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Abstract
High-level semantics tasks, e.g., paraphras-
ing, textual entailment or question answer-
ing, involve modeling of text pairs. Before
the emergence of neural networks, this has
been mostly performed using intra-pair fea-
tures, which incorporate similarity scores or
rewrite rules computed between the members
within the same pair. In this paper, we com-
pute scalar products between vectors repre-
senting similarity between members of differ-
ent pairs, in place of simply using a single
vector for each pair. This allows us to obtain
a representation specific to any pair of pairs,
which delivers the state of the art in answer
sentence selection. Most importantly, our ap-
proach can outperform much more complex
algorithms based on neural networks.

1 Introduction
Answer sentence selection (AS) is an impor-
tant subtask of open-domain Question Answering
(QA). Its input are a question Q and a set of can-
didate answer passages A = {A1, A2, ..., AN},
which may, for example, be the output of a search
engine. The objective consists in selecting Ai,
i ∈ {1, ..., N} that contain correct answers.

Pre-deep learning renaissance approaches to AS
typically addressed the task by modeling Q-to-A
(intra-pair) similarities (Yih et al., 2013; Wang
et al., 2007; Heilman and Smith, 2010; Wang and
Manning, 2010). Q-to-A similarity and align-
ment are indeed crucial, but, in practice, it is very
difficult to automatically extract meaningful rela-
tions between Q and A. For example, consider
two positive Q/A pairs in Table 1. If we want
to learn a model based only on the intra-pair Q-
to-A matches, simple lexical matching (marked
with italics) will not be enough. One would need
to conduct more complex processing and identify
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that movie and film are synonyms, and that the n-
gram play in the movie or be in the movie can
be paraphrased as star. While the former can be
easily detected using an external lexical resource,
e.g., WordNet (Fellbaum, 1998), the latter would
require more complex inference.

On the other hand, Q1 and Q2 contain the same
pattern who ... in the movie ..., and their respec-
tive answers contain film ... starring .... If we
know that P1 = (Q1, A1) is a positive AS example
and want to classify P2 = (Q2, A2), then highQ2-
to-Q1 and A2-to-A1 cross-pair similarities can
suggest that P1 and P2 are likely to have the same
label. This idea, for example, was exploited by
Severyn and Moschitti (2012), whose system mea-
sures syntactic-semantic similarities directly be-
tween structural syntactic tree representations of
Q1/Q2 and A1/A2. This model still exhibited
state-of-the-art performance in 2016 (Tymoshenko
et al., 2016a).

Deep neural networks (DNNs) also naturally
use such cross-pair similarity when modeling two
input texts, and then further combine it with intra-
pair similarity, for example, by means of atten-
tion mechanisms (Shen et al., 2017), compare-
aggregate architectures (Bian et al., 2017; Wang
and Jiang, 2017), or fully-connected layers (Sev-
eryn and Moschitti, 2015, 2016; Rao et al., 2016).

In this work, we observe that: (i) the high accu-
racy of the kernel model by Severyn and Moschitti
(2012) was due not only to the use of syntactic
structures, but also to the use of cross-pair simi-
larities; and (ii) the success of DNNs for QA can
be partially attributed to an implicit combination
of cross- and intra-pair similarity.

More specifically, we investigate, whether sim-
ple similarity metrics, e.g., cosine similarity be-
tween standard vector representations, can per-
form competitively to the state-of-the-art neural
models when employed as cross-pair kernels.
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Question Answer Label
Q1 who plays mary poppins

in the movie?
A1 Mary Poppins is a 1964 musical film starring Julie Andrews,

Dick Van Dyke, David Tomlinson, and Glynis Johns, produced
by Walt Disney, and based on the Mary Poppins books series by
P. L. Travers.

TRUE

Q2 WHO WAS IN THE MOVIE
I CONFESS WITH
MONTGOMERY CLIFT

A2 I Confess is a 1953 drama film directed by Alfred Hitchcock,
and starring Montgomery Clift as Fr. Michael William Lo-
gan, a Catholic priest, Anne Baxter as Ruth Grandfort, and Karl
Malden as Inspector Larrue .

TRUE

Table 1: Question/Answer Sentence pairs from WikiQA corpus. We use italic font to mark intra-pair lexical matches between
Q1 and A1, Q2 and A2, and bold font to mark the cross-pair matches between Q1 and Q2, A1 and A2.

To this end, we apply linear and cosine kernels
to Qi/Qj and Ai/Aj pairs (i, j = 1, ..., N ) repre-
sented as a bag-of-words (BoW) or an averaged
sum of their pretrained word embeddings. Then,
we combine them with the cross-pair Tree Kernels
(TKs) and kernels applied to the traditional Q/A
intra-pair similarity feature vector representations
in a composite kernel and use it in an SVM model.

We experiment with three reference datasets,
WikiQA (Yang et al., 2015), TREC13 (Yao et al.,
2013; Wang et al., 2007) and SemEval-2016, Task
3.A (Nakov et al., 2016), using a number of
lexical-overlap/syntactic kernels. The latter chal-
lenge refers to a community question answering
(cQA) task. It consists in reranking the responses
to user questions from online forums. It is the
same setting as AS, but the text of questions and
answer sentences can be ungrammatical due to the
nature of the online forum language.

We obtain competitive results on WikiQA and
SemEval tasks, showing that: (i) simple BoW rep-
resentations, when used in cross-pair kernels, per-
form comparably to and even outperform hand-
crafted intra-pair features. (ii) In cQA, simple
cross-pair embedding- and BoW-based similar-
ity features outperform domain-specific similar-
ity features, which are hand-crafted from intra-
pair members. The simple features also perform
comparably to syntactic TKs. (iii) We show that
a combination of simple cosine- intra- and cross-
pair kernels with TKs can outperform the most re-
cent state-of-the-art DNN architectures.

Assuming the conjecture of our paper correct,
cross-pair modeling is the major neural network
contribution, the last point above is not surpris-
ing as on relatively small datasets kernels-based
models can exploit syntactic information very ef-
fectively while neural models cannot.

The paper is structured as follows. We de-
scribe the kernels incorporating intra- and cross-
pair matches in Sec. 3.2, list the simple cross-
and intra-pair features in Sec. 3.3, describe strong

hand-crafted baseline features in Sec. 4, and report
the experimental results in Sec. 5.

2 Related work

Early approaches to AS typically focused on mod-
eling intra-pair Q-to-A alignment similarities. For
example, Yih et al. (2013) proposed a latent
alignment model that employed lexical-semantical
Q-to-A alignments, Wang et al. (2007) mod-
eled syntactic alignments with probabilistic quasi-
synchronous grammar, and Heilman and Smith
(2010); Yao et al. (2013); Wang and Manning
(2010) employed Tree Edit Distance-based Q-to-
A alignments.

Originally, the idea of cross-pair similarity was
proposed by Zanzotto and Moschitti (2006) and
applied to the recognizing textual entailment task,
which consists in detecting whether a text T en-
tails a hypothesis H. They assumed that if two H/T
pairs 〈H1, T1〉 and 〈H2, T2〉 share the same T-to-H
“rewrite rules”, they are likely to share the same
label. Based on this idea, they proposed an al-
gorithm applying TKs to (H1, H2) and (T1, T2)
syntactic tree representations, enriched with H-to-
T intra-pair rewrite rule information. More con-
cretely, such algorithm aligns the constituents of
H with T and then marks them with symbols di-
rectly in the trees. This way the alignment infor-
mation can be matched by tree kernels applied to
cross-pair members.

Then, a line of work on AS, started by Sev-
eryn and Moschitti (2012, 2013); Severyn et al.
(2013), was inspired by a similar idea of incor-
porating “rewrite rules” directly into the tree rep-
resentations of Q1/A1 and Q2/A2. They represent
Q and A as syntactic trees enhanced with Q-to-A
relational information, and apply TKs (Moschitti,
2006) to (Q1, Q2) and (A1, A2). Thus they model
cross-pair similarity, and learn important patterns
occurring in Q and A separately. As shown in (Ty-
moshenko et al., 2016a), this approach is compet-
itive with convolutional neural networks (CNNs).
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In our approach, instead of using only one TK, we
employ a number of different word-based kernels,
most of which can be computed more efficiently
than TKs.

Most recent AS models are based on Deep Neu-
ral Networks (DNNs), which learn distributed rep-
resentations of the input data. DNNs are trained
to apply series of non-linear transformations to
the input Q and A, represented as compositions of
word or character embeddings. DNN architectures
learn AS-relevant patterns using intra-pair similar-
ities as well as cross-pair, Q-to-Q and A-to-A, sim-
ilarities, when modeling the input texts. For exam-
ple, the CNN network by (Severyn and Moschitti,
2015) has two separate embedding layers for Q
and A, which are followed by the respective con-
volution layers, whose output is concatenated and
then passed through the final fully-connected joint
layer. The weights in the Q and A convolution
layers are learned by means of the backpropaga-
tion algorithm on the training Q/A pairs. Thus,
obviously, classifying a new Q/A pair is partially
equivalent to performing the implicit cross-pair Q-
to-Q and A-to-A comparison.

Additionally, the DNN approaches model the
Q-to-A relatedness explicitly in a variety of ways,
e.g., by: (i) using a Q-to-A transformation matrix
and simple Q-to-A similarity features (Yu et al.,
2014; Severyn and Moschitti, 2015), (ii) relying
on RNN and LSTM architectures (Wang and Ny-
berg, 2015; Shen et al., 2017), (iii) employing at-
tention components (Yin et al., 2016; Shen et al.,
2017; Wang et al., 2016a), (iv) decomposing input
into similarity and dissimilarity matches (Wang
et al., 2016b) or (v) using the compare-aggregate
method (Wang and Jiang, 2017; Bian et al., 2017).

We believe that the ability of DNNs to implic-
itly capture cross-pair relational matching, i.e., the
capacity of learning from (Q1, Q2) and (A1, A2),
is a very important factor to their high perfor-
mance. This is of course paired with their abil-
ity to learn non-linear patterns and capture Q-to-
A relatedness by means of attention mechanisms.
It should be noted that the latter are typically
hard-coded in kernel models as lexical match-
ing/similarity (Severyn and Moschitti, 2012). This
is effective as much as the attention approach,
at least with standard-size dataset, also in neural
models (Severyn and Moschitti, 2016).

In our work, we model Q-to-A, Q-to-Q and A-
to-A similarities with intra- and cross-pair ker-

nels and show that such combination also exhibits
state-of-the-art performance on the reference cor-
pora. In addition, our approach can be applied to
smaller datasets as it utilizes less parameters, and
can provide insights on future DNN design.

3 Cross-pair similarity kernels for text

3.1 Background on Kernel Machines

Kernel Machines (KMs) allow for replacing the
dot product with kernel functions directly applied
to examples, i.e., they avoid mapping examples
into vectors. The main advantage of KMs is a
much lower computational complexity than the
dot product as the kernel computation does not de-
pend on the size of the feature space.

KMs are linear classifiers: given a labeled train-
ing dataset S = {(xi, yi) : i = 1, . . . , n}, their
classification function can be defined as:

f(x) = w · x+ b =

n∑
i=1

αiyixi · x+ b.

where x is a classification example, w is the gra-
dient of the separating hyperplane, and b its bias.
The equation shows that the gradient is a linear
combination of the training points xi ∈ Rn mul-
tiplied by their labels yi ∈ {−1, 1} and their
weights αi ∈ R+. Note that the latter are differ-
ent from zero only for the support vectors: this
reduces the classification complexity, which will
be lower than O(n) for each example.

We can replace the scalar product with a ker-
nel function directly defined over a pair of ob-
jects, K(oi, o) = φ(oi)φ(o), where φ : O → Rn

maps from objects to vectors of the final feature
space. The new classification function becomes:
f(o) =

∑n
i=1 αiyiK(oi, o) + b, which only needs

the initial input objects.

3.2 Inter- and intra-pair match kernel

We cast AS as a text pair classification task: given
a pair, P = (Q,A), constituted by a question (Q)
and a candidate answer sentence (A), we classify it
as either correct or incorrect. We used KMs, where
K (·, ·) operates on two pairs, P1 = (Q1, A1) and
P2 = (Q2, A2).

3.2.1 Intra-pair similarity
A traditional baseline approach would (i) repre-
sent Q/A pairs as feature vectors, where the com-
ponents are similarity metrics applied to Q and
A, e.g., a world overlap-based similarity; and (ii)
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train a classification model, e.g., an SVM using
the following kernel:

KIP (P1, P2) = Kv

(
V〈Q1,A1〉, V〈Q2,A2〉

)
, (1)

where Kv can be any kernel operating on the fea-
ture vectors, e.g., the polynomial or linear (as in
our work) kernel. V〈T1,T2〉 is a vector built on N
similarity features, 〈f1(·, ·), f2(·, ·), ..., fN (·, ·)〉,
extracted by applying similarity metrics to two
texts, T1 and T2 (see Sec. 3.3 for the list of the sim-
ilarity metrics we used). KIP merely uses intra-
pair similarities.

3.2.2 Cross-pair similarity
We incorporate the intuition, similar questions
are likely to demand similar answer patterns, by
means of a cross-pair kernel, which measures sim-
ilarity between questions and answers from P1 and
P2 as follows:

KCP (P1, P2) = V〈Q1,Q2〉 · V〈A1,A2〉

=
N∑
i=1

fi(Q1, Q2) · fi(A1, A2)
(2)

KCP measures P1-to-P2 similarity in terms of a
sum of the products of Q1-to-Q2 and A1-to-A2

similarities. Note, that within KIP , fi(Qi, Ai)
is merely an i-th feature in the V〈Qi,Ai〉 feature
vector. At the same time, within KCP , fi(·, ·)
becomes a kernel, which takes the (Q1, Q2) or
(A1, A2) pairs as input. In other words, V〈Q1,Q2〉 ·
V〈A1,A2〉 is a sum of products of fi(·, ·) kernels ap-
plied to the (Q1, Q2) and (A1, A2) pairs. KCP

is a valid kernel if the similarity metrics used to
compute the fi(·, ·) are valid kernel functions.

Finally, combining KIP and KCP enables
learning of two different kinds of valuable cross-
and intra-pair AS patterns. We combine various
KIP and KCP by summing them or by training a
meta-classifier on their outputs. See Section 5.4
for more details. Figure 1 summarizes the dif-
ferences between the KIP and KCP computation
processes described above.

3.3 Similarity features
We employ three similarity feature types as
fi(·, ·). Two of them are computed using the co-
sine similarity metrics and differ only in terms of
the input texts, T1 and T2, representations. The
other type is constituted by TKs applied to the
structural representations of T1 and T2. Note that,
since cosine similarity and TKs are valid kernels,

Q1	 A1	

Q2	 A2	

P1	

P2	

,	

,	

VQ1,A1	

VQ2,A2	

VQ1,Q2	 VA1,A2	

KCP(P1,P2)=VQ1,Q2!	VA1,A2	
(cross-pair	kernel)	

KIP(P1,P2)	=	
	KV(VQ1,A1,VQ2,A2)	

(intra-pair	
	kernel)	

	

Figure 1: Feature extraction schema for two Q/A pairs, P1

and P2. VT1,T2 is a vector of similarity features extracted for
a pair of texts T1, T2, the respective dashed boxes show from
which pair of input texts they are extracted.

KCP is also guaranteed to be a valid kernel when
computed using these similarity features.

3.3.1 Bag-of-n-grams overlap (B)

f t,l,sB (T1, T2) is a cosine similarity metric applied
to the bag-of-n-grams vector representations of
Ti, BOW{t,l,s}(Ti), i = 1, 2. The {t, l, s} in-
dex describes an n-gram representation configura-
tion: t denotes whether the n-grams are assembled
of word lemmas (L), or their part-of-speech tags
(POS), or lemmas concatenated with their respec-
tive POS-tags (LPOS); l is a (n1, n2) tuple, with
n1 and n2 being the minimal and maximal length
of n-grams considered, respectively; and s is Y ES
if the representation discards the stopwords and
NO, otherwise.

We used {t, l, s} configurations from
the following set: C = ({L,LPOS} ×
{(1, 2), (1, 3), (1, 4), (2, 4), (2, 3)} × {Y ES,
NO}) ∪ ({POS} × {(1, 4), (2, 4)} × {Y ES}).
It follows that |C| = 23, which means we have 23
similarity features, f t,l,sB (T1, T2), in total, in the
intra-pair setting. The respective cross-pair ker-
nels are a composite kernel summing 23 products
of cosine kernels applied to 23 different (Q1, Q2)
and (A1, A2) bag-of-ngram representations.

3.3.2 Embedding-based similarities (E).

We represent an input text as an average of em-
beddings of its lemmas from pre-trained word
embedding models. Then, the embedding fea-
ture fEmodel(T1, T2) is the cosine kernel ap-
plied to the embedding-based representations of
T1 and T2. We use two pretrained embed-
dings: Word2Vec (Mikolov et al., 2013) and
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GloVe (Pennington et al., 2014), resulting in three1

embedding-based features (see Sec. 5 for more
technical details).

3.3.3 Tree-kernel based similarities
Following the framework defined in (Severyn
et al., 2013; Tymoshenko et al., 2016a), we rep-
resent T1 and T2 as syntactico-semantic structures
and use TKs as semantic similarity metrics. When
computing KCP with TK as similarities, in Eq.2,
we employ summation instead of multiplication2.

More specifically, we represent T1 and T2 as
(i) constituency trees and apply subset TK (SST);
or (ii) shallow chunk-based trees, similar to the
one presented in Figure 2, and apply partial tree
(PTK) kernel. In the shallow trees, lemmas are
leaves and POS tags are pre-terminals. POS nodes
are grouped under chunk nodes, and then under
the sentences nodes. These representations en-
code also some intra-pair similarity information,
e.g., prefix REL denotes the lexical Q-to-A match.
In a structural representation, we prepend it to the
parent and grand-parent nodes of lemmas which
occur both in Q and A, e.g., “Mary” in the first
example of Table 1.

Then, for factoid QA3, we mark focus words
in Q and entities in A, if the answer contains
any named entities of types matching the question
expected answer type (EAT)4. More specifically,
we mark the semantic Q-to-A match by prepend-
ing the REL-FOCUS-<EAT> label to the answer
chunk nodes that contain such named entities and
also to the question focus word. Here, <EAT>
stands for the EAT label. For example, in the
Q1/A1 pair in Table 1, the Q1 EAT is HUMan,
and the matching named entities include “Julie
Andrews”, “David Tomlinson” and others. Fig-
ure 2 depicts Q1 annotated both with REL- and
REL-FOCUS links. We detect both question focus
and EAT automatically. Due to the space limita-

1We use Word2Vec embeddings trained on two different
corpora, which result in two features, and GloVe trained on
one corpus.

2We have opted to use summation in this case to follow
the earlier work.

3WikiQA and TREC13 are the factoid AS datasets, as
their questions ask for a specific fact, e.g. date or a name.

4For example, the PERson named entity type matches
the HUMan EAT. More specifically, we employ the follow-
ing NER-to-EAT matching rules: PERson, ORGanization →
HUMan; LOCation → LOCation; DATE, TIME, MONEY,
PERCENTAGE, DURATION, NUMBER, SET → NUM;
ORGanization, PERson, MISCellanious → ENTiTY. We em-
ploy the (Li and Roth, 2002) coarse-grained EAT taxonomy
and Stanford CoreNLP (Manning et al., 2014) entity types.

Figure 2: Shallow syntactic representation of A1 from the
running example in Table 1

(i) cosine similarity applied to the BoW representa-
tions of T1 and T2 in terms of word lemmas, bi-,
three-, four-grams (computed twice with and with-
out stopwords); POS-tags; dependency triplets;

(ii) longest common string subsequence measure
w. and w/out stopwords;

(iii) Jaccard similarity metric applied to one-, two-,
four, three-grams w. and w/out stopwords;

(iv) word n-gram containment measure on uni- and
bi-grams w. and w/out stopwords (Broder, 1997);

(v) greedy string tiling (Wise, 1996) with minimum
matching length of 3 ;

(vi) string kernel similarity (Lodhi et al., 2002);
(vii) expected answer type match: percentage of

named entities (NE) in the answer passage compat-
ible with the question class5;

(viii) WordNet-based similarity. WordNet T1/T2 com-
mon lemma/synonym/hypernym overlap ratio;

(ix) PTK (Moschitti, 2006) similarity between con-
stituency or dependency tree representations of in-
put texts;

Table 2: Strong baseline fatures

tions, we do not describe the structural representa-
tions and matching algorithms in more detail, but
refer the reader to the works above.

4 Strong baseline feature vector

As a strong baseline, we use similarity feature vec-
tors and intra-pair KIP kernel.

For the factoid answer sentence selection task,
we use 47 strong features listed in Table 2. This
is a compilation of features used in the top-
performing system at SemEval-2012 Semantic
Text Similarity workshop (Bär et al., 2012) and
earlier factoid QA work (Severyn and Moschitti,
2012), extended with few additional features.

For the community question answering (cQA)
task, we employ instead a combination of
similarity-based and thread-level features shown
to be very effective for the cQA task (Nicosia
et al., 2015; Barrón-Cedeño et al., 2016). We
use the exact feature combination from (Barrón-
Cedeño et al., 2016), which includes both lexical
and syntactic similarity measures (cosine similar-
ity of bag-of-words, PTK similarity over syntactic
tree representations of the input texts) and thread-
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MODE TRAIN DEV TEST
Q A Q A Q A

raw 2118 20360 296 2733 633 6165
no all− 873 8672 126 1130 243 2351
clean 857 8651 121 1126 237 2341

Table 3: WikiQA corpus statistics

level domain specific features (are the question
and comment authored by the same person?, does
the comment contain any questions?, and so on.).

We cannot directly use these feature vectors in
the KCP kernels, as not all functions used to com-
pute features are valid kernels, e.g., the longest
common string subsequence is not a kernel func-
tion. Moreover, some of them can be computed
only on the (Q,A) pairs, e.g., the expected type
match feature (vii) in Tab. 2, or many of the cQA
domain-specific features.

5 Experiments

We conduct experiments on three corpora, namely
TREC13, WikiQA and SemEval, and evaluate
the results in terms of Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR). Our
code is available at https://github.com/
iKernels/RelTextRank.

5.1 Datasets
WikiQA dataset. WikiQA (Yang et al., 2015) is
a factoid answer sentence selection dataset with
Bing query logs as questions. Candidate answer
sentences are extracted from Wikipedia and la-
beled manually. Some of the questions have no
correct answer sentence (all−) or have only correct
answer sentences (all+). Table 3 reports the statis-
tics of the WikiQA corpus as distributed (raw),
without all− questions, and without both all− and
all+ questions (clean). We train in the “no all−”
mode using 10 answer sentences per question6 and
test in the “clean” mode.

TREC13 dataset. A factoid answer sen-
tence selection dataset originally presented
in (Wang et al., 2007)7, also frequently called
QASent (Yang et al., 2015). We train on 1,229
automatically labeled TREC8-12 questions. We
use only 10 candidate answer sentences per
question. We test in the “clean” setting defined
in (Rao et al., 2016), i.e., we discard the all+ and
all− questions, resulting in 65 DEV and 68 TEST

6The 10 answer sentences per question limit speeds up
training time without loss in performance

7We use the version distributed by (Yao et al., 2013) in
https://code.google.com/p/jacana/

questions, respectively. DEV and TEST contain
1117 and 1442 candidate associated answer
sentences, respectively.

SemEval-2016, Task 3.A dataset. SemEval
cQA dataset is a benchmark dataset in the Se-
mEval 2016 Task 3. A question-to-comment sim-
ilarity competition. It is a collection of user ques-
tions and the respective answer comment threads
from Qatar Living forum, where the user com-
ments to questions were manually labeled as cor-
rect or incorrect. Each question has 10 respective
candidate answers. The training, dev and test sets
have 1790, 244 and 327 questions, respectively.
The AS task consists in reranking comments with
respect to the question: most questions are non-
factoid and the text is often noisy.

5.2 Models
We used the following notation:
B, E. Intra-pair KIP kernels (see Sec. 3.2) using
the eponymous similarity features from Sec. 3.3.
V. Linear kernel applied to the strong intra-pair
feature vector representation defined in Section 4.
Note that, as already mentioned in Sec. 4, due to
the slightly different nature of the factoid and com-
munity question answering tasks, we used differ-
ent strong feature groups for WikiQA, TREC13
(Table 2) and SemEval-2016.
Bcr, Ecr. Cross-pair KCP kernel applied to B
and E similarity feature vectors respectively. More
specifically, Bcr and Ecr are a sum of 23 and 3
cross-pair kernel products, respectively (see Eq. 2
and Sec. 3.2).
PTK, SST are the cross-pair PTK and SST
tree kernels applied to the shallow chunk- and
constituency-based representations (see Sec. 3.3).
“+” denotes kernel summation. We use this sym-
bol to denote that we sum the gram-matrices for
the distinct standalone kernels, and use the result-
ing kernel matrix as input to SVMs.
METABASE;PTK , METABASE;SST . Logistic
regression metaclassifiers trained on the outputs of
two standalone systems, namely (i) V+Bcr+Ecr+E
(we denote it as BASE to simplify the notation),
and (ii) PTK or SST, respectively. We ran 10-fold
cross-validation on the training set and used the
resulting predictions as training data for the en-
semble classifier. We did not use the development
or training sets for any parameter tuning, thus we
report the results both on the DEV and TEST sets.
SUMBASE;PTK , SUMBASE;SST . Simple meta-
classifiers, summing the output of the BASE and

https://github.com/iKernels/RelTextRank
https://github.com/iKernels/RelTextRank
https://code.google.com/p/jacana/
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PTK or SST systems, respectively.

5.3 Toolkits

We trained the models using scikit-learn8 by Pe-
dregosa et al. (2012) using the SVC version of
SVM with precomputedKIP andKCP kernel ma-
trices and default parameters. We trained the en-
semble model using the scikit LogisticRegression
classifier implementation with the default param-
eters. We used spaCy library9 and scikit to obtain
bag-of-n-gram representations for the B similar-
ity features, and to compute B- and E- base gram
matrices.

We used the RelTextRank framework10 (Ty-
moshenko et al., 2017b) to generate the structural
representations for the TK similarity features and
to extract the strong baseline feature vectors from
Sec. 4. We used KeLP (Filice et al.) to compute
the TK gram matrices.

Regarding the Embedding-based similarities
(E), we obtain three similarity features by us-
ing three word embedding models to generate
the representations of the input texts, T1 and T2,
namely GloVe vectors trained on common crawl
data11, Word2Vec vectors pre-trained on Google
News12, and another Word2Vec vectors model13

pre-trained on Aquaint14 plus Wikipedia.

5.4 Results and discussion

Table 4 reports the results obtained with the intra-
and cross-pair kernels KIP , KCP and their com-
binations. In the following, we describe the results
according to the model categories above.

Intra-pair kernels. Taking into account intra-
pair similarity is the standard approach in the ma-
jority of the previous non-DNN work. In our ex-
periments, we implement this approach as KIP

using B, E, V groups of similarity features. KIP

performs worse than the state-of-art (SoA) DNN
systems on all the datasets (see tables 5, 6 and 7,
for the SoA systems).

The results on WikiQA are particularly low
even when the best KIP system, B+V+E, is used,
which scores up to 15 points less than the state

8
http://scikit-learn.org/

9
https://spacy.io/

10This tool employs Stanford CoreNLP 3.6.0 (Manning
et al., 2014) for text processing; and DKProSimilarity (Bär
et al., 2013) to extract features (ii)-(v).

11
http://nlp.stanford.edu/data/glove.42B.300d.zip

12
https://code.google.com/archive/p/word2vec/

13
https://github.com/aseveryn/deep-qa

14
https://catalog.ldc.upenn.edu/LDC2002T31

of the art. This confirms the Yang et al. (2015)
observation on WikiQA, according to which, sim-
ple word matching methods are likely to under-
perform on its data, considering how it was built.
Nevertheless, despite its simplicity, B+V+E per-
forms comparably to the Yang et al. (2015) reim-
plementation of LCLR, the complex latent struc-
tured approach employing rich lexical and seman-
tic intra-pair similarity features (Yih et al., 2013).
Yang et al. (2015) report that on WikiQA LCLR
obtains MRR of 60.86 and MAP of 59.93.

Then, on TREC13 and SemEval-2016, the
intra-pair V, V+E and B+V+E kernels exhibit
rather high performance, however, they are still
significantly below the state of the art, thus con-
firming our hypothesis that intra-pair similarity
alone does not guarantee top results.

Cross-pair kernels. Bcr and Ecr obtain rather
high results on WikiQA and SemEval. On Wik-
iQA, both Bcr and Bcr + Ecr outperform all the
intra-pair kernels by a large margin, while, on Se-
mEval, they perform comparably to the manually
engineered domain-specific V features of Nicosia
et al. (2015). On the contrary, on TREC13, V
outperforms both Bcr and Ecr, thus showing that
TREC13 is indeed biased towards intra-pair relat-
edness features by construction.

More complex PTK and SST cross-pair kernels,
both alone and combined with Bcr, Ecr, typically
outperform the standalone Bcr and Ecr on all the
corpora (PTK on TREC13 and WikiQA, and SST
and Bcr+Ecr+PTK on SemEval). This can be ex-
plained by the fact that PTK and SST are able
to learn complex syntactic patterns and also con-
tain some information about intra-pair relations,
namely REL- labels described in Sec. 3.2. Thus, it
is natural that they outperform simpler cross-pair
kernels. Nevertheless, on WikiQA-DEV, Bcr+Ecr

performs very close to PTK. Moreover, on Se-
mEval, Bcr+Ecr outperforms PTK and is behind
SST for less than 1 point in terms of MAP. This
can be explained by the fact that Q and A, in Se-
mEval, are frequently ungrammatical as the cQA
corpus is collected from online forums.

Finally, note that the Bcr+Ecr+PTK system,
which does not use any cQA domain-specific fea-
tures, is only 0.56 MAP points behind KeLP, the
best-performing system in the SemEval competi-
tion (see Line 1 of Table 7).

Kernels combining the intra- and cross-pair
similarities. The V+Bcr+Ecr+E combination (we

http://scikit-learn.org/
https://spacy.io/
http://nlp.stanford.edu/data/glove.42B.300d.zip
https://code.google.com/archive/p/word2vec/
https://github.com/aseveryn/deep-qa
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TREC13 WikiQA Semeval-2016
DEV TEST DEV TEST DEV TEST

MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP
B 61.91 57.69 65.68 55.63 51.36 51.41 54.69 53.8 57.90 51.45 65.70 57.28

Intra-pair V 85.38 78.01 78.82 69.18 47.07 46.53 50.98 50.26 69.75 63.68 81.94 73.89
kernel E 71.15 67.88 73.27 66.48 48.25 48.49 53.14 52.42 61.50 54.25 67.05 60.25
(KIP ) V+E 88.48 79.64 79.63 69.57 49.24 49.08 53.32 52.87 70.98 64.43 82.06 74.13

B+V+E 84.84 77.31 79.22 68.83 55.47 55.75 60.19 59.52 70.98 64.37 80.84 74.09
Bcr 72.64 65.81 63.70 56.16 72.71 72.00 68.84 67.67 72.28 65.20 81.63 74.68
Ecr 72.22 66.36 76.94 66.14 64.61 64.38 60.77 59.42 70.07 63.92 80.60 73.62

Cross-pair PTK 89.49 81.02 84.09 76.06 75.56 74.27 75.60 74.67 70.45 63.04 81.96 74.30
kernel SST 77.52 68.8 78.73 70.91 72.38 71.78 69.49 68.1 73.77 66.00 82.37 75.65
(KCP ) Bcr+Ecr 71.52 66.35 69.24 62.16 74.62 74.18 70.03 68.76 71.56 65.26 81.81 75.06

Bcr+Ecr+PTK 84.74 79.24 85.07 77.18 75.34 74.91 71.01 69.61 75.99 68.82 85.26 78.63
Bcr+Ecr+SST 73.80 67.69 72.43 65.75 75.90 75.59 71.23 69.72 73.38 66.46 82.82 75.91
V+Ecr 86.92 78.34 85.65 76.72 71.97 71.77 67.63 66.40 75.83 68.75 84.37 77.60
V+Bcr 88.85 80.51 81.99 74.46 75.84 75.22 74.59 73.22 75.42 68.06 85.78 78.47
V+PTK 87.44 80.38 84.25 75.74 75.19 74.81 72.78 71.70 74.15 67.83 86.68 79.22

Combination V+SST 86.41 78.58 84.12 76.86 72.96 72.74 71.24 69.74 75.29 68.71 85.69 79.07
V+Bcr+Ecr+E 90.51 82.94 82.40 75.98 76.65 76.29 74.68 73.34 76.07 69.75 85.54 78.83
V+Bcr+Ecr+E+PTK 89.10 81.23 83.14 76.77 76.88 76.59 74.05 72.71 76.60 69.97 86.52 79.79
V+Bcr+Ecr+E+SST 90.56 82.95 84.24 76.63 76.73 76.11 74.08 72.73 76.00 69.89 86.23 79.43
SUMBASE;SST 89.41 80.02 84.07 77.35 77.12 76.74 74.07 72.52 76.49 69.50 85.45 78.92

Ensemble SUMBASE;PTK 88.33 81.37 86.89 77.65 77.94 77.43 77.00 75.59 74.60 67.69 84.94 78.65
METABASE;PTK 88.26 81.26 86.20 77.53 77.61 77.29 76.01 74.63 75.90 69.94 85.34 79.08
METABASE;SST 90.77 82.51 83.33 77.05 76.61 76.20 75.01 73.54 76.80 70.49 85.78 79.46

Table 4: Results on TREC13, WikiQA and SemEval-2016 datasets. Best results in each feature category are
highlighted with bold, overall best results are underlined. TK is SST for Semeval and PTK for WikiQA and
TREC13. BASE refers to the V+Bcr+Ecr+E configuration.

will refer to it as BASE), outperforms the stan-
dalone domain-specific handcrafted cQA features,
V, and both PTK and SST on SemEval 2016 TEST
and DEV by at least 2.3 points in all metrics.

Moreover, V+Bcr+Ecr+E is only less than 0.5
points behind the #1 system of the SemEval-
2016 competition (see Tab. 7). We recall that
V+Bcr+Ecr+E only uses basic n-gram overlap-
based cross- and intra- similarity features and
embedding-based cosine similarities.

Finally, when we add tree kernel models to
the combination, i.e., V+Bcr+Ecr+E+PTK or
V+Bcr+Ecr+E+SST, we note improvement for Se-
mEval and TREC13 tasks.

Ensemble models. We ensemble cross- and
intra-pair kernels-based models by summing the
predictions of the standalone SVM classifiers
(SUM models) or by training a logistic regression
meta-classifier on them (META models). We build
the meta-classifiers on the outputs of the stan-
dalone system BASE and TKs, namely PTK and
SST. The “Ensemble” section of Table 4 shows
that meta-system combinations mostly outperform
the standalone kernels.

In general, combining cross-pair and intra-pair
similarities (with kernel sum or meta-classifiers)
provides state-of-the-art results without using
deep learning. Additionally, the outcome is de-

terministic, while the DNN accuracy may vary de-
pending on the type of the hardware used or the
random initialization parameters (Crane, 2018).

5.5 Comparison with the state of the art

Tables 5, 6 and 7 report the performance of the
most recent state-of-the-art systems on WikiQA,
TREC13 and SemEval in comparison with our
best results. We discuss them with respect to the
different datasets.

WikiQA. As already mentioned earlier, Wik-
iQA contains many questions without correct an-
swer (see Tab. 3). When evaluated on the full
data, even the oracle system will achieve at most
38.38 points of MAP. Moreover, as originally ob-
served in (Wang et al., 2007), the questions that
do not have either correct answers or incorrect
answers are not useful for comparing the perfor-
mance of different answer sentence selection sys-
tems. Therefore, they are typically removed from
WikiQA and TREC13 before the evaluation.

There has been some discrepancy in the com-
munity when evaluating on WikiQA. The original
baselines proposed for the corpus in (Yang et al.,
2015) were evaluated in the “clean” setting15. We

15According to the WikiQA gold reference files at
https://www.microsoft.com/en-us/download/details.

aspx?id=52419

https://www.microsoft.com/en-us/download/details.aspx?id=52419
https://www.microsoft.com/en-us/download/details.aspx?id=52419
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no all− clean
MRR MAP MRR MAP

LCLR (Yang et al., 2015)
impl. of (Yih et al., 2013)

61.83 60.92 60.86 59.93

HybridTK-NN (Tymoshenko
et al., 2017a)

74.72 72.88 74.08 72.19

IWAN-att (Shen et al., 2017) 75.00 73.30 74.37 72.62
C/A, MULT (Wang and Jiang,
2017)

75.45 74.33 74.83 73.68

C/A, k-max (Bian et al., 2017) 76.40 75.40 75.80 74.78
C/A, listwise (Bian et al.,
2017)

75.90 74.60 75.29 73.96

HyperQA (Tay et al., 2018) 72.70 71.20 72.01 70.47
Our model (PTK) 76.21 75.29 75.60 74.67
Our model (SUMBASE;PTK ) 77.57 76.19 77.00 75.59

Table 5: Comparison to the SoA on WikiQA

MRR MAP
Noise-contrastive estim. (Rao et al., 2016) 87.7 80.1
IWAN-att (Shen et al., 2017) 88.9 82.2
BIMPM (Wang et al., 2017) 87.5 80.2
C/A, k-threshold (Bian et al., 2017) 89.9 82.1
C/A-listwise (Bian et al., 2017) 88.9 81.0
HyperQA (Tay et al., 2018) 86.5 78.4
Our model (Bcr+Ecr+PTK) 85.07 77.18
Our model (V+Ecr) 85.65 76.72
Our model (SUMBASE;PTK ) 86.89 77.65

Table 6: Comparison to the SoA on TREC13

MRR MAP
Kelp [#1] (Filice et al., 2016) 86.42 79.19
Conv-KN [#2] (Barrón-Cedeño et al., 2016) 84.93 77.6
CTKC+VQF (Tymoshenko et al., 2016b) 86.26 78.78
HyperQA (Tay et al., 2018) n/a 79.5
AI-CNN (Zhang et al., 2017) n/a 80.14
Our model (V+Bcr+Ecr+E+SST) 86.52 79.79

Table 7: Comparison to the SoA on SemEval-2016

also evaluate in the “clean” setting. However,
the performance of the most recent state-of-the-
art systems listed in the Tab. 5 is reported in the
“no all−” setting, in the respective papers, i.e.,
they keep the all+ questions16. Thus, they have 6
extra questions always answered correctly by de-
fault. To account for this discrepancy, in Tab. 5,
we report the results in both settings. It is trivial to
convert the performance figures from one setting
to another. In the table, we mark the conversion
results with italic.

Our SUMBASE;PTK system (i) outperforms all
the state-of-the-art systems, including the sophisti-
cated architectures with attention, such as IWAN-
att (Shen et al., 2017), and compare-aggregate
(C/A) frameworks (Wang and Jiang, 2017; Bian
et al., 2017) in terms of MRR; and (ii) has the
same MAP as (Bian et al., 2017). Obviously, this
improvement is not statistically significant with re-

16We deduced that from the corpus statistics reported by
the authors of the papers. They all report having 243 test
questions, which corresponds to the “no all−” setting

spect to C/A systems by Bian et al. (2017). Nev-
ertheless, ours is a very promising result, consid-
ering that we only use linear models with simple
kernels and do not tune any learning parameter of
such models.

TREC13. As shown in Tab. 6, our models do
not outperform the state of the art on TREC13, but
they still perform comparably to the recent DNN
HyperQA model (Tay et al., 2018). In general, our
model is behind the state-of-the-art IWAN-att sys-
tem by 4.55 points in terms of MAP. Note, how-
ever, that TREC13 test set contains only 68 ques-
tions, therefore this difference in performance is
not likely to be statistically significant17.

Semeval. Table 7 compares performance of Bcr

+ Ecr + V + E + SST system on Semeval to that
of KeLP and ConvKN, the two top systems in the
SemEval 2016 competition, and also to the per-
formance of the recent DNN-based HyperQA and
AI-CNN systems. In the Semeval 2016 competi-
tion, our model would have been the first18, with
#1 KeLP system being 0.6 MAP points behind.
Then, it would have outperformed the state-of-the-
art AI-CNN system by 0.35 MAP points.

6 Conclusions
This work proposes a simple, yet effective ap-
proach to the task of answer sentence selection
based on the intuition that similar patterns in ques-
tions are likely to demand similar patterns in an-
swers. We showed that this hypothesis provides an
improvement on three benchmark datasets, Wik-
iQA, TREC13, Semeval-2016, and, moreover, it
enables simple features to achieve the state of the
art on WikiQA and Semeval-2016, outperform-
ing many of state-of-the-art DNN-based systems.
There is significant room for further elaboration of
this approach, for example, by expanding feature
spaces with more syntactic and semantic features,
employing new types of kernels for measuring the
inter-question/answer pair similarity or trying to
implement the same idea in DNN architectures.
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Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 Task 3: Community Question Answering.
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 525–
545.

Massimo Nicosia, Simone Filice, Alberto Barrón-
Cedeno, Iman Saleh, Hamdy Mubarak, Wei Gao,
Preslav Nakov, Giovanni Da San Martino, Alessan-
dro Moschitti, Kareem Darwish, and Others. 2015.
QCRI: Answer selection for community question
answering-experiments for Arabic and English. In
Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 203–
209.
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