
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1980–1990
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

1980

One-Shot Relational Learning for Knowledge Graphs

Wenhan Xiong†, Mo Yu∗, Shiyu Chang∗, Xiaoxiao Guo∗, William Yang Wang†
† University of California, Santa Barbara

∗ IBM Research
{xwhan, william}@cs.ucsb.edu, yum@us.ibm.com, {shiyu.chang, xiaoxiao.guo}@ibm.com

Abstract

Knowledge graphs (KGs) are the key compo-
nents of various natural language processing
applications. To further expand KGs’ cov-
erage, previous studies on knowledge graph
completion usually require a large number of
training instances for each relation. However,
we observe that long-tail relations are actually
more common in KGs and those newly added
relations often do not have many known triples
for training. In this work, we aim at predicting
new facts under a challenging setting where
only one training instance is available. We
propose a one-shot relational learning frame-
work, which utilizes the knowledge extracted
by embedding models and learns a matching
metric by considering both the learned embed-
dings and one-hop graph structures. Empir-
ically, our model yields considerable perfor-
mance improvements over existing embedding
models, and also eliminates the need of re-
training the embedding models when dealing
with newly added relations.1

1 Introduction

Large-scale knowledge graphs (Suchanek et al.,
2007; Vrandečić and Krötzsch, 2014; Bollacker
et al., 2008; Auer et al., 2007; Carlson et al., 2010)
represent every piece of information as binary re-
lationships between entities, usually in the form
of triples i.e. (subject, predicate, object). This
kind of structured knowledge is essential for many
downstream applications such as Question An-
swering and Semantic Web.

Despite KGs’ large scale, they are known to be
highly incomplete (Min et al., 2013). To automat-
ically complete KGs, extensive research efforts
(Nickel et al., 2011; Bordes et al., 2013; Yang

1Code and datasets could be found
at https://github.com/xwhan/
One-shot-Relational-Learning.

0 5000 10000 15000 20000
Relation frequency

0

100

200

300

400

500

C
ou

nt

Histogram of relation frequency on Wikidata

Figure 1: The histogram of relation frequencies in
Wikidata. There are a large portion of relations that
only have a few triples.

et al., 2014; Trouillon et al., 2016; Lao and Co-
hen, 2010; Neelakantan et al., 2015; Xiong et al.,
2017; Das et al., 2017; Chen et al., 2018) have
been made to build relational learning models that
could infer missing triples by learning from exist-
ing ones. These methods explore the statistical in-
formation of triples or path patterns to infer new
facts of existing relations; and have achieved con-
siderable performance on various public datasets.

However, those datasets (e.g. FB15k, WN18)
used by previous models mostly only cover com-
mon relations in KGs. For more practical scenar-
ios, we believe the desired KG completion models
should handle two key properties of KGs. First,
as shown in Figure 1, a large portion of KG rela-
tions are actually long-tail. In other words, they
have very few instances. But intuitively, the fewer
training triples that one relation has, the more KG
completion techniques could be of use. Therefore,
it is crucial for models to be able to complete re-
lations with limited numbers of triples. However,
existing research usually assumes the availability
of sufficient training triples for all relations, which

https://github.com/xwhan/One-shot-Relational-Learning
https://github.com/xwhan/One-shot-Relational-Learning

1981

limits their usefulness on sparse long-tail relations.
Second, to capture up-to-date knowledge, real-

world KGs are often dynamic and evolving at any
given moment. New relations will be added when-
ever new knowledge is acquired. If a model can
predict new triples given only a small number of
examples, a large amount of human effort could be
spared. However, to predict target relations, pre-
vious methods usually rely on well-learned repre-
sentations of these relations. In the dynamic sce-
nario, the representations of new relations cannot
be sufficiently trained given limited training in-
stances, thus the ability to adapt to new relations
is also limited for current models.

In contrast to previous methods, we propose
a model that depends only on the entity embed-
dings and local graph structures. Our model aims
at learning a matching metric that can be used to
discover more similar triples given one reference
triple. The learnable metric model is based on a
permutation-invariant network that effectively en-
codes the one-hop neighbors of entities, and also
a recurrent neural network that allows multi-step
matching. Once trained, the model will be able to
make predictions about any relation while exist-
ing methods usually require fine-tuning to adapt
to new relations. With two newly constructed
datasets, we show that our model can achieve
consistent improvement over various embedding
models on the one-shot link prediction task.

In summary, our contributions are three-fold:

• We are the first to consider the long-tail rela-
tions in the link prediction task and formulate
the problem as few-shot relational learning;

• We propose an effective one-shot learn-
ing framework for relational data, which
achieves better performance than various
embedding-based methods;

• We also present two newly constructed
datasets for the task of one-shot knowledge
graph completion.

2 Related Work

Embedding Models for Relational Learning
Various models have been developed to model re-
lational KGs in continous vector space and to au-
tomatically infer missing links. RESCAL (Nickel
et al., 2011) is one of the earlier work that models
the relationship using tensor operations. Bordes

et al. (2013) proposed to model relationships in the
1-D vector space. Following this line of research,
more advanced models such as DistMult (Yang
et al., 2014), ComplEx (Trouillon et al., 2016) and
ConvE (Dettmers et al., 2017) have been proposed.
These embedding-based models usually assume
enough training instances for all relations and en-
tities and do not pay attention to those sparse
symbols. More recently, several models (Shi and
Weninger, 2017; Xie et al., 2016) have been pro-
posed to handle unseen entities by leveraging text
descriptions. In contrast to these approaches, our
model deals with long-tail or newly added rela-
tions and focuses on one-shot relational learning
without any external information, such as text de-
scriptions of entities or relations.

Few-Shot Learning Recent deep learning based
few-shot learning approaches fall into two main
categories: (1) metric based approaches (Koch,
2015; Vinyals et al., 2016; Snell et al., 2017;
Yu et al., 2018), which try to learn generalizable
metrics and the corresponding matching functions
from a set of training tasks. Most methods in
this class adopt the general matching framework
proposed in deep siamese network (Koch, 2015).
One example is the Matching Networks (Vinyals
et al., 2016), which make predictions by compar-
ing the input example with a small labeled support
set; (2) meta-learner based approaches (Ravi and
Larochelle, 2017; Munkhdalai and Yu, 2017; Finn
et al., 2017; Li et al., 2017), which aim to learn the
optimization of model parameters (by either out-
putting the parameter updates or directly predict-
ing the model parameters) given the gradients on
few-shot examples. One example is the LSTM-
based meta-learner (Ravi and Larochelle, 2017),
which learns the step size for each dimension of
the stochastic gradients. Besides the above cate-
gories, there are also some other styles of few-shot
learning algorithms, e.g. Bayesian Program Induc-
tion (Lake et al., 2015), which represents concepts
as simple programs that best explain observed ex-
amples under a Bayesian criterion.

Previous few-shot learning research mainly fo-
cuses on vision and imitation learning (Duan et al.,
2017) domains. In the language domain, Yu et al.
(2018) proposed a multi-metric based approach
for text classification. To the best of our knowl-
edge, this work is the first research on few-shot
learning for knowledge graphs.

1982

3 Background

3.1 Problem Formulation
Knowledge graphs G are represented as a collec-
tion of triples {(h, r, t)} ⊆ E × R × E , where E
and R are the entity set and relation set. The task
of knowledge graph completion is to either predict
unseen relations r between two existing entities:
(h, ?, t) or predict the tail entity t given the head
entity and the query relation: (h, r, ?). As our pur-
pose is to infer unseen facts for newly added or
existing long-tail relations, we focus on the lat-
ter case. In contrast to previous work that usually
assumes enough triples for the query relation are
available for training, this work studies the case
where only one training triple is available. To be
more specific, the goal is to rank the true tail entity
ttrue higher than other candidate entities t ∈ Ch,r,
given only an example triple (h0, r, t0). The can-
didates set is constructed using the entity type con-
straint (Toutanova et al., 2015). It is also worth
noting that when we predict new facts of the rela-
tion r, we only consider a closed set of entities, i.e.
no unseen entities during testing. For open-world
settings where new entities might appear during
testing, external information such as text descrip-
tions about these entities are usually required and
we leave this to future work.

3.2 One-Shot Learning Settings
This section describes the settings for the training
and evaluation of our one-shot learning model.

The goal of our work is to learn a metric that
could be used to predict new facts with one-
shot examples. Following the standard one-shot
learning settings (Vinyals et al., 2016; Ravi and
Larochelle, 2017), we assume access to a set
of training tasks. In our problem, each train-
ing task corresponds to a KG relations r ∈ R,
and has its own training/testing triples: Tr =
{Dtrain

r , Dtest
r }. This task set is often denoted as

the meta-training set, Tmeta−train.
To imitate the one-shot prediction at evaluation

time, there is only one triple (h0, r, t0) in each
Dtrain
r . The Dtest

r = {(hi, r, ti, Chi,r)} consists
of the testing triples of r with ground-truth tail en-
tities ti for each query (hi, r), and the correspond-
ing tail entity candidates Chi,r = {tij} where each
tij is an entity in G. The metric model can thus
be tested on this set by ranking the candidate set
Chi,r given the test query (hi, r) and the labeled
triple in Dtrain

r . We denote an arbitrary ranking-

loss function as `θ(hi, r, ti|Chi,r, Dtrain
r), where

θ represents the parameters of our metric model.
This loss function indicates how well the metric
model works on tuple (hi, r, ti, Chi,r) while ob-
serving only one-shot data from Dtrain

r . The ob-
jective of training the metric model, i.e. the meta-
training objective, thus becomes:

min
θ

ETr

 ∑
(hi,r,ti,Chi,r

)∈Dtest
r

`θ(hi, r, ti|Chi,r, D
train
r)

|Dtest
r |

 ,
(1)

where Tr is sampled from the meta-training set
Tmeta−train, and |Dtest

r | denotes the number of tu-
ples in Dtest

r .
Once trained, we can use the model to make

predictions on new relations r′ ∈ R′, which is
called the meta-testing step in literature. These
meta-testing relations are unseen from meta-
training, i.e. R′ ∩ R = φ. Each meta-testing
relation r′ also has its own one-shot training data
Dtrain
r′ and testing data Dtest

r′ , defined in the same
way as in meta-training. These meta-testing rela-
tions form a meta-test set Tmeta−test.

Moreover, we leave out a subset of rela-
tions in Tmeta−train as the meta-validation set
Tmeta−validation. Because of the assumption of
one-shot learning, the meta-testing relations do
not have validation sets like in the traditional
machine learning setting. Otherwise, the metric
model will actually see more than one-shot la-
beled data during meta-testing, thus the one-shot
assumption is violated.

Finally, we assume that the method has access
to a background knowledge graph G′, which is a
subset of G with all the relations from Tmeta−train,
Tmeta−validation and Tmeta−test removed.

4 Model

In this section, we describe the proposed model for
similarity metric learning and also the correspond-
ing loss function ` we use to train our model.

The core of our proposed model is a similar-
ity function M((h, t), (h′, t′)|G′). Thus for any
query relation r, as long as there is one known fact
(h0, r, t0), the model could predict the likelihood
of testing triples {(hi, r, tij)|tij ∈ Chi,r}, based
on the matching score between each (hi, tij) and
(h0, t0). The implementation of the above match-
ing function involves two sub-problems: (1) the
representations of entity pairs; and (2) the compar-
ison function between two entity-pair representa-
tions. Our overall model, as shown in Figure 2,

1983

Leonardo	
da	Vinci

Occupation

Painter

vegetarianism

Lifestyle

Milan

Work	location

Italian

AmbassadorLanguage

Position	held

a)	Local	graph	of	entity	Leonardo	da	Vinci	

...

Relation:	occupation Entity:	painter

b)	Neighbor	Encoder

...

...

LSTM

Similarity	Score

:		sum
:		concatenation
:		cosine	similarity

c)	Matching	Processor

(da	Vinci,		The	Starry	Night) (da	Vinci,	Mona	Lisa)

ReferenceQuery

Figure 2: a) and b): Our neighbor encoder operating on entity Leonardo da Vinci; c): The matching processor.

deals with the above two problems with two major
components respectively:
• Neighbor encoder (Figure 2b), aims at utilizing
the local graph structure to better represent enti-
ties. In this way, the model can leverage more in-
formation that KG provides for every entity within
an entity pair.
•Matching processor (Figure 2c), takes the vec-
tor representations of any two entity pairs from
the neighbor encoder; then performs multi-step
matching between two entity-pairs and outputs a
scalar as the similarity score.

4.1 Neighbor Encoder

This module is designed to enhance the represen-
tation of each entity with its local connections in
knowledge graph.

Although the entity embeddings from KG em-
bedding models (Bordes et al., 2013; Yang et al.,
2014) already have relational information en-
coded, previous work (Neelakantan et al., 2015;
Lin et al., 2015a; Xiong et al., 2017) showed that
explicitly modeling the structural patterns, such as
paths, is usually beneficial for relationship predic-
tion. In view of this, we propose to use a neighbor
encoder to incorporate graph structures into our
metric-learning model. In order to benefit from
the structural information while maintaining the
efficiency to easily scale to real-world large-scale
KGs, our neighbor encoder only considers enti-
ties’ local connections, i.e. the one-hop neighbors.

For any given entity e, its local connections
form a set of (relation, entity) tuples. As shown in
Figure 2a, for the entity Leonardo da Vinci, one of
such tuples is (occupation, painter). We refer this

neighbor set as as Ne = {(rk, ek)|(e, rk, ek) ∈
G′}. The purpose of our neighbor encoder is to
encode Ne and output a vector as the latent repre-
sentation of e. Because this is a problem of encod-
ing sets with varying sizes, we hope the encoding
function can be (1) invariant to permutations and
also (2) insensitive to the size of the neighbor set.
Inspired by the results from (Zaheer et al., 2017),
we use the following function f that satisfies the
above properties:

f(Ne) = σ(
1

|Ne|
∑

(rk,ek)∈Ne

Crk,ek). (2)

where Crk,ek is the feature representation of a
relation-entity pair (rk, ek) and σ is the acti-
vation function. In this paper we set σ =
tanh which achieves the best performance on
Tmeta−validation.

To encode every tuple (rk, ek) ∈ Ne into
Crk,ek , we first use an embedding layer emb with
dimension d (which can be pre-trained using ex-
isting embedding-based models) to get the vector
representations of rk and ek:

vrk = emb(rk), vek = emb(ek)

Dropout (Srivastava et al., 2014) is applied here
to the vectors vrk , vek to achieve better generaliza-
tion. We then apply a feed-forward layer to encode
the interaction within this tuple:

Crk,ek =Wc(vrk ⊕ vek) + bc, (3)

where Wc ∈ Rd×2d, bc ∈ Rd are parameters to be
learned and ⊕ denotes concatenation.

1984

0 50 100 150 200
0

200
400
600
800

1000
1200
1400
1600

En
tit

y
co

un
t

Entity degree distribution on NELL and Wikidata

0 50 100 150 200
Number of neighbors

0
5000

10000
15000
20000
25000
30000
35000

En
tit

y
co

un
t

Figure 3: The distribution of entities’ degrees (num-
bers of neighbors) on our two datasets. Since we work
on closed-set of entities, we draw the figure by con-
sidering the intersection between entities in our back-
ground knowledge G′ and the entities appearing in
Tmeta−train, Tmeta−validation or Tmeta−test. Note
that all triples in Tmeta−train, Tmeta−validation or
Tmeta−test are removed from G′. Upper: NELL;
Lower: Wikidata.

To enable batching during training, we manu-
ally specify the maximum number of neighbors
and use all-zero vectors as “dummy” neighbors.
Although different entities have different degrees
(number of neighbors), the degree distribution is
usually very concentrated, as shown in Figure 3.
We can easily find a proper bound as the maximum
number of neighbors to batch groups of entities.

The neighbor encoder module we propose here
is similar to the Relational Graph Convolutional
Networks (Schlichtkrull et al., 2017) in the sense
that we also use the shared kernel {Wc, bc} to en-
code the neighbors of different entities. But un-
like their model that operates on the whole graph
and performs multiple steps of information prop-
agation, we only encode the local graphs of the
entities and perform one-step propagation. This
enables us to easily apply our model to large-scale
KGs such as Wikidata. Besides, their model also
does not operate on pre-trained graph embeddings.
We leave the investigation of other graph encoding
strategies, e.g. (Xu et al., 2018; Song et al., 2018),
to future work.

4.2 Matching Processor
Given the neighbor encoder module, now we dis-
cuss how we can do effective similarity matching
based on our recurrent matching processor. By ap-
plying f(Ne) to the reference entity pair (h0, t0)
and any query entity pair (hi, tij), we get two

Algorithm 1 One-shot Training
1: Input:
2: a) Meta-training task set Tmeta−training;
3: b) Pre-trained KG embeddings (excluding relation in

Tmeta−training);
4: c) Initial parameters θ of the metric model;
5: for epoch = 0:M-1 do
6: Shuffle the tasks in Tmeta−learning
7: for Tr in Tmeta−learning do
8: Sample one triple as the reference
9: Sample a batch B+ of query triples

10: Pollute the tail entity of query triples to get B−

11: Calculate the matching scores for triple in B+

and B−

12: Calculate the batch loss L =
∑
B `

13: Update θ using gradient g ∝ ∇L
14: end for
15: end for

neighbor vectors for each: [f(Nh0); f(Nt0)] and
[f(Nhi); f(Ntij)]. To get a similarity score that
can be used to rank (hi, tij) among other candi-
dates, we can simply concatenate the f(Nh) and
f(Nt) in each pair to form a single pair repre-
sentation vector, and calculate the cosine similar-
ity between pairs. However, this simple metric
model turns out to be too shallow and does not
give good performance. To enlarge our model’s
capacity, we leverage a LSTM-based (Hochre-
iter and Schmidhuber, 1997) recurrent “process-
ing” block (Vinyals et al., 2015, 2016) to perform
multi-step matching. Every process step is defined
as follows:

h
′
k+1, ck+1 = LSTM(q, [hk ⊕ s, ck])

hk+1 = h
′
k+1 + q

scorek+1 =
hk+1 � s
‖hk+1‖ ‖s‖

, (4)

where LSTM(x, [h, c]) is a standard LSTM cell
with input x, hidden state h and cell state c, and
s = f(Nh0)⊕ f(Nt0), q = f(Nhi)⊕ f(Ntij) are
the concatenated neighbor vectors of the reference
pair and query pair. AfterK processing steps2, we
use scoreK as the final similarity score between
the query and support entity pair. For every query
(hi, r, ?), by comparing (hi, tij) with (h0, t0), we
can get the ranking scores for every tij ∈ Chi,r.

4.3 Loss Function and Training
For a query relation r and its reference/training
triple (h0, r, t0), we collect a group of positive
(true) query triples {(hi, r, t+i)|(hi, r, t

+
i) ∈ G}

and construct another group negative (false) query
2K is a hyperparameter to be tuned.

1985

triples {(hi, r, t−i)|(hi, r, t
−
i) 6∈ G} by polluting

the tail entities. Following previous embedding-
based models, we use a hinge loss function to op-
timize our model:

`θ = max(0, γ + score−θ − score
+
θ), (5)

where score+θ and score−θ are scalars calculated
by comparing the query triple (hi, r, t

+
i /t
−
i) with

the reference triple (h0, r, t0) using our metric
model, and the margin γ is a hyperparameter to
be tuned. For every training episode, we first sam-
ple one task/relation Tr from the meta-training set
Tmeta−training. Then from all the known triples in
Tr, we sample one triple as the reference/training
triple Dtrain

r and a batch of other triples as the
positive query/test triples Dtest

r . The detail of the
training process is shown in Algorithm 1. Our ex-
periments are discussed in the next section.

5 Experiments

5.1 Datasets

Dataset # Ent. # R. # Triples # Tasks

NELL-One 68,545 358 181,109 67
Wiki-One 4,838,244 822 5,859,240 183

Table 1: Statistics of the Datasets. # Ent. denotes the
number of unique entities and # R. denotes the number
of all relations. # Tasks denotes the number of relations
we use as one-shot tasks.

Existing benchmarks for knowledge graph com-
pletion, such as FB15k-237 (Toutanova et al.,
2015) and YAGO3-10 (Mahdisoltani et al., 2013)
are all small subsets of real-world KGs. These
datasets consider the same set of relations during
training and testing and often include sufficient
training triples for every relation. To construct
datasets for one-shot learning, we go back to the
original KGs and select those relations that do not
have too many triples as one-shot task relations.
We refer the rest of the relations as background re-
lations, since their triples provide important back-
ground knowledge for us to match entity pairs.

Our first dataset is based on NELL (Mitchell
et al., 2018), a system that continuously collects
structured knowledge by reading webs. We take
the latest dump and remove those inverse relations.
We select the relations with less than 500 but more
than 50 triples3 as one-shot tasks. To show that
our model is able to operate on large-scale KGs,

3We want to have enough triples for evaluation.

we follow the similar process to build another
larger dataset based on Wikidata (Vrandečić and
Krötzsch, 2014). The dataset statistics are shown
in Table 1. Note that the Wiki-One dataset is an
order of magnitude larger than any other bench-
mark datasets in terms of the numbers of entities
and triples. For NELL-One, we use 51/5/11 task
relations for training/validation/testing. For Wiki-
One, the division ratio is 133:16:34.

5.2 Implementation Details

In our experiments, we consider the follow-
ing embedding-based methods: RESCAL (Nickel
et al., 2011), TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014) and ComplEx (Trouillon
et al., 2016). For TransE, we use the code released
by Lin et al. (2015b). For the other models, we
have tried the code released by Trouillon et al.
(2016) but it gives much worse results than TransE
on our datasets. Thus we use our own implemen-
tations based on PyTorch (Paszke et al., 2017) for
comparison. When evaluating existing embedding
models, during training, we use not only the triples
of background relations but also all the triples
of the training relations and the one-shot training
triple of those validation/test relations. However,
since the proposed metric model does not require
the embeddings of query relations, we only in-
clude the triples of the background relations for
embedding training. As TransE and DistMult use
1-D vectors to represent entities and relations, they
can be directly used in our natching model. While
for RESCAL, since it uses matrices to represent
relations, we employ mean-pooling over these ma-
trices to get 1-D embeddings. For the ComplEx
model, we use the concatenation of the real part
and imaginary part. The hyperparameters of our
model are tuned on the validation task set and can
be found in the appendix.

Apart from the above embedding models, a
more recent method (Dettmers et al., 2017) applies
convolution to model relationships and achieves
the best performance on several benchmarks. For
every query (h, r, ?), their model enumerates the
whole entity set to get positive and negative triples
for training. We find that this training paradigm
takes lots of computational resources when deal-
ing with large entity sets and cannot scale to real-
world KGs such as Wikidata4 that have millions

4On a GPU card with 12GB memory, we fail to run their
ConvE model on Wiki-One with batch size 1.

1986

NELL-One Wiki-One

Model MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

RESCAL .071/.140 .100/.229 .082/.186 .048/.089 .119/.072 .167/.082 .132/.062 .093/.051
TransE .082/.093 .177/.192 .126/.141 .032/.043 .023/.035 .036/.052 .029/.043 .015/.025
DistMult .075/.102 .128/.177 .093/.126 .045/.066 .042/.048 .086/.101 .055/.070 .017/.019
ComplEx .072/.131 .128/.223 .041/.086 .041/.086 .079/.069 .148/.121 .106/.092 .046/.040

GMatching (RESCAL) .144/.188 .277/.305 .216/.243 .087/.133 .113/.139 .330/.305 .180/.228 .033/.061
GMatching (TransE) .168/.171 .293/.255 .239/.210 .103/.122 .167/.219 .349/.328 .289/.269 .083/.163
GMatching (DistMult) .119/.171 .238/.301 .183/.221 .054/.114 .190/.222 .384/.340 .291/.271 .114/.164
GMatching (ComplEx) .132/.185 .308/.313 .232/.260 .049/.119 .201/.200 .350/.336 .231/.272 .141/.120
GMatching (Random) .083/.151 .211/.252 .135/.186 .024/.103 .174/.198 .309/.299 .222/.260 .121/.133

Table 2: Link prediction results on validation/test relations. KG embeddings baselines are shown at the top of the
table and our one-shot learning (GMatching) results are shown at the bottom. Bold numbers denote the best results
on meta-validation/meta-test. Underline numbers denote the model selection results from all KG embeddings
baselines, or from all one-shot methods, i.e. selecting the method with the best validation score and reporting the
corresponding test score.

of entities. For the scalability concern, our experi-
ments only consider models that use negative sam-
pling for training.

5.3 Results
The main results of our methods are shown in Ta-
ble 2. We denote our method as “GMatching”
since our model is trained to match local graph
patterns. We use mean reciprocal rank (MRR)
and Hits@K to evaluate different models. We can
see that our method produces consistent improve-
ments over various embedding models on these
one-shot relations. The improvements are even
more substantial on the larger Wiki-One dataset.
To investigate the learning power of our model,
we also try to train our metric model with ran-
domly initialized embeddings. Surprisingly, al-
though the results are worse than the metric mod-
els with pre-trained embeddings, they are still su-
perior to the baseline embedding models. This
suggests that, by incorporating the neighbor enti-
ties into our model, the embeddings of many rela-
tions and entities actually get updated in an effec-
tive way and provide useful information for our
model to make predictions on test data.

It is worth noting that once trained, our model
can be used to predict any newly added relations
without fine-tuning, while existing models usu-
ally need to be re-trained to handle those newly
added symbols. On a large real-world KG, this
re-training process can be slow and highly com-
putational expensive.

Remark on Model Selection Given the exis-
tence of various KG embedding models, one in-
teresting experiment is to incorporate model selec-

tion into hyper-parameter tuning and choose the
best validation model for testing.

If we think about comparing KG embedding
and metric learning as two approaches, the re-
sults from the model selection process can then
be used as the “final” measurement for compar-
ison. For example, the baseline KG embedding
achieves best MRR on Wiki-One with RESCAL
(11.9%), so we report the corresponding testing
MRR (7.2%) as the final model selection result for
KG embedding approach. In this way, at the top
half of Table 2, we select the best KG embedding
method according to the validation performance.
The results are highlighted with underlines. Sim-
ilarly, we select the best metric learning approach
at the bottom.

Our metric-based method outperforms KG em-
bedding by a large margin from this perspective
as well. Taking MRR as an example, the selected
metric model achieves 17.1% on NELL-One and
20.0% on Wiki-One; while the results of KG em-
bedding are 9.3% and 7.2%. The improvement is
7.8% and 12.8% respectively.

5.4 Analysis on Neighbor-Encoder

As our model leverages entities’ local graph struc-
tures by encoding the neighbors, here we try to
investigate the effect of the neighbor set by re-
stricting the maximum number of neighbors. If
the size of the true neighbor set is larger than the
maximum limit, the neighbors are then selected
by random sampling. Figure 4 shows the learn-
ing curves of different settings. These curves are
based on the Hits@10 calculated on the valida-
tion set. We see that encoding more neighbors

1987

MRR Hits@10

Relations # Candidates GMatching ComplEx GMatching ComplEx

sportsGameSport 123 0.424 0.466(0.139?) 1.000 0.479(0.200?)
athleteInjuredHisBodypart 299 0.025 0.026(0.330?) 0.015 0.059(0.444?)
animalSuchAsInvertebrate 786 0.447 0.333(0.555?) 0.626 0.587(0.783?)
automobilemakerDealersInCountry 1084 0.453 0.245(0.396?) 0.821 0.453(0.500?)
sportSchoolIncountry 2100 0.534 0.324(0.294?) 0.745 0.529(0.571?)
politicianEndorsesPolitician 2160 0.093 0.026(0.194?) 0.226 0.047(0.357?)
agriculturalProductFromCountry 2222 0.120 0.029(0.042?) 0.288 0.058(0.086?)
producedBy 3174 0.085 0.040(0.165?) 0.179 0.075(0.241?)
automobilemakerDealersInCity 5716 0.026 0.024(0.041?) 0.040 0.051(0.174?)
teamCoach 10569 0.017 0.065(0.376?) 0.024 0.079(0.547?)
geopoliticalLocationOfPerson 11618 0.028 0.016(0.284?) 0.035 0.035(0.447?)

Table 3: Results decomposed over different relations. “?” denotes the results with standard training settings and
“# Candidates” denotes the size of candidate entity set.

0 100000 200000 300000 400000 500000 600000
Training steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

H
its

@
10

Learning curves
N=10
N=20
N=30
N=40
N=50

Figure 4: The learning curves on NELL-one. Every
run uses different number of neighbors. The y-axis is
Hits@10 calculated on all the validation relations.

Configuration Hits@10

Full Model with ComplEx .308/.313

w/o Matching Processor .266/.269
w/o Neighbor Encoder .248/.296
w/o Scaling Factor .229/.219

Table 4: Ablation on different components.

for every entity generally leads to better perfor-
mance. We also observe that the model that en-
codes 40 neighbors in maximum actually yields
worse performance than the model that only en-
codes 30 neighbors. We think the potential reason
is that for some entity pairs, there are some local
connections that are irrelevant and provide noisy
information to the model.

5.5 Ablation Studies
We conduct ablation studies using the model that
achieves the best Hits@10 on the NELL-One
dataset. The results are shown in Table 4. We
use Hits@10 on validation and test set for com-
parison, as the hyperparameters are selected us-

ing this evaluation metric. We can see that both
the matching processor5 and the neighbor encoder
play important roles in our model. Another im-
portant observation is that the scaling factor 1/Ne
turns out to be very essential for the neighbor en-
coder. Without scaling, the neighbor encoder ac-
tually gives worse results compared to the simple
embedding-based matching.

5.6 Performance on Different Relations

When testing various models, we observe that the
results on different relations are actually of high
variance. Table 3 shows the decomposed results
on NELL-One generated by our best metric model
(GMatching-ComplEx) and its corresponding em-
bedding method. For reference, we also report
the embedding model’s performance under stan-
dard training settings where 75% of the triples (in-
stead of only one) are used for training and the
rest are used for testing. We can see that rela-
tions with smaller candidate sets are generally eas-
ier and our model could even perform better than
the embedding model trained under standard set-
tings. For some relations such as athleteInjured-
HisBodypart, their involved entities have very few
connections in KG. It is as expected that one-shot
learning on these kinds of relations is quite chal-
lenging. Those relations with lots of (>3000) can-
didates are challenging for all models. Even for
embedding model with more training triples, the
performance on some relations is still very limited.
This suggests that the knowledge graph comple-
tion task is still far from being solved.

5Matching without Matching Processor is equivalent to
matching using simple cosine similarity.

1988

6 Conclusion

This paper introduces a one-shot relational learn-
ing framework that could be used to predict new
facts of long-tail relations in KGs. Our model
leverages the local graph structure of entities and
learns a differentiable metric to match entity pairs.
In contrast to existing methods that usually need
finetuning to adapt to new relations, our trained
model can be directly used to predict any un-
seen relation and also achieves much better per-
formance in the one-shot setting. Our future
work might consider incorporating external text
data and also enhancing our model to make better
use of multiple training examples in the few-shot
learning case.

Acknowledgments

This research is supported by an IBM Faculty
Award. We also thank the anonymous reviewers
for their useful feedback.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. AcM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI, volume 5,
page 3. Atlanta.

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William
Wang. 2018. Variational knowledge graph reason-
ing. arXiv preprint arXiv:1803.06581.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. 2017.
Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement
learning. arXiv preprint arXiv:1711.05851.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2017. Convolutional
2d knowledge graph embeddings. arXiv preprint
arXiv:1707.01476.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Ope-
nAI Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. 2017. One-
shot imitation learning. In Advances in neural infor-
mation processing systems, pages 1087–1098.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Gregory Koch. 2015. Siamese neural networks for one-
shot image recognition. Ph.D. thesis, University of
Toronto.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. 2015. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332–1338.

Ni Lao and William W Cohen. 2010. Relational re-
trieval using a combination of path-constrained ran-
dom walks. Machine learning, 81(1):53–67.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li.
2017. Meta-sgd: Learning to learn quickly for few
shot learning. arXiv preprint arXiv:1707.09835.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015a. Modeling rela-
tion paths for representation learning of knowledge
bases. arXiv preprint arXiv:1506.00379.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI,
volume 15, pages 2181–2187.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M
Suchanek. 2013. Yago3: A knowledge base from
multilingual wikipedias. In CIDR.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 777–782.

Tom Mitchell, William Cohen, Estevam Hruschka,
Partha Talukdar, B Yang, J Betteridge, A Carlson,
B Dalvi, M Gardner, B Kisiel, et al. 2018. Never-
ending learning. Communications of the ACM,
61(5):103–115.

1989

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta net-
works. arXiv preprint arXiv:1703.00837.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base inference. In 2015 aaai spring
symposium series.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML, vol-
ume 11, pages 809–816.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Sachin Ravi and Hugo Larochelle. 2017. Optimization
as a model for few-shot learning. In International
Conference on Learning Representations, volume 1,
page 6.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks. arXiv preprint arXiv:1703.06103.

Baoxu Shi and Tim Weninger. 2017. Open-world
knowledge graph completion. arXiv preprint
arXiv:1711.03438.

Jake Snell, Kevin Swersky, and Richard S Zemel. 2017.
Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175.

Linfeng Song, Yue Zhang, Zhiguo Wang, and
Daniel Gildea. 2018. A graph-to-sequence
model for amr-to-text generation. arXiv preprint
arXiv:1805.02473.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697–706. ACM.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1499–1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In In-
ternational Conference on Machine Learning, pages
2071–2080.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2015. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan
Wierstra, et al. 2016. Matching networks for one
shot learning. In Advances in Neural Information
Processing Systems, pages 3630–3638.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In AAAI,
pages 2659–2665.

Wenhan Xiong, Thien Hoang, and William Yang
Wang. 2017. Deeppath: A reinforcement learn-
ing method for knowledge graph reasoning. arXiv
preprint arXiv:1707.06690.

Kun Xu, Lingfei Wu, Zhiguo Wang, and Vadim
Sheinin. 2018. Graph2seq: Graph to sequence
learning with attention-based neural networks.
arXiv preprint arXiv:1804.00823.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni
Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang,
and Bowen Zhou. 2018. Diverse few-shot text
classification with multiple metrics. arXiv preprint
arXiv:1805.07513.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabas Poczos, Ruslan R Salakhutdinov, and
Alexander J Smola. 2017. Deep sets. In Advances
in Neural Information Processing Systems, pages
3394–3404.

1990

A Hyperparameters

For the NELL dataset, we set embedding size as
100. For Wikidata, we set the embedding size
as 50 for faster training with millions of triples.
The embeddings are trained for 1,000 epochs. The
other hyperparamters are tuned using the Hits@10
metric6 on the validation tasks. For matching
steps, the optimal setting is 2 for NELL-One and
4 for Wiki-One. For the number of neighbors,
we find that the maximum limit 50 works the
best for both datasets. For parameter updates, we
use Adam (Kingma and Ba, 2014) with the initial
learning rate 0.001 and we half the learning rate
after 200k update steps. The margin used in our
loss function is 5.0. The dimension of LSTM’s
hidden size is 200.

B Few-Shot Experiments

Metrics GMatching ComplEx
1-shot 5-shot 1-shot 5-shot

MRR .132/.185 .178/.201 .072/.131 .113/.200
Hits@10 .308/.313 .307/.311 .128/.223 .221/.325
Hits@5 .232/.260 .241/.264 .041/.086 .160/.269
Hits@1 .049/.119 .109/.143 .041/.086 .113/.133

Table 5: 5-shot experiments on NELL-One.

6The percentage of correct answer ranks within top10.

