
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2043–2053
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2043

Visual Supervision in Bootstrapped Information Extraction

Matthew Berger
Vanderbilt University, University of Arizona

matthew.berger@vanderbilt.edu

Ajay Nagesh
University of Arizona

ajaynagesh@email.arizona.edu

Joshua A. Levine
University of Arizona

josh@email.arizona.edu

Mihai Surdeanu
University of Arizona

msurdeanu@email.arizona.edu

Hao Helen Zhang
University of Arizona

hzhang@math.arizona.edu

Abstract

We challenge a common assumption in active
learning, that a list-based interface populated
by informative samples provides for efficient
and effective data annotation. We show how a
2D scatterplot populated with diverse and rep-
resentative samples can yield improved mod-
els given the same time budget. We consider
this for bootstrapping-based information ex-
traction, in particular named entity classifica-
tion, where human and machine jointly label
data. To enable effective data annotation in a
scatterplot, we have developed an embedding-
based bootstrapping model that learns the dis-
tributional similarity of entities through the
patterns that match them in a large data cor-
pus, while being discriminative with respect
to human-labeled and machine-promoted en-
tities. We conducted a user study to assess the
effectiveness of these different interfaces, and
analyze bootstrapping performance in terms of
human labeling accuracy, label quantity, and
labeling consensus across multiple users. Our
results suggest that supervision acquired from
the scatterplot interface, despite being noisier,
yields improvements in classification perfor-
mance compared with the list interface, due to
a larger quantity of supervision acquired.

1 Introduction

One strategy for mitigating the cost of supervised
learning in information extraction (IE) is to boot-
strap extractors with light supervision from a few
provided examples (or seeds). Most typical boot-
strapping methods (Yarowsky, 1995; Collins and
Singer, 1999; Abney, 2007; Carlson et al., 2010;
Gupta and Manning, 2014, 2015, inter alia) are it-
erative in nature, and suffer from semantic drift:
as the learning advances, the task often drifts se-
mantically into a related but different space, e.g.,
from learning women names into learning flower
names (Komachi et al., 2008; Yangarber, 2003).

In such cases, a human-in-the-loop to help guide
bootstrapping through active learning (AL) (Set-
tles, 2012) can be highly beneficial.

In this work, we challenge the common assump-
tion made for AL methods in the context of IE: a
visual interface that shows a list of samples ranked
by their informativeness to the classifier is effec-
tive for building classifiers that minimize human
annotator time (Dalvi et al., 2016; He and Grish-
man, 2015). We argue that this is an inefficient
form of acquiring supervision from humans. In-
stead, we propose a two-dimensional (2D) scat-
terplot interface (rather than the one-dimensional
(1D) list), where the examples to be annotated
are selected by their capacity to cluster together
(rather than by their informativeness to the classi-
fier). We demonstrate that our approach leads to
more data being annotated, and better overall per-
formance for the model being learned.

In particular, we focus on the task of boot-
strapped named entity classification (NEC), where
a classifier is trained to label named entities with
their corresponding category. For example, such
an algorithm starts with a few examples of labeled
names, e.g., “Barack Obama” as PERSON, from
which it learns representative patterns, e.g., the
pattern “@ENTITY , former president”,
which are then used to label other names in fu-
ture iterations. Unlike traditional bootstrapping,
our approach receives supervision in two ways:
from the seed examples (as shown above), but also
from human labels through an active learning step
that is inserted after each bootstrapping iteration.
To facilitate the clustering of examples in the an-
notation interface, we propose a semi-supervised
NEC approach that learns custom embeddings for
the entities being classified (§4). We select entities
that are diverse and representative of the embed-
ding’s data distribution, and project them into a 2D
visual encoding of the data via a scatterplot using
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dimensionality reduction (§5).
The resulting scatterplot interface enables the

user to label a larger quantity of entities, at the ex-
pense of label noise from mixed-category clusters
and a potentially less-informative sampling crite-
rion. To better understand this space, we con-
ducted a user study to compare the effectiveness
of the scatterplot interface compared to the tradi-
tional list that contains examples selected by infor-
mativeness (§7). Through our study, we arrive at
the following takeaways:

• We observe that in configurations that used
the scatterplot interface, annotators indeed la-
beled considerably more examples, but at an
accuracy slightly lower than in the list inter-
face. Despite the lower accuracy, the scat-
terplot interface generally yields better clas-
sifiers. In other words, the volume of anno-
tations matters just as much as quality for the
classifier performance.

• We find that a consensus model of users
can mitigate noise, but must preserve a cer-
tain quantity of annotated data. A consen-
sus model for the list interface that con-
servatively estimates labels reduces perfor-
mance despite highly accurate labels due to
the small amount of annotations. In con-
trast, the same model for the scatterplot inter-
face yields higher label noise, but more an-
notations within the same budget of time and
gives the best performance.

2 Related Work

Information extraction (IE) techniques commonly
assume that the human supervision comes in the
form of knowledge bases of facts disconnected
from supporting text, as in the case of distant
supervision (Mintz et al., 2009), or provides a
light amount of supervision up front, as in the
case of bootstrapping (Angeli et al., 2015). Com-
mon techniques for bootstrapping are to use rules
for incrementally classifying entities (Collins and
Singer, 1999) or to use syntactic (He and Grish-
man, 2015) and semantic (Gupta and Manning,
2014, 2015) contextual features. However, such
approaches suffer from semantic drift, as previ-
ously discussed.

Considering a human-in-the-loop for IE has the
potential to mitigate drift and greatly benefit per-
formance, yet the challenge lies in minimizing hu-

man effort. The work of Angeli et al. (2014) show
how to use active learning to improve distantly su-
pervised relation extraction techniques (Surdeanu
et al., 2012) through humans labeling informative
relations. Werling et al. (2015) use Bayesian deci-
sion theory to minimize human cost and maximize
accuracy for named entity recognition. For certain
IE tasks, however, human supervision can be very
noisy and thus counterproductive, especially from
crowds, thus previous work has shown the impor-
tance of how to pose tasks for humans in provid-
ing labels (Liu et al., 2016), as well as automati-
cally distinguishing simple labeling tasks from ex-
pert tasks in crowd-based task assignments (Wang
et al., 2017). Our work shares a similar view of hu-
man supervision for IE, yet we instead study the
impact of the annotation interface on the overall
performance.

The role of the human-in-the-loop for topic
modeling has also been extensively explored. For
instance Smith et al. (2018) consider the types of
modifications that one can provide to a built topic
model (Hu et al., 2014) to make the topics more
meaningful, while also studying the downstream
human factor implications. Furthermore, prior
work has also considered how different visual rep-
resentations of topics impact a human’s under-
standing of topic semantics (Smith et al., 2017).
Closely related is the technique of Poursabzi-
Sangdeh et al. (2016), where they highlight how
different visual representations can have an impact
on the effectiveness and efficiency of human label-
ing for document classification, comparing stan-
dard list interfaces with topic-grouped lists. Our
method instead considers how 2D scatterplot in-
terfaces, via embedding-based techniques, capture
semantics for the purposes of providing labels in
an IE task.

The visual analytics community has also inves-
tigated the role of visual interfaces and interaction
tools for annotating data in supervised learning.
For instance Heimerl et al. (2012) enable interac-
tive labeling for document classification by visual-
izing unlabeled documents based on classifier un-
certainty and document diversity. The technique
of Höferlin et al. (2012) jointly visualizes unla-
beled data and the classifier model, and allows the
user to both label data points and directly modify
model parameters. Closely related to our method
is the work of Bernard et al. (2018) which com-
pares active learning, via list interfaces, with in-
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Figure 1: We show the workflow of our study (left): (S1) the Information Extraction model first auto-
matically labels entities and updates its parameters, (S2) the human then labels entities through a given
visual interface, and (S3) the model is updated based on the provided set of human labels. We study the
effectiveness of two different interfaces (right): a list, and a 2D scatterplot of entities.

teractive visual labeling. However, their method is
focused on acquiring labels solely from humans,
whereas our method studies the interplay between
self-labeling and human labels in a visualization
context.

3 Human-Machine Workflow for
Bootstrapping

We first describe the general workflow on which
our study is based. We consider bootstrapping
where both the human and the machine label enti-
ties in tandem, following the setup described in Fu
and Grishman (2013) . More specifically, we con-
sider the following iterative process (c.f. Fig. 1):

• (S1) The model automatically classifies enti-
ties, adds them as labeled data, and updates
its parameters, as detailed in §4.

• (S2) The human interacts with a visual inter-
face, driven by the model and the current set
of labeled and unlabeled entities. The result
of this step is a set of entities labeled by the
human. We define this step a round of label-
ing, or just round.

• (S3) The model then updates its parameters
given the human-labeled entities.

In contrast with typical bootstrapping, which inter-
leaves entity promotion with model updates, here
the human has the opportunity to label data. The
intent is to guide bootstrapping: human annota-
tions should steer bootstrapping towards learning
the proper concepts, and away from semantic drift.

Yet, in this process we would like to minimize
human effort while maximizing bootstrapping per-
formance, where we define effort as the total time
spent annotating data. In particular, the primary
focus of our study is on step (S2), and how the
user’s interactions with the interface impacts these
considerations. We consider two different types
of interfaces for this purpose, shown on the right
side of Fig. 1: list interfaces, and scatterplot inter-
faces. In particular, both interfaces utilize the state
of the model to decide on what to show to the user.
In the case of the list-based interface, we perform
uncertainty sampling with respect to the model, as
a way to maximize the information obtained from
the user. For the scatterplot interface, the user in-
teracts with a subset of diverse and representative
entities through a 2D projection. Here we wish
to see if more efficient groupwise labeling of per-
ceived clusters in the scatterplot results in a more
efficient and effective labeling process.

Of course, a critical piece to our study is the
bootstrapping model itself. There exists a large
body of work in bootstrapping, as previously dis-
cussed, and one possibility is to use an existing
technique for our work. For our learning scenario,
a bootstrapping technique should satisfy several
criteria:

• Be efficient to update, in order to minimize
user latency with the interface;

• Incorporate user supervision to ensure a dis-
criminative representation;

• Be suitable for visual exploration.
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Please note that traditional bootstrapping tech-
niques such as rule-based methods (Collins and
Singer, 1999) fail to meet all criteria. In partic-
ular, they are not suitable for visual exploration
because there is no clear way to represent the se-
mantic proximity of rules or of the concepts be-
ing learned. We next describe how to address
these challenges through embedding-based boot-
strapping.

4 Embedding-Based Bootstrapping

Our bootstrapping technique is based on neural
language models (Mikolov et al., 2013), in par-
ticular, semi-supervised embedding-based boot-
strapping techniques (Valenzuela-Escárcega et al.,
2018). Unlike other word embedding algorithms,
our approach measures distributional similarity of
entities (rather than words) with respect to pat-
terns (rather than context words). We define a
pattern as a small sequence of words that sur-
round an entity, up to ±4 words to the left/right
of the entity under consideration. For instance, in
the phrases “John said on Saturday” and ”John
told reporters” the patterns ”said on Saturday”
and “told reporters” are suggestive of the category
Person for entity John.1 We observe that enti-
ties of a given category, e.g. Person, are likely to
have common pattern distributions. This observa-
tion drives our method for learning entity and pat-
tern embeddings. Furthermore, as we will see, this
method permits efficient updates, and it is suitable
for visualization due to the geometric representa-
tion of entities and patterns.

More specifically, assume that we have ex-
tracted a set of entitiesE and patterns P in a given
text corpus C. We associate each entity e ∈ E
and pattern p ∈ P with embeddings xe and xp,
respectively, with xe,xp ∈ Rd. To satisfy the
above form of distributional similarity, we utilize
the Skip Gram model (Mikolov et al., 2013) and
seek entity embeddings to be close to their embed-
dings of observed patterns through maximizing:

SG =
∑

(e,p)∈Cp

[log(σ(x>
e xp))+

∑
n∈N

log(σ(−x>
e xn))],

(1)
where (e, p) corresponds to an entity-pattern oc-
currence from the corpus set Cp, n represents a
negative pattern, sampled from the unigram dis-
tribution of all patterns N (Levy and Goldberg,

1In this work we use surface patterns, but the proposed
algorithm is agnostic to the types of patterns used.

2014) 2, and σ is the sigmoid function. Intuitively,
this forces an entity’s embedding to be similar to
embeddings of its matched patterns from the cor-
pus, and dissimilar to random pattern embeddings.

A disadvantage with the Skip Gram model is
that it might fail to be discriminative, since it does
not utilize category labels. Thus, we introduce
an objective term that seeks to bring entities that
belong to the same category to have similar em-
beddings, and entities that belong to different cat-
egories to be far apart in their embeddings. We re-
alize this using large-margin metric learning (Cui
et al., 2016; Sohn, 2016), minimizing:

LM =
∑

(a,b,c)∈El

bs(xa,xc)− s(xa,xb) +Mc+, (2)

where (a, b, c) represents a triplet of entities, such
that a and b belong to the same category, while c
belongs to a different category, and the function
s is the cosine similarity between entity embed-
dings. The setEl is a subset of entities fromE that
have been assigned categories so far, as provided
by the bootstrapper (S1) or the human (S2). Intu-
itively, entities from dissimilar categories should
be positioned in the embedding space such that
their cosine similarity is at least a margin M from
any pair of entities of the same category.

We combine the Skip Gram objective with the
metric learning objective to obtain:

B = LM − SG. (3)

The objective B can be viewed as a form of semi-
supervised representation learning, where from a
sparse set of labeled entities, we wish to learn
entity representations that are similar should they
have patterns in common (SG), while simultane-
ously ensuring that embeddings are discriminative
with respect to categories (LM ). Step (S3) min-
imizes this objective at every round of bootstrap-
ping via stochastic gradient descent, given the cur-
rent set of labeled entities El.

4.1 Promoting Entities

We use the learned embedding to automatically
promote unlabeled entities to categories, as dis-
cussed in step (S1). We use the normalized entity
embeddings as features, and build a multinomial

2In initial ablation studies, we found that this strategy was
about as effective as negative sampling from all patterns, but
significantly faster, which is necessary for interactivity.
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Figure 2: We study two different interfaces for humans to label entities, a list interface (a) and a 2D
scatterplot interface (b). In both, the user selects entities in the main view (I), based on an assigned
category (II), wherein we also show the total amount of labels the user, and the machine, has thus far
labeled. In (III) we show the current status of training/labeling, and the option to initiate/stop training.

logistic regression model over the given set of la-
beled entities, trained to predict entity categories.
For each category, we then promote the most con-
fident entities to the category. To compute confi-
dence, we treat the model’s predictions as category
probabilities, take the entropy over this distribu-
tion as a measure of unconfidence, and promote
entities with the lowest entropy.

5 Supervision Interfaces

We now turn to the visual interface through which
humans provide supervision (step S2). We distin-
guish the interfaces by how entities are sampled,
presented to the user, and each interface’s set of
interactions for labeling.

5.1 List Interface
Sampling. We sample entities through sorting
them by confidence, as defined in §4.1, and sam-
ple the most unconfident entities. This form of
uncertainty sampling is common in list-based in-
terfaces (Angeli et al., 2014; Poursabzi-Sangdeh
et al., 2016), as a measure of informativeness for
updating the model (Settles, 2012).

Presentation. We next show the 15 most un-
certain entities in a 1D list-based visual interface
(Fig. 2a (I)).

Interactions. The user labels entities by first
selecting their desired category (Fig. 2a (II)), fol-
lowed by clicking on the entity in the main display.
We also allow the user to select multiple entities at

once, for a given category. As the user labels enti-
ties, we repopulate the display with the next set of
most unconfident entities.

5.2 Scatterplot Interface

Sampling. For the scatterplot interface, we aim to
sample entities that are beneficial for the model,
while also ensuring the user can efficiently label
entities through groupwise selection. Uncertainty
sampling, though potentially informative, can lead
to projections that are challenging for the user in
performing groupwise labeling, as we experimen-
tally verified that entities with high classification
uncertainty are unlikely to group together. To ad-
dress this, we sample entities based on how they
are distributed in the embedding space, to pro-
vide us a diverse and representative sampling (Xu
et al., 2007). More specifically, we first perform
k-means on the entities’ normalized embeddings,
with k = 40, and sample across clusters to give di-
versity. To ensure a representative sampling, ker-
nel density estimation is performed within each
cluster’s entities, and the entity with highest den-
sity, along with its nearest neighbors in the embed-
ding space, are selected. The number of neighbors
sampled in each cluster is proportional to the clus-
ter size, to ensure balance across clusters.

Presentation. We next perform a 2D projec-
tion of 500 sampled entities using t-SNE (Maaten
and Hinton, 2008), visually encoding each entity
by a filled circle (Fig. 2b (I)). To provide context
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with respect to entities labeled by the human or
machine, we jointly project the unlabeled sampled
entities, and a subset of the entities previously la-
beled (drawn as triangles), either by the human an-
notator or promoted with high-confidence by the
machine.

Interactions. The user labels entities by first
selecting a category (Fig. 2b (II)), followed by
using a circular brush to label groups of entities.
The user can adjust the brush’s radius, as well as
change the view through panning and zooming.
We dynamically filter the text labels for entities
based on the zoom level to reduce clutter, thus
the user can observe a high-level overview of the
space of entities when zoomed out, and observe
more details upon zooming in. This gives the an-
notator the chance to perform groupwise annota-
tions by jointly considering cluster structure and a
sparse set of text labels from the cluster, and label-
ing all entities at once should the annotator decide
the group of entities belongs to a single category.

5.3 Training

Common to both interfaces, user interactions are
interleaved with model updates. During training,
the list interface is refreshed with the top 15 most
informative samples every 3 training epochs, or
passes over the data, while for the scatterplot the
samples and their 2D positions are updated. To
ensure temporal coherence for those entities that
persist between updates, we employ dynamic t-
SNE (Rauber et al., 2016). The user can opt to
stop training if they observe little change occur-
ring between snapshots (Fig. 2 (III)).

6 User Study

We conducted a user study to investigate the effec-
tiveness of the different interfaces. We recruited
10 participants for our study: the median age
was 22, the minimum and maximum respectively
19 and 41, 5 participants self-reported as being
“somewhat knowledgeable” of machine learning,
4 with ”no knowledge”, and 1 identifying as an
“expert”. We used a within-subject design, where
the first interface presented to the participant was
selected at random to mitigate potential priming
effects. For each interface, a set of instructions
was first presented, followed by a brief tutorial
where the user must label a small set of seed enti-
ties – 10 per category. These seed entities, labeled
with ground truth rather than user labels, initialize

the bootstrapping model, so that participants start
off with identical embeddings. After the instruc-
tions, the participant then performs 10 rounds of
labeling, where they may label entities for up to
1 minute per round. After each round of labeling,
the bootstrapper promotes 10 entities to each cate-
gory, and then performs 30 epochs of training.

Dataset. We use the Ontonotes
dataset (Weischedel et al., 2013), limited to
the 4 categories that have the most frequently
mentioned entities, in order to make the labeling
task manageable, yet still nontrivial, for par-
ticipants. These categories are people (PER),
organizations (ORG), geopolitical entities (GPE),
and nationalities as well as religious/political
affiliations (AFF), resulting in 6,567, 6,199,
1,617, and 422 entities per category, respectively.

Bootstrapping Details. It is critical to ensure
that bootstrapping training minimizes user latency,
while not sacrificing performance (c.f. Eq. 3). To
strike this balance, we set the number of nega-
tive patterns sampled for each entity to 10 (Levy
and Goldberg, 2014), the embedding dimension d
to 100, perform hard negative triplet mining (Cui
et al., 2016) to form the loss on triplets likely
to violate the margin, and set the margin M to
0.4. Experimentally, we found these settings al-
lowed training to converge to a good solution after
30 training epochs, and that each epoch took no
longer than 1 second on average.

7 Results

We analyze the results in terms of three forms of
evaluation: bootstrapping performance, as deter-
mined by the entities promoted during the course
of the user study, extrapolation, wherein we let
bootstrapping proceed to promote entities after the
joint human-machine labeling has completed, and
consensus, where we combine the set of entities
annotated by participants within the different in-
terfaces. We also analyze a typical user’s labeling,
and corresponding machine performance.

7.1 Bootstrapping Performance

We first look at the effectiveness of promoted en-
tities during the course of each participant’s inter-
actions. Fig. 3(a) shows bootstrapping accuracy
averaged over all users for the list and scatter-
plot. We also compare to a baseline of traditional
bootstrapping, where no human labels are consid-
ered, averaged over 10 trials. Note this is simi-
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Figure 3: Performance averaged over all users for
bootstrapping during user study (a) and extrapo-
lation (b), for both interfaces and a baseline that
does not use human labels. The green, orange, and
purple plots are scatterplot, list, and baseline, re-
spectively.

scatterplot list baseline
bootstrapping 88.8 87.2 85.1
extrapolation 84.7 83.5 78.6

Table 1: We show performance in terms of recall,
computed per-category and averaged across cate-
gories, for the baseline, list and scatterplot inter-
faces. This is shown for the last round of boot-
strapping (c.f. Fig. 3a) and extrapolation (c.f.
Fig. 3b).

lar to Valenzuela-Escárcega et al. (2018), which
demonstrates improved performance across a set
of bootstrapping techniques, and thus represents
a competitive baseline. We find that the perfor-
mance of both interfaces outperform this baseline,
and that the scatterplot outperforms the list: a two-
sample Welch’s t-test concludes statistical signifi-
cance (p=0.05), as well as for a paired t-test mea-
sured within participants (p=0.03). In Table 1 we
also show recall, computed per-category and av-
eraged over categories, at the last round of boot-
strapping and similarly find the scatterplot outper-
forms the list.

Better insight between the interfaces can be
gained by looking at individual user performance.
Fig. 4(a) shows a plot of each participant’s perfor-
mance (y-axis) for both interfaces, as a function of
their labeling accuracy (x-axis) and the total num-
ber of labels provided (size of each circle). Note
that the 3 best-performing models come from the
scatterplot interface, even at the expense of a lower
labeling accuracy. This suggests that the number
of labels can counter the noise in labeling, com-
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Figure 4: Bootstrapping performance for user
study (a), and extrapolation (b) for individual par-
ticipants, evaluated at throughputs (number of en-
tities promoted) of 400 and 800, respectively.
Each circle is a participant whose color indicates
the interface (green, orange, and purple are scat-
terplot, list, and baseline, respectively); x-axis is
participant labeling accuracy; y-axis is machine
accuracy; and circle size encodes the number of
annotated labels (large circle indicates large num-
ber of annotated labels).

pared to a list where we may have potentially more
informative entities labeled more accurately, but
much fewer entities annotated.

7.2 Extrapolation

We next look at how bootstrapping continues to
learn, when starting from all of the annotations
provided by the corresponding human annotator as
well as the entities promoted by the machine. We
term this configuration extrapolation. This analy-
sis indirectly measures how much noise crept into
the available annotations, by measuring the perfor-
mance of the classifier trained on this data.

We repeated this experiment over 10 different
trials, promoting 10 entities per category in each
round, and take the average accuracy, see Fig. 3(b)
for the performance averaged over all users for
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Figure 5: Labeling accuracy and bootstrapping performance for a typical participant. In (a) we show
per-category annotations, where the x-axis is the round number and y-axis is the number of entities
labeled. Colors of higher lightness indicate mislabeled entities. For example, approximately 40% of the
user’s annotations in round 2 for ORG in the scatterplot were incorrect. In (b) we show the difference
in bootstrapping performance between the scatterplot and list interfaces. For instance, scatterplot yields
a model 5% more accurate than list for GPE in round 10. Note the correlation between human labeling
(left) and bootstrapping performance (right), highlighted by the arrows.

the interfaces, as well as the aforementioned base-
line. Observe that the baseline performs progres-
sively worse as a function of throughput, indicat-
ing that labels provided by the human annotators
help to prevent drift. We also find the results to
be stronger compared with §7.1; namely, a two-
sample Welch’s t-test concludes statistical signif-
icance (p=0.002) and similarly for a paired t-test
within participants (p=0.007). The recall perfor-
mance in Table 1 also confirms the performance
gains of the scatterplot. Supporting these results,
Fig. 4(b) shows that the scatterplot interface for
users that labeled a large amount of entities gener-
ally outperform those where fewer entities were
labeled. This experiment suggests that the best
strategy to control for semantic drift is to aim for
an interface that yields many annotations at rea-
sonable accuracy, rather than few, higher-quality
ones.

7.3 Individual User Labeling

We show labeling accuracy and bootstrapping ac-
curacy for a participant that has similar perfor-
mance to the average (c.f. Fig. 3(a)). In Fig. 5(a)
we show the number of entities labeled across cat-
egories, where bars of higher color lightness en-
code the number of incorrect labels, and in (b) we
plot the difference in bootstrapping performance
between the scatterplot and the list. We observe
that the class imbalance of the Ontonotes dataset
tends to manifest in labeling as well, where ORG
and PER are typically labeled the most. We also

see a correlation between accurate human labeling
and bootstrapping performance (e.g. the arrows
pointing at GPE and ORG for rounds 7 and 8, re-
spectively). This highlights an advantage of ex-
ploratory visual interfaces for labeling, such as a
scatterplot, where the user can search for clusters
of a particular category, e.g., in the case of GPE
there may not exist many entities of this type in
the list interface.

7.4 Consensus

Given the noise inherent in a single user’s annota-
tions, we last analyze whether techniques to com-
bine labels across a set of users can help reduce
label noise and improve performance. To this end,
for the scatterplot and list interface we combine
all annotations, and consider two different types of
consensus methods: 1) Union: we take the union
of all annotated entities, choosing an entity’s la-
bel at random during conflicts; and 2) Majority
Vote (MV): for conflicting entities we select the
most voted category across users, discarding enti-
ties that have only been annotated once or have ties
across users. We then seed bootstrapping with the
resulting set of labels, run 20 rounds of promotion,
and take the average performance of 10 trials.

Fig. 6(a-b) compares each method across the
different interfaces, while Table 2 shows accuracy
and total number of labels for the consensus meth-
ods. We also include performance, labeling ac-
curacy, and label totals averaged across individual
users, where for each user we seed bootstrapping
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Figure 6: Accuracy of different consensus meth-
ods, compared across the two interfaces, as well
as average performance across individual users.

with their full set of annotations. For Union, we
observe that despite the large number of labels,
the scatterplot performance is comparable to av-
erage individual performance, suggesting that in
this case, the volume of labels does not counter
the noise in the data. For the list, we can see
a gain in performance, which is likely attributed
to the cleaner annotations from participants. For
MV, however, we find that the scatterplot per-
forms the best, whereas the list performs worse
compared with its Union counterpart, now hav-
ing approximately 3x less labels. This emphasizes
the interplay between accuracy and label quantity,
even despite the more informative labels provided
through the list interface, and supports our previ-
ous observation that balancing the volume of an-
notations with their quality yields the best annota-
tion strategy.

8 Discussion

We acknowledge some limitations in our tech-
nique and user study. A drawback to our sam-
pling scheme for the scatterplot is that it does not
utilize classifier informativeness. In initial exper-
iments, we found that uncertainty sampling led to
2D projections that were challenging to groupwise
label. This result is intuitive: data points classified
with lowest confidence will naturally have low-
quality embeddings, yielding poor clusters. Thus
we can not perform a consistent comparison of the
same sampling criterion used between the inter-
faces. For future work we will investigate active
learning techniques that are relevant to the learn-
ing task, while still permitting efficient labeling.

In this work we restricted our study to entity
classification, one of many types of IE tasks. Our
approach should generalize to other IE tasks, how-
ever, provided these tasks exhibit certain struc-

Interface
Union MV Ave. User

Acc Total Acc Total Acc Total
List 82.7 1463 95.4 543 85.1 217

Scatterplot 77.6 3503 92.5 1959 82.3 788

Table 2: Consensus accuracies and label amounts
across the interfaces. The last column is average
user accuracy and label amount.

ture. Specifically, user annotations in a task should
amount to labeling of data instances, and the data
instances defined by the task should be able to
be perceived in a 2D scatterplot. For instance,
coreference resolution and relationship extraction
fit both criteria. Assessing the effectiveness of vi-
sual supervision for these tasks is outside of the
scope of this paper, however, and we will consider
these studies in future work.

Overall, our user study clearly highlights the
importance of visual interfaces in acquiring su-
pervision for semi-supervised information extrac-
tion. We demonstrated that, when compared to the
traditional list interface, the scatterplot allows a
larger volume of annotations to be created at rea-
sonable accuracy, yielding better classifiers. We
believe this finding will influence active learning,
in terms of sampling criteria and the interplay be-
tween AL and visual interfaces.
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