suboptimal for language within di-

alogs due to effects of language alignment (Gar-

rod and Anderson, 1987; Brennan, 1996; Brennan

and Clark, 1996). Secondly, it encodes RA only

indirectly: Given a large enough dataset, logistic

regression for non-RL such as okay now I’m ready

should have an even distribution between TRUE

and FALSE classes, i.e. these classifiers should de-

cide nothing. Conversely, strong RL such as red

should entail strong relationships between certain

features and decisions. However, due to the ef-

fects of idiosyncrasy and alignment on dialogic

language, understanding low-frequency words is

crucial despite that they cannot be conditioned for

as well as can be done for high-frequency ones.

5 Dialogic Model Adaptation

We evaluated the benefits of adapting reference

resolution parameters to the language of individ-

ual dialogs by initially conditioning WaC mod-

els on the training set as background data and

then adapting the model during evaluation by re-

training using data from previous states in the di-

alog being evaluated: The RR for the ith round

(R, r̂, T )i is calculated using a model trained on

both background data and interaction data de-

fined as the rounds observed thus far in the given

dialog (R, r̂, T )i′<i. The parameters for the lo-

gistic regression models representing individual

words are optimized using quasi-Newton hybrid

conjugate gradient descent from Weka v3.8.0 (Dai

and Yuan, 2001; Frank et al., 2016). A ridge

λ = 100 was used to avoid over-fitting of mod-

els for low-frequency words, tuned using cross-

validation over the dataset (le Cessie and van

Houwelingen, 1992). The same cross-validation

method determined an optimal interaction data

weight of 3 relative to background data, i.e. an ob-

servation in a given dialog is three times as rele-

vant as one from the background data2.

Figure 3 compares the improvement of RR from

adapting model parameters using dialog interac-

tion data (Adt) to the Baseline as well as

effects of adding data from a randomly-chosen

round from another unseen dialog (RndAdt): The

condition RndAdt is used to rule out the possi-

bility that model fit improves simply due to more

training data in general. We fit a linear mixed

model with conditions Adt, RndAdt, Wgt and

scaled Tokens as linear fixed effects and game

2Interaction data weight values tested were 1, 3, 5, 7, 10.
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Figure 3: RR as a quadratic function of ROUND i · i2

for model adaptation using interaction data (CI 0.95;

error bars are SEM; showing every 5th round).

round ordinality (ROUND) as a quadratic fixed

effect: Wgt denotes weighting word classifiers

by RA, which will be discussed in Section 6.

Tokens denotes the number of word tokens pro-

duced by both speakers in the given round3. DYAD

(the pair of participants in a given dialog) was

included as a random intercept with a random

slope for Adt and Wgt. We selected the best-

fitting model using backwards selection with log-

likelihood ratio tests: Starting from the maximally

complex model (Barr et al., 2013), we first simpli-

fied the random structure and then removed fixed

effects not contributing to fit. This showed that

including RndAdt does not significantly improve

fit (χ2 = 0.00003, p = 0.99599), meaning model

fit improves from data specific to the given dialog

and not merely from more training data.

We refit the final model using maximum-

likelihood estimation with Satterthwaite approx-

imation to degrees of freedom (see the Supple-

mentary Material for details). Despite that RR

correlates with ROUND i even for the baseline

method due to dialogic lexical alignment (cf.

Shore and Skantze, 2017; Shore et al., 2018), there

is a significant improvement in RR from Adt

(B = 0.04882, t(40) = 7.65, p < 0.001).

Since adding a small amount of data from a

dialog significantly improves reference resolution

for that dialog, dialogic reference resolution can

be seen as a model adaptation problem, where in-

domain data (that from the dialog being evaluated)

3Adding the count of coreferences to a given referent as
a fixed effect prevented model convergence when included
with Tokens. Regardless, adding it in lieu of Tokens did
not significantly improve fit (χ2

= 3.7329,, p = 0.05335).
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is relatively sparse compared to out-of-domain

data (that from other dialogs). This suggests that

the effect of dyadic alignment on reference reso-

lution is amplified: As ROUND i increases, not

only is more data specific to the given dialog avail-

able, but the data observed becomes more homo-

geneous. Thus, the benefit of this method in-

creases with time, as the ratio of interaction to

background data increases.

6 Weighting by Referring Ability

While the method above facilitates the adaption of

referential semantics models to dyad-specific lan-

guage, not all language which is rare and/or ob-

served in only one dyad has great RA: For exam-

ple, in the dataset used, there were 19 observations

of the word awesome but 15 of those were in a sin-

gle dialog. Even when evaluating on that dialog, a

classifier would be inferred from the 19− 15 > α

remaining observations, and even adapting the

word models with interaction data as done in Sec-

tion 5 will only add noise since it only occurs as

non-RL (e.g. awesome good work). Conversely, a

word such as piece is semantically heavy in gen-

eral English but is by itself a poor signifier of ref-

erents given the task at hand. So, we evaluated the

benefit of weighting word classifiers by their RA

in order to mitigate the effects of such spurious ob-

servations. To do this, we define the RA of a word

t as the mean difference between the probability

of the actual referent r̂ being TRUE pt(r̂) and the

mean probability for all other entities R \ r̂ for ev-

ery occurrence of the word in the training data:

wt ,
1

n

n∑

d∈D
(R,r̂,T )∈d

p′′t (R, r̂, T )

p′′t (R, r̂, T ) , p′t(r̂, T )−
1

m

m∑

r∈R\r̂

p′t(r, T )

p′t(r, T ) , pt(r)

|T |∑

i=1

[Ti = t]

(2)

One alternative to this metric that we considered

was the area under the receiver operating charac-

teristic (ROC) curve (AUC). However, the metric

above is more conservative in cases of word mod-

els with few observations by penalizing their score

due to the logistic ridge used, thus putting more

“trust” in word models with more observations;

The AUC does not account for this directly.

Although this metric is derived from referen-

tial semantics learned for a specific domain, the

WaC logistic regression model(s) encoding refer-

ential semantics are simple and thus can easily be

re-trained for other domains. It can also be derived

from other models of referential semantics.
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Figure 4: RR as a quadratic function of ROUND i · i2

for weighting model scores by RA pt(r) · wt (CI 0.95;

error bars are SEM; showing every 5th round).

Figure 4 compares the improvement of RR from

weighting each classifier pt(r) by its RA wt (Wgt)

to the Baseline and finally to that from com-

bining adaptation from Section 5 with weight-

ing (Adt,Wgt); Using the same linear mixed

model described in Section 5, a significant im-

provement in RR was found for Wgt over the

baseline (B = 0.1314, t(39) = 11.79, p < 0.001)

although the effect weakens over time. However,

this is likely not a weakness of the method but

rather an effect of repeated reference on partici-

pants’ RL use: With repeated reference, the length

of RL reduces (Clark and Wilkes-Gibbs, 1986),

meaning that the mean RA of each word increases

due to fewer tokens of weak RA being uttered. In-

deed, a significant interaction between Round and

Tokens was found in their effects on RA (see

Supplementary Material). Figure 5 shows a sig-

nificant correlation of ROUND i and mean RA of

all tokens for that round 1
n

∑n
t∈Ti

wt. Addition-

ally, Figure 6 shows a significant inverse relation-

ship with token count |Ti|. Since the referent r̂ is

chosen at random by the game, the amount of ref-

erences to an entity increases with round ordinal-

ity, and so this corresponds with Clark and Wilkes-

Gibbs (1986).

A qualitative assessment shows that vocabu-

lary items with the great RA are typically nouns
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ROUND i · i2 (CI 0.95; error bars are SEM).
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ROUND i · i2 (CI 0.95; error bars are SEM).

strongly associated with the task at hand: The 31
words with greatest RA are all nouns referring to

shapes. Despite this, however, great RA is not

exclusive to nouns: In Table 2, inside, a prepo-

sition, is considered semantically lighter in gen-

eral English than nouns are (Froud, 2001), but has

RA greater than the mean (µ = 0.2424, SD =
0.1266). On the other hand, the noun color has

relatively little RA given the task at hand.
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Figure 7: MRR per background training set size.

Moreover, including Adt and Wgt using dialog

interaction data (Adt,Wgt) shows significant im-

provements over either alone: During model se-

lection, including Wgt significantly improved fit

Word t RA wt Count

K 0.7567 108
bat 0.6382 69
house 0.6374 153
chicken 0.6340 85
computer 0.6181 96

. . .

inside 0.3985 13
. . .

color 0.0291 195
. . .

’s 0.0066 1593
it 0.0051 1731
okay 0.0048 1115
the 0.0040 2478

Table 2: Sample vocabulary items ordered by RA.

(χ2 = 61.425, p < 0.001). This means that both

methods can be used together and complement

each other: Weighting is particularly beneficial

for shorter interactions, where little in-domain in-

teraction data is present, while adaptation pro-

vides greater benefit for longer interactions (cf.

Figure 3). In fact, Figure 7 shows that Wgt has

better MRR using only 12 randomly-chosen di-

alogs as background data than the Baseline

does with 40, and adaptation and weighting to-

gether (Adt,Wgt) has better MRR with only 7.

Figure 8 illustrates the effects of the two condi-

tions on reference resolution in the task used for

evaluation: The baseline classifier has a rank of

10 for the referent r̂ out of |R| = 20 possible

referents. In the baseline (A), the classifier for

e.g. color has as much weight as e.g. rectangle al-

though the former is not a useful signifier for the

given task. When weighting by RA (B), however,

the less-useful words contribute less to the total∑
t∈T (pt(r̂) · wt), improving rank to 5. Finally,

when adapting the model with interaction data (C),

models for semantically-heavy words like violet

better fit the dyad’s RL use, bringing rank to 1.

When both incrementally adapting semantic

models with in-domain dialog data and weight-

ing by RA, MRR for reference resolution was im-

proved by 32.5% over the baseline (see Table 3).

7 Conclusion and Discussion

We have shown that it is possible to improve ref-

erence resolution for situated dialog by incremen-

tally adapting word semantic model parameters to
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(A) Baseline (Target rank 10)

the  slanted rectangle with two  triangles violet in color 

the  slanted rectangle with two  triangles violet in color 

Score 0.51 0.50 0.74 0.31 0.42 0.23 0.41 0.53 0.31 

(B) Weighting by RA (Target rank 5)

the  slanted rectangle with two  triangles violet in color 

the  slanted rectangle with two  triangles violet in color 

Score 0.51 0.50 0.74 0.31 0.42 0.23 0.41 0.53 0.31 

RA 0.00 0.00 0.32 0.15 0.19 0.31 0.34 0.02 0.05 

(C) Adapting and Weighting by RA (Target rank 1)

the  slanted rectangle with two  triangles violet in color 

the  slanted rectangle with two  triangles violet in color 

Score 0.51 0.64 0.80 0.31 0.60 0.63 0.70 0.53 0.46 

RA 0.00 0.56 0.34 0.15 0.19 0.30 0.34 0.02 0.04 

A 

C 

B 

Figure 8: Reference resolution with different condi-

tions: The TRUE referent r̂ is labeled C. Word hue de-

notes semantic score pt(r̂) (green = 1.0, yellow = 0.5,

red = 0.0). Saturation denotes RA wt.

a given dialog in order to accommodate idiosyn-

cratic language use by dyad partners, and the ef-

fect of the partners’ own alignment makes this

method even more beneficial over time. Addition-

ally, we have defined a metric of word referring

ability which is derived from a word’s referen-

tial semantics in situated dialog but holds across

individual dialogs despite dyadic variation in RL

use. We showed that this metric can be used to

automatically determine the usefulness of a given

word for reference resolution, meaning that RE

annotation is not necessary. Both of these aspects

are beneficial to natural language understanding

(NLU) for situated dialog due to the difficulty of

acquiring data domain-appropriate data.

Model adaption using dialogic knowledge can

be effective for improving NLU (cf. Riccardi and

Gorin, 2000) despite that little work has been done

in this regard specifically for reference resolution.

Our experiments with model adaptation in Sec-

tion 5 suggest that it may be beneficial to treat

reference resolution in situated dialog as a model

adaptation task, where a given dialog being evalu-

Condition Rank SDRank SEMRank

Baseline 2.8060 3.2427 0.0566
Adt 2.4224 2.8614 0.0499
Wgt 1.9373 2.3288 0.0406
Adt,Wgt 1.5693 1.6685 0.0291

Condition RR SDRR SEMRR

Baseline 0.6892 0.3648 0.0064
Adt 0.7372 0.3470 0.0061
Wgt 0.8099 0.3116 0.0054
Adt,Wgt 0.8613 0.2686 0.0047

Table 3: Overall results for conditions evaluated.

ated is considered “in-domain” data and all other

dialogs considered “out-of-domain” data. More-

over, due to the fact that dialog participants’ use

of RL converges over time (Garrod and Anderson,

1987; Brennan, 1996; Brennan and Clark, 1996),

the task should adapt a pre-trained reference res-

olution model not only for a given dialog but also

to the given state of that dialog; On the other hand,

Iida et al. (2010) incorporate intra-dialogic knowl-

edge but do not adapt to inter-dialogic effects.

Lastly, weighting by RA wt as derived from lo-

gistic word classifier scores pt(r) in Section 6 was

shown to be effective and can be easily inferred

from data. However, this inaccurately assumes

inter-word independence, since it does not encode

a word’s context: For example, the RA of not was

0.0638, which is relatively low. While it is a poor

signifier in itself, it reverses the polarity of the

predicate it modifies. For example, in it’s the baby

blue K the light one not the dark one, the NP the

dark one should in fact have negative RA: Entities

with a low semantic score
∑

t∈〈the,dark,one〉 pt(r)
should in fact be preferred over those those with a

high score. This could be addressed via structural

prediction (e.g. conditional random fields or neu-

ral networks) or even higher-order n-grams, but

these methods cannot be easily utilized given the

typically small size of situated dialog datasets.
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