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Abstract
This paper introduces a simple yet effective
transition-based system for Abstract Mean-
ing Representation (AMR) parsing. We argue
that a well-defined search space for a transi-
tion system is crucial for building an effective
parser. We propose to conduct the search in
a refined search space based on a new com-
pact AMR graph and an improved oracle. Our
end-to-end parser achieves the state-of-the-art
performance on various datasets with minimal
additional information.1

1 Introduction
Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism that captures
the semantics of a sentence with a rooted directed
graph, in which nodes represent the concepts and
edges represent the relations between concepts.
An example AMR graph together with its corre-
sponding sentence are illustrated in Figure 1.

AMR parsing, the task of transforming a sen-
tence into its AMR graph, is a challenging task
as it requires the parser to learn to predict not
only concepts, which consist of predicates, lem-
mas, named entities, wiki-links and co-references,
but also a large number of relation types based
on relatively sparse training data (Peng et al.,
2017). Given the challenges, many state-of-the-art
AMR parsers employ various external resources
and adopt a pipeline approach (Flanigan et al.,
2016; Wang and Xue, 2017; Foland and Martin,
2017; van Noord and Bos, 2017). Recently, Da-
monte et al. (2016); Ballesteros and Al-Onaizan
(2017); Peng et al. (2018) have successfully devel-
oped AMR parsers in an end-to-end fashion using
a transition-based approach.

The transition-based approach (Yamada and
Matsumoto, 2003; Nivre, 2003, 2004) has been

1Dynet (Neubig et al., 2017) is used to implement our
parser. We make the supplementary material and code avail-
able at http://statnlp.org/research/sp
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Figure 1: An example AMR graph for a sentence.

popular among many NLP tasks, including syn-
tactic parsing (Zhang and Clark, 2011; Chen and
Manning, 2014), named entity recognition (Lam-
ple et al., 2016), and semantic parsing (Cheng
et al., 2017). Different from the graph-based ap-
proach for structured prediction (e.g., conditional
random fields (Lafferty et al., 2001)), such an ap-
proach is able to maintain a good balance be-
tween efficiency and accuracy (Nivre and McDon-
ald, 2008), and has achieved state-of-the-art re-
sults on a number of tasks (Swayamdipta et al.,
2016; Shi et al., 2017; Cheng et al., 2017).

While the transition-based approach is promis-
ing for AMR parsing, existing transition-based
AMR parsers still cannot attain the state-of-the-
art results on such a task. We observe that the
key to the development of an effective transition-
based system is a properly defined search space,
and argue that the search space used in existing
transition systems needs to be refined. Inspired
by (Wang et al., 2015), we design a new compact
AMR graph representation. Transition actions de-
signed based on such a compact graph enable our
parser to generate the target structure with fewer
actions and to better capture the correspondence

http://statnlp.org/research/sp
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between concepts and tokens in the sentence.
Oracle, the algorithm used at the training time

for specifying the action sequence that can re-
cover the gold AMR graph, is also crucial for the
transition-based system. A good oracle will be
able to teach the parser how to find a proper path in
the search space. The oracle requires alignment in-
formation between words and concepts. We iden-
tify limitations associated with current practice for
finding such alignment information, and propose a
new approach that integrates both rules and unsu-
pervised learning.

Experiments show that our system that makes
use of POS tags as the only external resource per-
forms competitively on benchmark datasets. To
the best of our knowledge, the parser achieves
the highest score on the standard LDC2014T12
dataset. Our parser also yields competitive scores
on the LDC2015E86 dataset and the more recent
LDC2017T10 dataset. On the popular newswire
section of LDC2014T12 dataset, our parser out-
performs the previous best system by around 3
points in terms of F1 measure.

2 Related Work

Since the AMR graph encodes rich information,
it has been explored for many downstream appli-
cations such as language generation (Song et al.,
2016), information extraction (Huang et al., 2016)
and machine comprehension (Sachan and Xing,
2016). Currently, most parsers can be categorized
into 4 classes: 1) Tree: such approaches incre-
mentally convert a dependency tree into its cor-
responding AMR graph (Wang et al., 2015; Good-
man et al., 2016; Barzdins and Gosko, 2016); 2)
Graph: the graph-based models calculate scores
of edges and then use a maximum spanning con-
nected subgraph algorithm to select edges that
will constitute the graph (Werling et al., 2015;
Flanigan et al., 2016); 3) Seq2seq: the mod-
els adapted from sequence-to-sequence (Sutskever
et al., 2014) methods (Peng et al., 2017; Konstas
et al., 2017); 4) Transition: the transition-based
methods, whose input is the plain text sentence
and the output is the corresponding graph (Zhou
et al., 2016; Damonte et al., 2016; Ballesteros and
Al-Onaizan, 2017; Peng et al., 2018).

Apart from these models, Peng et al. (2015)
introduce a synchronous hyperedge replacement
grammar solution. Pust et al. (2015) regard the
task as a machine translation problem, while Artzi
et al. (2015) adapt combinatory categorical gram-

mar (Steedman and Baldridge, 2011) for it. Foland
and Martin (2017) decompose the parsing task
into many subtasks. Then they use multiple bidi-
rectional LSTMs for identifying different types
of concepts and relations and iteratively combine
these components to form the AMR graph.

Because the mapping between AMR concepts
and tokens in the input sentence is latent, exter-
nal aligners have been developed for training pur-
pose. The most popular aligner is JAMR (Flanigan
et al., 2016), which greedily aligns input tokens to
graph fragments by using a static template. An-
other aligner is ISI (Pourdamghani et al., 2014),
which is a statistical approach that borrows tech-
niques from statistical machine translation.

3 Approach

We adopt a transition-based approach for AMR
parsing. We first propose a new compact represen-
tation for AMR graph. Based on our new repre-
sentation, we further present a novel technique for
constructing the action sequence used for training
our model. As we will see later, both newly intro-
duced techniques are crucial for building an im-
proved transition-based system within our refined
search space.

3.1 Compact AMR Graph
Inspired by (Wang et al., 2015), we design a rep-
resentation called compact AMR graph to simplify
concepts and relations of an AMR graph, which
makes the learning of our transition system eas-
ier. The construction of our compact AMR graph
involves removing concepts and relations from an
original AMR graph.
Remove Concepts: First we categorize AMR
concepts into 2 types:

• Lexical: concepts which are converted di-
rectly from tokens in the sentence into cer-
tain expressions ranging from predicates with
sense tags, lemmas to tokens with quotation
marks. One example is the concept seem-01
shown in Figure 1, which is converted from
the token seems with 01 as the sense tag.

• Non-Lexical: concepts which are invoked by
their child concepts rather than from tokens
in the sentence directly. Examples include
country and name in Figure 1.2

A non-lexical concept is invoked by its child
concepts, while a lexical concept corresponds to

2A list of non-lexical concepts are provided in the supple-
mentary material.
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Figure 2: The compact AMR graph for the example in
Figure 1.

a certain token in the input sentence. Inspired by
(Lu et al., 2008) which learns a semantic parser by
aligning words and semantic units, we compress
a subgraph rooted by a non-lexical concept into a
new concept, which directly corresponds to a con-
tiguous span in the sentence.

For example, a subgraph that consists of
non-lexical concepts: country, name and lexi-
cal concepts “United”, “Kingdom” in Figure 1
can be compressed into one non-lexical concept
ENcountry, which can be aligned to the span
“United Kingdom” in the input sentence as shown
in Figure 2.

Removing concepts in the graph enables the
parser to build it with fewer actions. Empiri-
cally we find that 9% fewer actions are required in
LDC2015E86 on average. Also, all concepts can
be invoked by a contiguous span in the sentence,
which helps the parser to capture the correspon-
dence between concepts and tokens better.
Remove Relations: We also refine the search
space by eliminating certain relations in the orig-
inal AMR graph. The number of relation types is
relatively large in the AMR corpus, which leads
to a large search space. In order to introduce reen-
trancy3, attached concepts have to stay in the stack
rather than being removed as in most of transition-
based AMR parsers.

Take cause-01 shown in the Figure 1 as an
example, which is a reentrancy node headed by
know-01 and continue-01. After it has been at-
tached to its parent know-01 and child change-01,
it still needs to stay in the stack and wait for an-
other relation headed by continue-01. These two
concepts are potentially far away from each other
in the input sentence, which means cause-01 has

3One concept can participate in multiple relations as con-
cept country in Figure 1.

to stay in the stack for a long time. In general, the
longer a word has to wait to get assigned the more
opportunities there are for something to go awry
(Manning and Schütze, 1999).

During the testing phase, the parser does not
know whether cause-01 is a reentrancy node.
Therefore, the parser needs to add all possible re-
lation attachment actions (nearly half of the action
space) into the valid action set as long as cause-01
exists in the stack, which makes the parser harder
to train.

Thus, we define several properties that the com-
pact graph should respect to further refine the
search space4:

• Acyclicity: cycles are forbidden. The rela-
tion ARG0 between cause-01 and continue-
01 shown in Figure 1 is removed in the com-
pact AMR graph Figure 2.

• Simple: for each parent-child concept pair,
only one relation is attached. There exist two
relations ARG0 and ARG1 between concepts
unite and country shown in Figure 1. One of
them is removed in Figure 2.

• Non-terminal restricted: only a subset of
concepts are allowed to have children. For
example, lexical concept – in Figure 1 can
only be a terminal node in the compact AMR
graph, which means that it can be removed
from the stack once it has been attached.

• Reentrancy restricted: reentrancy is forbid-
den for certain concepts, which means these
concepts only have one parent concept. An
example is that lexical concepts – cannot be
reentrancy in the compact AMR graph.

After incorporating these constraints, relation
attachment actions are forbidden at many states,
which refines the search space. Even though such
constraints might prevent us from generating some
valid AMR graphs, in practice we can convert
the compact AMR graph back to the AMR graph
without much loss5.

3.2 Oracle
Another key to successful search is the oracle, an
algorithm that produces a sequence of actions that
lead to the gold AMR graph. The action sequence
generated by the oracle is significant as it tells

4In practice, we impose constraints on the valid action set
of the parser for each state to ensure the growing structure
always respect these properties. Details are provided in sup-
plementary material.

595% of graphs in the training set of LDC2015E86 dataset
satisfy these constraints, which means no relation needs to be
removed for most of the graphs.
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Figure 3: An alignment example for a sentence that has two identical tokens internet and the relation arcs between
concepts if we put them on a semi-plane.

the model which actions should be taken during
training. The oracle requires, as input, the align-
ment between tokens in the sentences and con-
cepts in the graph. Almost all prior transition-
based parsers have used the JAMR aligner for
identifying such alignment information. However,
we find that the JAMR aligner suffers from two
issues, which may lead to errors that may be prop-
agated to the parser through the oracle.
Non-Projectivity Caused by Alignment Error:
Consider a sentence that has two identical tokens–
internet. Figure 3 illustrates the alignments be-
tween concepts and tokens. Since our parser pre-
dicts the concepts from left to right, we can draw
edges between aligned concepts on a semi-plane
to verify whether it has crossing arcs.

If the alignment is correct, the AMR graph is
projective as shown at the top right of Figure 3.
However, the JAMR is a rule-based aligner, which
uses a set of heuristics to do fuzzy matching.
Its matching mechanism tends to make mistakes
when there exist multiple identical words. Such
alignment errors may lead to crossing arcs that our
parser may not be able to handle.

Assume an alignment error occurs as illustrated
in the bottom right of Figure 3. Such an error
will force the parser to attach relations between
wrong concepts. Sometimes these concepts are far
from each other, which potentially leads to more
crossing arcs. For example, ARG1 is attached to
the wrong internet, causing the undesired cross-
ing arc.
Empty Alignments:Another issue is that as the
corpus gets larger, the JAMR aligner yields more
empty alignments as shown in Table 3. Since the
set of matching rules is static, unseen patterns in a
larger corpus may result in sub-optimal alignment
information.
Hybrid Aligner: In order to address these issues,
we first try the ISI aligner (Pourdamghani et al.,
2014). According to preliminary results (Table 3),
we find that the performance of such an unsuper-

vised model is not as good as the JAMR aligner
when aligning relation and non-lexical concepts.
Therefore, we propose a hybrid aligner, which
combines unsupervised learning and rule-based
strategy6.

JAMR does not consider information about the
structure whereas the unsupervised models can
capture locality (Wang and Xue, 2017) – the as-
sumption that words that are adjacent in the source
sentence tend to align to words that are closer in
the target sentence (Vogel et al., 1996). Struc-
tural information can also be incorporated into the
model to allow it to capture locality beyond lin-
earity (Wang and Xue, 2017). This property of the
unsupervised aligner can alleviate the problem of
non-projectivity caused by alignment error. Sim-
ilar to what is done in the JAMR aligner, we also
design rules based on properties of AMR graphs
to improve alignments of non-lexical concepts.

In the preprocessing stage of the hybrid aligner,
we remove all relations. As non-lexical concepts
can be aligned to their child concepts in the com-
pact graph, we then remove all non-lexical con-
cepts. Our unsupervised method is based on IBM
word alignment models (Brown et al., 1993).

In the postprocessing stage, we align non-
lexical concepts iteratively to the same span that
its child concepts are aligned to. For example,
non-lexical concepts country and name shown
in Figure 1 are removed in preprocessing. Dur-
ing postprocessing, their alignments come from
child concepts “United” and “Kingdom”, they are
aligned to the 16th token “United” and the 17th
token “Kingdom” respectively. Therefore, non-
lexical concepts country and name can be aligned
to the span 16-17, which is “United Kingdom”.

3.3 Transition System
The transition system consists of a stack S con-
taining words that have been processed, a buffer

6Details of the rules and how to apply them in the hybrid
aligner are provided in the supplementary material.
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Action Statet ! Statet+1

SHIFT (S, u|B) ! (u|S,B)
REDUCE (u|S,B) ! (S,B)

RIGHTLABEL(r) (u|S, v|B) ! (gr(u, v, r)|S, v|B)
LEFTLABEL(r) (u|S, v|B) ! (u|S, gr(v, u, r)|B)

SWAP (u, v|S,B) ! (v, u|S,B)
MERGE (u|S, v|B) ! (S, gm(u, v)|B)
PRED(n) (S, u|B) ! (S, n|B)

ENTITY(`) (S, u|B) ! (S, g`(u, `)|B)
GEN(n) (S, u|B) ! (S, u, n|B)

Table 1: Definition of actions. (u|S)/(u, v|S): item u
(or u, v) is at the top of the stack. gr, gm and g` repre-
sent composition functions described in Section 4.3.

B containing words to be processed. Initially, S1

is empty and B1 contains the whole input sentence
and a end-of-sentence symbol at the end. Execu-
tion ends on time step t such that Bt is empty and
St contains a single structure.

Motivated by (Henderson et al., 2013; Balles-
teros and Al-Onaizan, 2017), we design 9 types of
actions summarized in Table 1. An example for
parsing a sentence into its compact AMR graph
shown in Figure 4 is provided in Table 2.

• SHIFT: removes an item from the front of
the buffer and pushes it to the stack.

• REDUCE: pops the item on top of the stack.
• RIGHTLABEL(r): creates a relation arc

from the item on top of the stack to the item at
the front of the buffer. Since these two items
are not removed, they can be attached by an-
other relation arc in the future. Therefore,
reentrancy is allowed.

• LEFTLABEL(r): creates a relation in the
reverse direction as RIGHTLABEL.

• SWAP: swaps the top two items on the stack.
This action allows non-projective relations
(Nivre, 2009) and helps to introduce reen-
trancy. Repetitive SWAP actions are disal-
lowed to avoid infinite swapping.

• PRED(n): predicts the predicate and lemma
concepts corresponding to the item at the
front of the buffer. This action requires a
look-up table M generated during the train-
ing phase. For example, meet is mapped to
concepts such as meet, meet-01 and meet-02
in M . If the token meet is at the front of the
buffer, then we add all its corresponding con-
cepts based on M to the valid action sets.

• MERGE: removes the item at the front of the
buffer and the item on top of the stack, then
a composition function is applied to merge
them into a new item. The item will be
pushed back to the front of the buffer. This

ARG0- of

r oot

ARG1 ARG2

domai n

per son

have- or g- r ol e- 91

ENcount r y of f i c i al

ROOT

ENper son

Iftik Ahmed is Pakistani official.

Figure 4: An example sentence with its compact AMR
graph.

action serves to generate non-lexical con-
cepts, whose corresponding span is larger
than two. For example, if “Iftik” is on top
of the stack and “Ahmed” is at the front of
the buffer, a MERGE action will be applied.
This action can be applied recursively if the
span is larger than two.

• ENTITY(`): pops the item at the front of the
buffer, and labels it with an entity label. This
action is designed for named entities in non-
lexical concepts. For example, after merging
“Iftik” and “Ahmed”, ENTITY(ENperson)
will be used to label the item.

• GEN(n): creates a non-lexical concept in-
voked by the item at the front of the buffer,
which can be any type of concept or com-
posed representation after MERGE transi-
tion. Then the non-lexical concept is pushed
back to the buffer right after the item. This
action can be applied recursively. An ex-
ample is that concept have-org-role-91 is in-
voked by official. If token official is at the
front of the buffer, GEN(have-org-role-91)
will be applied.

4 Stack LSTMs

A classifier is required to decide which action to
take at each time step, given the current state.

4.1 Stack LSTMs for AMR parsing
Stack LSTMs (Dyer et al., 2015) are LSTMs
(Hochreiter and Schmidhuber, 1997) that allow
stack operations. Using stack LSTMs, each state
can be represented using the contents of the stack,
buffer and a list with the history of actions.

Let st, bt and at denote the summaries of stack,
buffer and the history of actions at time step t re-
spectively. The parser state yt is given by:

yt = max{0,W[st;bt;at] + d} (1)
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Action Stack Buffer Concept/Relation
Iftik, Ahmed, is, Pakistani, official, $ -

SHIFT Iftik Ahmed, is, Pakistani, official, $ -
MERGE (Iftik, Ahmed), is, Pakistani, official, $ -
ENTITY (ENperson) ENperson, is, Pakistani, official, $ ENperson
SHIFT ENperson is, Pakistani, official, $ -
SHIFT ENperson, is Pakistani, official, $ -
ENTITY (ENcountry) ENperson, is ENcountry, official, $ ENcountry
REDUCE ENperson ENcountry, official, $ -
SHIFT ENperson, ENcountry official, $ -
GEN (person) ENperson, ENcountry official, person, $ person
GEN (have-org-role-91) ENperson, ENcountry official, have-org-role-91, person, $ have-org-role-91
PRED (o�cial) ENperson, ENcountry o�cial, have-org-role-91, person, $ o�cial
SHIFT ENperson, ENcountry, official have-org-role-91, person, $ -
LEFTLABEL (ARG2) ENperson, ENcountry, official have-org-role-91, person, $ have-org-role-91 ARG2���!o�cial
REDUCE ENperson, ENcountry have-org-role-91, person, $ -
LEFTLABEL (ARG1) ENperson, ENcountry have-org-role-91, person, $ have-org-role-91 ARG1���!ENcountry
REDUCE ENperson have-org-role-91, person, $ -
SHIFT ENperson, have-org-role-91 person, $ -
LEFTLABEL (ARG0-of) ENperson, have-org-role-91 person, $ person

ARG0�of������!have-org-role-91
SWAP have-org-role-91, ENperson person, $ -
LEFTLABEL (domain) have-org-role-91, ENperson person, $ person

domain����!ENperson
REDUCE have-org-role-91 person, $ -
SHIFT have-org-role-91, person $ -
PRED (ROOT) have-org-role-91, person ROOT ROOT

LEFTLABEL (root) have-org-role-91, person ROOT ROOT
root��!person

REDUCE have-org-role-91 ROOT -
REDUCE ROOT -
SHIFT ROOT -

Table 2: Example action sequence for parsing the sentence: Iftik Ahmed is Pakistani official. Here $ is the end-of-
sentence symbol.

where W is a learned parameter matrix, and d is
a bias term. To learn a better representation, we
apply the attention mechanism (Bahdanau et al.,
2014) to the words the buffer contains. After get-
ting the representation, we can use it to compute
the probability of the next action:

p(z|yt) =
exp(g>ztyt + qzt)P

z02A exp(g>
z0
yt + qz0 )

(2)

where gz is a vector representing the embedding of
the action z and qz is a bias term. The set A repre-
sents the valid action set in each time step. This set
varies for different parsing states due to the con-
straints we made for the compact AMR graph.

4.2 Representations and UNK strategy
Following (Dyer et al., 2015), we concatenate
three vector representations: pretrained word vec-
tor (Ling et al., 2015), learned word vector and
learned vector for the POS tag, followed by a lin-
ear map to get the representation of each input to-
ken. For relation label representations and gener-
ated concepts, we simply use the learned embed-
ding of the parser action that was applied to con-
struct the relation.

Dyer et al. (2015) show that these represen-
tations can deal flexibly with out-of-vocabulary
(OOV) words7. We extend this UNK strategy to

7Both OOV words in the parsing data and OOV words in
the pretraining language model can be represented.

AMR parsing. Apart from stochastically replac-
ing (with p = 0.2) each singleton in the train-
ing data, we also replace the original PRED(n)
as PRED(UNK) if the token should be selected
as a concept. At the postprocessing stage, if an
AMR concept is generated by PRED(UNK) we
will use its lemma form for nouns or the most fre-
quent sense for verbs to replace the “UNK” place-
holder. This strategy makes the classifier trained
not only to predict whether an OOV word should
be selected as an AMR concept but also to predict
the correct concept for the in-vocabulary word.

4.3 Composition Functions
We use recursive neural networks (Socher et al.,
2013) to compute the representations of partially
constructed structures.

For relation attachments, a composition func-
tion gr is used to combine representations of AMR
parent concept (h), child concept (d) and the cor-
responding relation label (r) as:

gr(h,d, r) = tanh(Ur[h;d; r] + br) (3)

where Ur and br are parameters in the model, as
Um, bm, U` and b` in equation (4) and (5).

For generated non-lexical concepts, if terminal
concepts are lexical concepts as shown in Figure 4
we will use a composition function gm to get their
(c1 and c2) merged representation:

gm(c1, c2) = tanh(Um[c1; c2] + bm) (4)
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Figure 5: Example of a partial structure rooted by
a non-lexical concept. “United” and “States” are
merged by gm. Then g` is applied to combine the
merged representation and the label representation of
ENcompany to arrive at the final representation.

Next, another composition function g` is ap-
plied to get the representation of the labeled gen-
erated concept (e and its entity label l):

g`(e, l) = tanh(U`[e; l] + b`) (5)

5 Experiments and Results

We first evaluate the effectiveness of our hy-
brid aligner. Then we report the final results
by incorporating it into our parser. We con-
duct experiments on the datasets LDC2014T12,
LDC2015E86 and LDC2017T10. The newswire
section of LDC2014T12 is popular so we also re-
port the performance on it. All AMR parsing
results are evaluated by using Smatch (Cai and
Knight, 2013).

5.1 Aligner Evaluation
As the hybrid aligner is designed to tackle non-
projectivity caused by alignment error and null
alignment, our experiments focus on these aspects.
Non-Projectivity Issue: From Table 3, we find
that the percentage of graphs that our hybrid
aligner cannot recover is significantly less on these
datasets when compared to the use of the JAMR
and ISI aligners. We find that the percentage drops
less on LDC2017T10. The reason behind this is
that many AMR concepts do not have alignments
(11.1%) if we use JAMR aligner. The probabil-
ity of crossing arcs drops owing to the decrease
of identified concepts. The ISI aligner shares the
same issue. It yields the lowest crossing arcs rate
since lots of concepts are not aligned.
Empty Alignment Issue: On the other hand,
our hybrid aligner yields less empty alignments.
This potentially helps our parser to achieve bet-
ter performance, since it predicts lexical concepts
solely relying on the look-up table generated by
the aligner. If we do not have alignment between
a certain token and its concept on the training set,

Dataset Aligner F1(%) CR(%) Null(%)

2014N JAMR 92.70 14.4 05.1
Hybrid 96.12 08.8 02.0

2014 JAMR 89.99 16.9 07.0
Hybrid 95.27 10.5 02.6

2015
JAMR 86.23 16.5 08.9
Hybrid 93.05 11.9 02.9

ISI 71.92 03.4 20.1

2017 JAMR 84.41 13.6 11.1
Hybrid 92.69 10.2 03.4

ISI 75.31 03.2 18.2

Table 3: Alignment results evaluation. F1 indicates the
final score obtained by the action sequence generated
by the aligner during training process. CR(%) indi-
cates the portion that the parser cannot handle because
of non-projectivity. Null(%) indicates the percentage of
AMR concepts that are not aligned. As the ISI align-
ments did not include in the LDC2014T12, we can not
compare on this dataset.

the parser is less likely to predict that token as a
concept during the testing phase.

Improvements on these two aspects allow the
aligner to yield better action sequences for the pur-
poses of training our parser. From Table 3, we can
see that if we follow the action sequence gener-
ated by the hybrid aligner, our parser will achieve
a higher Smatch score consistently. Improvement
gain gets larger as the corpus gets larger.

5.2 Parser Evaluation

Then we evaluate our parser on the same datasets.
As illustrated in Table 4, most models incorpo-
rate additional features such as dependency trees,
named entities, non-lexical role labels and external
corpora. As stack LSTMs use POS tags to get the
representation of the input, our parser does not use
external resources other than POS tags obtained
by using NLTK (Loper and Bird, 2002). We also
try to evaluate our parser by removing the POS
tags. The performance drops around 1.2 F1 points
on average. POS tags help the parser to select the
correct sense when PRED action is applied.
Comparison with other parsers: Currently, all
state-of-the-art models either have a relatively
high complexity or adopt a pipeline approach.
Wang and Xue (2017) incorporate a module called
Factor Concept Labels consisting of Bi-LSTMs
and CNN based on CAMR (Wang et al., 2016).
Another popular parser is JAMR (Flanigan et al.,
2016). The relation identification stage of JAMR
has the complexity of O(|V |2 log |V |), where |V |
is the number of concepts. RIGA (Barzdins and
Gosko, 2016) is an ensemble system that com-
bines CAMR and seq2seq model. Johnson et al.
(2018) view AMR graph as the structure AM alge-
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Parser Type Features Pipeline F1(%)
POS DEP NER SRL Other 2014N 2014 2015 2017

Flanigan et al. (2014) Graph
p p

× × No Yes 59.0±0.6 58.0±0.6 -0±0.6 -0±0.6
Flanigan et al. (2016) Graph

p p p
× No Yes -0±0.6 66.0±0.6 67.0±0.6 -0±0.6

Werling et al. (2015) Graph
p p p

× No Yes 62.0±0.6 -0±0.6 -0±0.6 -0±0.6
Artzi et al. (2015) Others

p
× × × No Yes 67.0±0.6 -0±0.6 -0±0.6 -0±0.6

Pust et al. (2015) Others × ×
p

× Word Yes -0±0.6 67.1±0.6 -0±0.6 -0±0.6
Zhou et al. (2016) Transition

p p p p
No No 71.0±0.6 66.0±0.6 -0±0.6 -0±0.6

Damonte et al. (2016) Transition
p p p p

No No -0±0.6 64.0±0.6 64.0±0.6 -0±0.6
Goodman et al. (2016) Tree

p
×

p
× No Yes 70.0±0.6 -0±0.6 64.0±0.6 -0±0.6

Barzdins and Gosko (2016) Tree
p p p

× No Yes -0±0.6 -0±0.6 67.2±0.6 -0±0.6
Wang et al. (2015) Tree

p p p
× No Yes 70.0±0.6 66.5±0.6 -0±0.6 -0±0.6

Wang et al. (2016) Tree
p p p p

No Yes -0±0.6 66.5±0.6 67.3±0.6 -0±0.6
Wang and Xue (2017) Tree

p p p p
No Yes -0±0.6 68.1±0.6 68.1±0.6 -0±0.6

Peng et al. (2017) Seq2seq × × × × No No -0±0.6 -0±0.6 52.0±0.6 -0±0.6
Konstas et al. (2017) Seq2seq × ×

p
× Giga No -0±0.6 -0±0.6 62.1±0.6 -0±0.6

Ballesteros and Al-Onaizan (2017) Transition
p p

× × No No 69.0±0.6 64.0±0.6 -0±0.6 -0±0.6
Foland and Martin (2017) Others × ×

p
× No Yes -0±0.6 -0±0.6 70.7±0.2 -0±0.6

Buys and Blunsom (2017) Seq2seq
p

×
p

× No No -0±0.6 -0±0.6 -0±0.6 61.9±0.6
van Noord and Bos (2017) Seq2seq

p
× × × Silver No -0±0.6 -0±0.6 68.5±0.6 71.0±0.6

Peng et al. (2018) Transition
p p

× × No No -0±0.6 -0±0.6 64.0±0.6 -0±0.6
Vilares and Gómez-Rodrı́guez (2018) Transition

p p p
× No No -0±0.6 -0±0.6 64.0±0.6 -0±0.6

Lyu and Titov (2018) Others
p

×
p

× No Yes -0±0.6 -0±0.6 73.7±0.2 74.4±0.2
Johnson et al. (2018) Tree

p
×

p
× No No -0±0.6 -0±0.6 70.2±0.3 71.0±0.5

This work (full model) Transition
p

× × × No No 74.0±0.5 68.3±0.4 68.7±0.3 69.8±0.3
0no compact AMR graph Transition

p
× × × No No 72.1±0.6 66.7±0.6 67.2±0.6 68.9±0.6

0JAMR aligner Transition
p

× × × No No 72.6±0.6 65.4±0.6 65.8±0.6 66.3±0.6
0no compact AMR graph, JAMR aligner Transition

p
× × × No No 70.3±0.6 63.9±0.6 64.6±0.6 65.3±0.6

0no UNK strategy Transition
p

× × × No No 72.2±0.6 66.4±0.6 67.2±0.6 68.8±0.6
0no POS Transition × × × × No No 72.4±0.6 66.9±0.6 67.3±0.6 68.8±0.6

Table 4: Comparison with other parsers on LDC2014T12, LDC2015E86 and LDC2017T10 datasets. 2014N refers
to the newswire section of LDC2014T12. We categorize parsers based on their types as discussed in Section 2.
We also list down the features used by each system. POS: POS tags; DEP: dependency trees; NER: named
entities; SRL: semantic role labels. Other features include: Word (WordNet for concept identification), GIGA
(20M unlabeled Gigaword), and Silver (100k additional training pairs created by using CAMR and JAMR). “JAMR
aligner” indicates that the parser is trained by action sequence generated by the JAMR aligner. “no UNK strategy”
shows results without our UNK strategy. “no compact AMR graph” shows results without constraints on the
compact AMR graph. Following several previous work, we also report standard deviation for the full model.

bra defined in (Groschwitz et al., 2017). Since AM
algebra can be viewed as dependency trees over
the sentence, they can train a dependency parser
to map the sentence into this structure. Different
from the structure used in CAMR (Wang et al.,
2015), this structure can be directly transformed
to AMR graph by using postprocessing rather than
relying on another transition-based system. The
complexity of their projective decoder is O(n5

),
where n is the length of the sentence. Zhou et al.
(2016) is also a transition-based parser, which
adopts and improves beam search strategy. In con-
trast, our system does not use a beam, but we an-
ticipate improved results when a beam is used.

For seq2seq models, they generally require less
features and build the AMR graph in an end-to-end
way. However, these models usually suffer from
data sparsity issue (Peng et al., 2017). In order
to address this issue, these models utilize external
corpora. Konstas et al. (2017) achieves 62.1 score
by using 20M unlabeled Gigaword sentences for
paired training. van Noord and Bos (2017) use an
additional training corpus of 100k sentences called
Silver generated by an ensemble system consisting
of JAMR and CAMR parsers. Without training

on this additional dataset, the performance of their
model is 64.0 on LDC2015E86.

Our end-to-end parser has linear time com-
plexity and it exhibits competitive results on the
datasets with only POS tags as additional features.
Foland and Martin (2017) only use named entities
as an external resource and they report the second
highest F1 on LDC2015E86. Their system also
adopts a pipeline approach. The concept identi-
fication phase requires 5 different LSTMs to dis-
cover different kinds of concepts based on care-
fully designed features. Then they connect these
components into a single graph. Unlike previ-
ous work, the very recent work by Lyu and Titov
(2018) treat the alignments as latent variables in
a joint probabilistic model, which improves the
parsing performance substantially. They report the
highest scores on LDC2015E86 and LDC2017T10
datasets. Their parser requires 5 different BiL-
STMs for concept identification, alignment pre-
diction, relation identification and root identifica-
tion. Though our parser constructs the AMR graph
in an end-to-end fashion, it can achieve 68.7 and
69.8 Smatch score respectively on the same test set
with a simple architecture.
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Metric LDC2015E86 LDC2017T10
W’15 F’16 D’16 V’18 J’18 Ours vN’17 L’18 J’18 Ours

Smatch 67 67 64 64 70 69 71 74 71 70
Unlabeled 69 69 69 68 73 72 74 77 74 73
No WSD 64 68 65 65 71 69 72 76 72 71
Reentrancies 41 42 41 44 46 46 52 52 49 49
Concepts 80 83 83 83 83 83 82 86 86 84
Named Ent. 75 79 83 83 79 80 79 86 78 80
Wikification 00 75 64 70 71 68 65 76 71 70
Negations 18 45 48 47 52 49 62 58 57 48
SRL 60 60 56 57 63 61 66 70 64 63

Table 5: Detailed results for the LDC2015E86 and LDC2017T10 test set. W’15 is Wang et al. (2015)’s parser. F’16
is Flanigan et al. (2016)’s parser, D’16 is Damonte et al. (2016)’s parser. V’18 is Vilares and Gómez-Rodrı́guez
(2018)’s parser. J’18 is Johnson et al. (2018)’s parser. vN’17 is van Noord and Bos (2017)’s parser with 100K
additional training pairs. L’18 is Lyu and Titov (2018)’s parser.

In order to investigate how our parser performs
on predicting Named Entities, Reentrancies, Con-
cepts, Negations, etc, we also use the fine-grained
evaluation tool (Damonte et al., 2016) and com-
pare to systems which reported these scores. The
results are shown in Table 5. We obtain rela-
tively high results for Concepts, Named Entities
and Wikification. Also, we achieve good perfor-
mance on reentrancy identification though we re-
move many reentrant edges during training. This
indicates that the compact AMR graph encodes
necessary information. On the other hand, our
model does not perform so well on predicating
Negations. We believe one reason is that our
parser is a word-level model. It is hard for it to
capture morphological features such as prefixes
“un”, “in”, “il”, etc. We anticipate better perfor-
mance when the character-based representations
are used.
Does the compact AMR graph help: In order to
better investigate the effect of different modules
used in the parser, we also evaluate our parser by
removing certain modules. Because our transition
system is built based on the compact AMR graph,
we could not evaluate the parser by isolating this
representation completely. Therefore, we choose
to remove some constraints defined on the com-
pact AMR graph to investigate its effect. We can
see that our representation improves the perfor-
mance of our parser on three datasets, which indi-
cates that a refined search space is beneficial to our
system. When our parser is trained on the action
sequence generated by the JAMR aligner as pre-
vious models, it still achieves a competitive score
especially on the newswire section.
Impact of the hybrid aligner: Experiments
also illustrate that the hybrid aligner consistently
helps our parser. When we train our parser
by using the action sequence generated by the

JAMR aligner, we still achieve competitive re-
sults on the newswire section. However, the per-
formance drops as the corpus gets larger. The
largest drop occurs when we apply the parser on
LDC2017T10, on which correct senses of predi-
cates cannot be selected for many unseen words.
We hypothesize that it is because the quality
of alignment degrades as the corpus gets larger,
which prevents the parser from learning how to
find a good path in the search space during train-
ing. The hybrid aligner can alleviate this issue by
generating a look-up table that has broader cov-
erage. After incorporating the hybrid aligner, our
parser achieves the best results of 68.3 on the full
test set of LDC2014T12.

6 Conclusion and Future Work

We present a novel transition-based system which
refines the search space. Experiments show that
our parser is able to achieve state-of-the-art per-
formance with a simple architecture and minimal
additional resources. We believe our end-to-end
system is helpful in practical settings. In the fu-
ture, we would also like to investigate if it is possi-
ble for alignments to be treated as latent variables,
which can be learned in a joint manner within the
current framework.
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