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Abstract

Source code is rarely written in isolation. It de-
pends significantly on the programmatic con-
text, such as the class that the code would re-
side in. To study this phenomenon, we intro-
duce the task of generating class member func-
tions given English documentation and the pro-
grammatic context provided by the rest of the
class. This task is challenging because the de-
sired code can vary greatly depending on the
functionality the class provides (e.g., a sort
function may or may not be available when we
are asked to “return the smallest element” in a
particular member variable list). We introduce
CONCODE, a new large dataset with over
100,000 examples consisting of Java classes
from online code repositories, and develop a
new encoder-decoder architecture that models
the interaction between the method documen-
tation and the class environment. We also
present a detailed error analysis suggesting
that there is significant room for future work
on this task.

1 Introduction

Natural language can be used to define complex
computations that reuse the functionality of rich,
existing code bases. However, existing approaches
for automatically mapping natural language (NL)
to executable code have considered limited lan-
guage or code environments. They either assume
fixed code templates (i.e., generate only parts of
a method with a predefined structure; Quirk et al.,
2015), a fixed context (i.e., generate the body of
the same method within a single fixed class; Ling
et al., 2016), or no context at all (i.e., generate code
tokens from the text alone; Oda et al., 2015). In
this paper, we introduce new data and methods for
learning to map language to source code within the
context of a real-world programming environment,
with application to generating member functions

public class SimpleVector implements Serializable {

  double[] vecElements;

  double[] weights;

    NL Query: Adds a scalar to this vector in place. 

    Code to be generated automatically:

  public void add(final double arg0) {

    for (int i = 0; i < vecElements.length; i++){

  vecElements[i] += arg0;

}

  }

    NL Query: Increment this vector 

    Code to be generated automatically:

  public void inc() {

    this.add(1); 

  }

}

Figure 1: Code generation based on the class environment
and method documentation. The figure shows a class where
the programmer wants to automatically generate the add
method from documentation, assuming the rest of the class
is already written. The system needs to understand that
vecElements is the vector to be augmented, and that the
method must take in a scalar parameter as the element to
be added. The model also needs to disambiguate between the
member variables vecElements and weights.

from documentation for automatically collected
Java class environments.

The presence of rich context provided by an ex-
isting code environment better approximates the
way programmers capitalize on code re-use, and
also introduces new language understanding chal-
lenges. Models must (a) map the NL to environ-
ment variables, library API calls and user-defined
methods found elsewhere in the class based on their
names, types and signatures, and (b) decide on the
structure of the resulting code. For example, in
Figure 1, to generate the method inc() from the
corresponding NL, Increment this vector, it is cru-
cial to know of the existence of class method add().
This helps us decide if it should directly call add()
or generate the method from scratch by iterating
through the vecElements array and incrementing
each element. Similarly, for generating the add()
method, the code needs to use the class variable
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vecElements correctly. Overall, the code environ-
ment provides rich information relating to the intent
of the developer, and can be used to considerably
reduce ambiguity in the NL documentation.

To learn such a code generator, we use a special-
ized neural encoder-decoder model that (a) encodes
the NL together with representations based on sub-
word units for environment identifiers (member
variables, methods) and data types, and (b) decodes
the resulting code using an attention mechanism
with multiple steps, by first attending to the NL,
and then to the variables and methods, thus also
learning to copy variables and methods. This two-
step attention helps the model to match words in
the NL with representations of the identifiers in the
environment. Rather than directly generating the
output source code tokens (Dong and Lapata, 2016;
Iyer et al., 2017), the decoder generates produc-
tion rules from the grammar of the target program-
ming language similar to Rabinovich et al. (2017),
Yin and Neubig (2017), and Krishnamurthy et al.
(2017) and therefore, guarantees the syntactic well-
formedness of the output.

To train our model, we collect and release CON-
CODE, a new dataset comprising over 100,000
(class environment, NL, code) tuples by gather-
ing Java files containing method documentation
from public Github repositories. This is an or-
der of magnitude larger than existing datasets that
map NL to source code for a general purpose lan-
guage (MTG from Ling et al. (2016) has 13k ex-
amples), contains a larger variety of output code
templates than existing datasets built for a specific
domain, and is the first to condition on the envi-
ronment of the output code. Also, by design, it
contains examples from several domains, thus in-
troducing open-domain challenges of new identi-
fiers during test time (some e.g. class environments
are LookupCommand, ColumnFileReader and Im-
ageSequenceWriter). Our model achieves an ex-
act match accuracy of 8.6% and a BLEU score (a
metric for partial credit; Papineni et al., 2002) of
22.11, outperforming retrieval and recent neural
methods. We also provide an extensive ablative
analysis, quantifying the contributions that come
from the context and the model, and suggesting
that our work opens up various areas for future
investigation.

Adds a scalar to this vector in place

NL query:

Variables: [Type, Name]

double[] vecElements
double[] weights

Methods: [Return Type, Name, ParameterList]

void inc ()
float dotProduct (SimpleVector other)
float multiply(float scalar)

Environment

public void add(final double arg0) {

    for (int i = 0; i < vecElements.length(); i++){

  vecElements[i] += arg0;

}

 }

MemberDeclaration-->MethodDeclaration

MethodDeclaration-->

    TypeTypeOrVoid IdentifierNT FormalParameters 

     MethodBody

TypeTypeOrVoid-->void

IdentifierNT-->add

FormalParameters-->( FormalParameterList )

FormalParameterList-->FormalParameter

   … 

Primary-->IdentifierNT

IdentifierNT-->i

Nt_68-->+=

Expression-->Primary

Primary-->IdentifierNT

IdentifierNT-->arg0

Source code:

AST Derivation:

Figure 2: Our task involves generating the derivation of the
source code of a method based on the NL documentation, class
member variables (names and data types), and other class
member methods (method names and return types), which
form the code environment.

2 Task Definition

We introduce the task of generating source code
from NL documentation, conditioned on the class
environment the code resides in. The environment
comprises two lists of entities: (1) class member
variable names with their data types (for example,
double[] vecElements as seen in Figure 2), and
(2) member function names together with their re-
turn types (for example, void inc()).1 Formally,
let q(i), a(i) denote the NL and source code respec-
tively for the ith training example, where a(i) is a
sequence of production rules that forms the deriva-
tion of its underlying source code. The environ-
ment comprises a list of variables names v(i)1..|v(i)|
and their corresponding types t(i)1..|t(i)|, as well as
method names m(i)

1..|m(i)| and their return types

1The method parameters and body can be used as well but
we leave this to future work.
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r(i)1..|r(i)|. Our goal is to generate the derivation of
a(i) given q(i) and the environment (see Figure 2).

3 Models

We evaluate a number of encoder-decoder models
that generate source code derivations from NL and
the class environment. Our best model encodes all
environment components broken down into sub-
word units (Sennrich et al., 2016) separately, using
Bi-LSTMs and decodes these contextual represen-
tations to produce a sequence of valid production
rules that derive syntactically valid source code.
The decoder also uses a two-step attention mecha-
nism to match words in the NL with environment
components, and then uses a supervised copy mech-
anism (Gu et al., 2016a) to incorporate environment
elements in the resulting code. We describe this
architecture below.

3.1 Encoder

The encoder computes contextual representations
of the NL and each component in the environment.
Each word of the NL, qi, is embedded into a high
dimensional space using Identifier matrix I (de-
noted as qi) followed by the application of a n-
layer bidirectional LSTM (Hochreiter and Schmid-
huber, 1997). The hidden states of the last layer
(h1, · · · , hz) are passed on to the attention layer,
while the hidden states at the last token are used to
initialize the decoder.

h1, · · · , hz = BiLSTM(q1, . . . ,qz)

To encode variables and methods, the variable types
(ti) and method return types (ri) are embedded us-
ing a type matrix T (denoted as ti and ri). To
encode the variable and method names (vi,mi),
they are first split based on camel-casing, and each
component is embedded using I , represented as
vi1, . . . ,vij and mi1, . . . ,mik. The encoded rep-
resentation of the variable and method names is the
final hidden state of the last layer of a Bi-LSTM
over these embeddings (vi and mi). Finally, a 2-
step Bi-LSTM is executed on the concatenation
of the variable type embedding and the variable
name encoding. The corresponding hidden states
form the final representations of the variable type
and the variable name (t̂i, v̂i) and are passed on
to the attention mechanism. Method return types
and names are processed identically using the same

Variable encoding double[ ] 

vecElements

Method encoding

vec elements

float 

dotProduct dot product

NL documentation
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Figure 3: The encoder creates contextual representations
of the NL (a), the variables and the methods (b). Variable
(method) names are split based on camel-casing and encoded
using a BiLSTM. The variable (method) type and name are
further contextualized using another BiLSTM.

Bi-LSTMs and embedding matrices (r̂i, m̂i).

ti = tiT ; vij = vijI

ri = riT ; mik = mikI

vi = BiLSTM(vi1, . . . ,vij)

mi = BiLSTM(mi1, . . . ,mik)

t̂i, v̂i = BiLSTM(ti,vi)

r̂i, m̂i = BiLSTM(ri,mi)

Figure 3 shows an example of the encoder.

3.2 Decoder
We represent the source code to be produced as a
sequence of production rules (at at step t), with a
non-terminal nt on the left hand side and a com-
bination of terminal and non-terminal symbols on
the right hand side (see Figure 2). The first non-
terminal is MemberDeclaration. Subsequently, ev-
ery non-terminal is expanded in a depth first left
to right fashion, similar to Yin and Neubig (2017).
The probability of a source code snippet is decom-
posed as a product of the conditional probability
of generating each step in the sequence of rules
conditioned on the previously generated rules. Our
decoder is an LSTM-based RNN that produces a
context vector ct at each time step, which is used
to compute a distribution over next actions.

p(at|a<t) ∝ exp(Wntct) (1)
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Here, Wnt is a |nt| ×H matrix, where |nt| is the
total number of unique production rules that nt can
be expanded to. The context vector ct is computed
using the hidden state st of an n-layer decoder
LSTM cell and attention vectors over the NL and
the context (zt and et), as described below.

Decoder LSTM The decoder uses an n-layer
LSTM whose hidden state st is computed based
on the current non-terminal nt to be expanded, the
previous production rule at−1, the parent produc-
tion rule par(nt) that produced nt, the previous
decoder LSTM state st−1, and the decoder state of
the LSTM cell that produced nt, denoted as snt .

st = LSTM(nt, at−1, par(nt), st−1, snt) (2)

We use an embedding matrix N to embed nt and
matrix A to embed at−1 and par(nt). If at−1 is a
rule that generates a terminal node that represents
an identifier or literal, it is represented using a spe-
cial rule IdentifierOrLiteral to collapse all these
rules into a single previous rule.

Two-step Attention At time step t, the decoder
first attends to every token in the NL representation,
hi, using the current decoder state, st, to compute
a set of attention weights αt, which are used to
combine hi into an NL context vector zt. We use a
general attention mechanism (Luong et al., 2015),
extended to perform multiple steps.

αt,i =
exp(sT

tFhi)∑
i exp(sT

tFhi)

zt =
∑
i

αt,ihi

The context vector zt is used to attend over ev-
ery type (return type) and variable (method) name
in the environment, to produce attention weights
βt that are used to combine the entire context
x = [t : v : r : m] into an environment context vec-
tor et.2

βt,j =
exp(zT

t Gxj)∑
j exp(zT

t Gxj)

et =
∑
j

βt,jxj

Finally, ct is computed using the decoder state and
both context vectors zt and et:

ct = tanh(Ŵ [st : zt : et])
2“:” denotes concatenation.

LSTM

st−1

placeinvectorthistoscalaraAdds

st

vecElements

Attention over NL query

Attention over Environment

FormalParameters (nt)

IdentifierNt—>identifier(at−1)

MethodDeclaration —> 

 TypeTypeOrVoid IdentifierNT 

 FormalParameters MethodBody

(par(nt))

snt

(αt)

zt

(βt)

et
Ŵ

st
zt

ct

βt
Copy 

Mechanism

FormalParameters —> 

   ( formalParameterList )

double[ ] floatinc()void dotProduct()

FormalParameters -> ()

Figure 4: The hidden state st of our decoder is a function
of the previous hidden state, current non-terminal, previous
production rule, parent rule, and the parent hidden state. st is
used to attend on the NL and compress it into zt, which is then
used to attend over the environment variables and methods
to generate et. The decoder uses all these context vectors
to produce a distribution over valid right hand side values of
the current non-terminal, and also learns to copy from the
environment.

Supervised Copy Mechanism Since the class
environment at test time can belong to previously
unseen new domains, our model needs to learn to
copy variables and methods into the output. We
use the copying technique of Gu et al. (2016a) to
compute a copy probability at every time step t
using vector b of dimensionality H .

copy(t) = σ(bT ct)

Since we only require named identifiers or user
defined types to be copied, both of which are pro-
duced by production rules with nt as IdentifierNT,
we make use of this copy mechanism only in this
case. Identifiers can be generated by directly gen-
erating derivation rules (see equation 1), or by
copying from the environment. The probability
of copying an environment token xj , is set to be
the attention weights βt,j computed earlier, which
attend exactly on the environment types and names
which we wish to be able to copy. The copying
process is supervised by preprocessing the produc-
tion rules to recognize identifiers that can be copied
from the environment, and both the generation and
the copy probabilities are weighted by 1− copy(t)
and copy(t) respectively. The LSTM decoder with
attention mechanism is illustrated in Figure 4.

3.3 Baseline Models

Retrieval We evaluate a retrieval baseline, where
the output source code for a test example is the
training example source code whose NL is closest
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in terms of cosine similarity to the test NL using
a tf-idf representation. We then replace all occur-
rences of environment variables and methods in the
chosen training source code with similarly typed
variables and methods from the environment of the
test example, and we break ties randomly.

Seq2seq We evaluate a Seq2Seq baseline by rep-
resenting the NL and context as a sequence formed
by the concatenation of the NL, the variables and
the methods with separators between them. The
variables (methods) are represented with the type
(return type) followed by the name, with a differ-
ent separator between them. The encoder is an
n-layer LSTM which initializes an LSTM-based
decoder using its final hidden states. The decoder
uses an attention mechanism (Luong et al., 2015)
over the encoder states to produce a conditional
distribution over the next source code token (not
production rule) given all the previous tokens. We
replace UNK tokens in the output with source to-
kens having the most attention weight. We also
attempted to evaluate the Seq2Tree model of Dong
and Lapata (2016) but the redundancy in the model
resulted in extremely long output sequences which
did not scale. Experiments on a smaller dataset
gave comparable results to Seq2seq.

Seq2prod This baseline corresponds to the ac-
tion sequence model by Yin and Neubig (2017),
with a BiLSTM over a sequence representation of
the NL and context (same as Seq2seq), and a de-
coder that learns to generate a derivation of the
AST of the underlying source code, similar to our
model. The decoder uses the same attention mech-
anism as the Seq2seq, however, it uses supervised
copying from the entire input sequence to handle
unknown words encountered during testing.

4 CONCODE

We built a new dataset (CONCODE) from pub-
lic Java projects on Github that contains environ-
ment information together with NL (Javadoc-style
method comments) and code tuples. We gather Java
files from ∼33,000 repositories, which are then
split into train, development, and test sets based on
repository, rather than purely randomly. Dividing
based on the repository keeps the domains in the
test set separate from the training set, therefore pro-
viding near zero-shot conditions that should truly
test the ability of models to generalize to associate
unseen NL tokens with previously unseen environ-

Count

Train 100,000
Valid/Test 2,000/2,000
Average NL Length 13.73
Average Code Characters 119
Average Code Tokens 26.3
Average # Environment Variables 4.89
Average # Environment Methods 10.95

Average AST Nodes 79.6
# Node Types 153
# Production Rules 342*

% Getters 16.74%
% Setters 3.39%
% using Class Variables 68%
% using Class Methods 16.2%
% Unknown Types 7.65%

Table 1: Statistics of our dataset of (NL, context and code)
tuples collected from Github. *Does not include rules that
generate identifiers.

ment variables and methods. We also remove all
examples from the development and test sets where
the NL is exactly present in the training set. We
further eliminate all Java classes that inherit from
parent classes, since the resulting code may use
variables and methods inherited from parent classes
that reside in separate source files. While this is an
important and interesting feature, we leave it for
future work.

Every method that contains a Javadoc comment
is treated as a training example. The Javadoc com-
ment forms the NL, the method body is the target
code to be generated, and all member variables,
as well as other member method signatures are
extracted and stored as part of the context. The
Javadoc is preprocessed by stripping special sym-
bols such as @link, @code, @inheritDoc and spe-
cial fields such as @params. Methods that do not
parse are eliminated and the rest are pre-processed
by renaming locally defined variables canonically,
beginning at loc0 and similarly for arguments, start-
ing with arg0. We also replace all method names
with the word function since it doesn’t affect the
semantics of the resulting program. Generating
informative method names has been studied by Al-
lamanis et al. (2015a). We replace all string literals
in the code with constants as they are often debug
messages. Finally, we use an ANTLR java gram-
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mar3 that is post-processed by adding additional
non-terminals and rules to eliminate wildcard sym-
bols in the grammar, in order to convert the source
code into a sequence of production rules. The re-
sulting dataset contains 100,000 examples for train-
ing, and 2000 examples each for development and
testing, respectively. Table 1 summarizes the vari-
ous statistics. We observe that on average, an envi-
ronment contains ∼5 variables and ∼11 methods.
Around 68% of the target code uses class member
variables, and 16% of them use member methods,
from the environment. Based on a frequency cut-
off of 2 on the training set, we find that 7% of the
types in the development set code are unknown,
hence they need to be copied from the environment.
Since CONCODE is extracted from a diverse set
of online repositories, there is a high variety of
code templates in the dataset compared to existing
datasets. For example, a random baseline on the
Hearthstone card game dataset (Ling et al., 2016)
gives a BLEU score of 40.3, but only a score of
10.2 on CONCODE. We plan to release all code
and data from this work.4

5 Experimental Setup

We restrict all models to examples where the length
of the combination of the NL and the context is at
most 200 tokens and the length of the output source
code is at most 150 tokens. Source NL tokens are
lower-cased, camel-cased identifiers are split and
lower-cased, and are used together with the original
version. The vocabulary for identifiers uses a fre-
quency threshold of 7, resulting in a vocabulary of
32, 600 tokens. The types vocabulary uses a thresh-
old of 2 resulting in 22, 324 types. We include all
153 non-terminals and 342 previous rules. We use
a threshold of 2 for output production rules to filter
out the long tail of rules creating identifiers and lit-
erals, resulting in 18, 135 output rules. Remaining
values are replaced with the UNK symbol.

Hyperparameters We use an embedding sizeH
of 1024 for identifiers and types. All LSTM cells
use 2-layers and a hidden dimensionality of 1024
(512 on each direction for BiLSTMs). We use an
embedding size of 512 for encoding non-terminals
and rules in the decoder. We use dropout with
p = 0.5 in between LSTM layers and at the output
of the decoder over ct. We train our model for 30
epochs using mini-batch gradient descent with a

3https://github.com/antlr/grammars-v4
4https://github.com/sriniiyer/concode

Model Exact BLEU

Retrieval 2.25 (1.65) 20.27 (18.15)
Seq2Seq 3.2 (2.9) 23.51 (21.0)
Seq2Prod 6.65 (5.55) 21.29 (20.55)
Ours 8.6 (7.05) 22.11 (21.28)

Table 2: Exact match accuracy and BLEU score (for par-
tial credit) on the test (development) set, comprising 2000
examples from previously unseen repositories.

Model Exact BLEU

Ours 7.05 21.28
-Variables 1.6 20.78
-Methods 6.2 21.74
-Two step attention 5.75 17.2
-Camel-case encoding 5.7 21.83

Table 3: Ablation of model features on the development set.

batch size of 20, and we use Adam (Kingma and
Ba, 2015) with an initial learning rate of 0.001 for
optimization. We decay our learning rate by 80%
based on performance on the development set after
every epoch.

Inference and Metrics Inference is done by first
encoding the NL and context of the test exam-
ple. We maintain a stack of symbols starting with
the non-terminal, MemberDeclaration, and at each
step, a non-terminal (terminals are added to the out-
put) is popped off the stack to run a decoding step
to generate the next set of symbols to push onto
the stack. The set of terminals generated along the
way forms the output source code. We use beam
search and maintain a ranked list of partial deriva-
tions (or code tokens for Seq2seq) at every step to
explore alternate high-probability derivations. We
use a beam size of 3 for all neural models. We
copy over source tokens whenever preferred by the
model output. We restrict the output to 150 tokens
or 500 production rules.

To evaluate the quality of the output, we use Ex-
act match accuracy between the reference and gen-
erated code. As a measure of partial credit, we also
compute the BLEU score (Papineni et al., 2002),
following recent work on code generation (Ling
et al., 2016; Yin and Neubig, 2017). BLEU is an
n-gram precision-based metric that will be higher
when more subparts of the predicted code match
the provided reference.
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NL: Returns the execution data store with 

data for all loaded classes.

Variables:

SessionInfoStore sessionInfos

ExecutionDataStore executionData

Methods:

void load

SessionInfoStore getSessionInfoStore

void save

Code:

ExecutionDataStore function () { 

  return executionData ; 

}

NL: Convert mixed case to underscores.

Variables: 

NamingStrategy INSTANCE;
Methods:

String classToTableName

String collectionTableName

String tableName

String columnName

String addUnderscores

Code:

String function (String arg0) { 

   return addUnderscores (arg0);

}

NL: Gets the value of the tags property. This 

accessor method returns a reference to the 

live list, not a snapshot.

Variables:

String validationPattern;

List<String> tags;
Methods:

String getValidationPattern

void setValidationPattern

Code:

List <String> function() { 

  if ( tags == null ) { 

    tags = new ArrayList <String>();} 

  return this.tags; }

NL: Skips the next char

Variables:

String str;

int pos

Methods:

char ch()

int pos()

int length()

int gatherInt()

boolean hasNext()

Code:

void function () { 

  pos ++ ; 

}

NL: Return a library that loads the core from 

code.jquery.com

Prediction:

JQueryLibrary function

   (String arg0) { 

  return new JQueryLibrary ( arg0 ) ; 

}
Reference:

JQueryLibrary function(String arg0) { 

  return new JQueryLibrary ( 

      BASE_RESOURCE_URL + “string" + 

        arg0 + “string" ) ; 

}

NL: Clear the update 

-timestamps data.

Variables:

boolean DEBUG_ENABLED

String REGION_NAME

TimestampsRegion region

Prediction:

void function() { 

  region.clear() ; 

}
Reference:

void function() { 

  region.evictAll(); 

}
Prediction:

List < ? > function ( ) { 

  return iTransformers ; }

NL: Empty the violations list

Variables:

long numPptEntries

List<Violation> violations

Prediction:

void function() { 

  violations.clear() ;

}
Reference:

void function () { 

 violations = 

  new ArrayList<Violation>(); 

}

NL: Returns true if this registry maps 

one or more keys to the specified value.

Variables:

Map _values

Map _register
Methods:

IWidgetIdentifier get

WidgetLocator add

Prediction:

boolean function

  (IWidgetIdentifier arg0) { 

  return _values.contains(arg0); 

}
Reference:

boolean function

  (IWidgetIdentifier arg0) { 

  return _register.containsValue(arg0); 

}

(a) (b) (c)

Reference:

Transformer [ ] function ( ) { 

  return iTransformers ; }

(d)

(e)
(f)

(g)

(h)

(i)

Figure 5: Analysis of our model output on development set examples. Some environment variables and methods are omitted for
space. (a)-(d) represent cases where the model exactly produced the reference output. (e)-(g) are cases where the model output is
very reasonable for a practical setting. In (f), the model produces a better solution than the reference. In (h), the context lacks
information to produce the reference code. The model chooses the wrong element in (i) and could be improved by better encoder
representations.

6 Results

We present results for the context based code gen-
eration task on the test and dev sets in Table 2.
Our model outperforms all baselines and achieves
a gain of 1.95% exact match accuracy and 0.82
BLEU points, with respect to the next best models.
The combination of independently encoding sub-
word units and applying a two-step attention mech-
anism helps the model learn to better associate the
correct variables/methods from the context and the
language in the NL. Figure 5 (a) shows an example
output of our model, which produces code structure
intermixed with member variables (tags). In (b) our
model learns to call method addUnderscores (an
UNK in the vocabulary) with its correct return type
(String). Similarly, in (d) our model also suc-
cessfully learns to use a previously unseen type
(ExecutionDataStore) when making use of the
corresponding variable. (c) is an example of where
the NL does not directly refer to the variable to be
used. The mismatch between dev and test results is
because we ensure that the dev and test examples
come from non-overlapping Github repositories,
resulting in different distributions.

Using a constrained decoder that generates syn-

tax tree rules instead of tokens leads to signifi-
cant gains in terms of exact match score (6.65 for
Seq2prod vs 3.2 for Seq2seq), and shows that this
is an important component of code generation sys-
tems. Seq2prod, however, fails on examples (b)-(d),
since it is harder to learn to match the NL tokens
with environment elements. Finally, all neural mod-
els outperform the retrieval baseline with member
substitution.

To understand which components of the data
and the model contribute most to the output, we
perform an ablation study on the development set
(Table 3). Removing the variables leads to a sig-
nificant hit in exact match accuracy since 68% of
examples (Table 1) refers to class variables; a simi-
lar but smaller reduction is incurred by removing
methods. The presence of these components makes
this task more challenging and also more aligned
with programming scenarios in practice. Remov-
ing the two-step attention mechanism leads to a
1.3% drop in accuracy since the attention on the
NL is unable to interact with the attention on the
environment variables/methods. Removing camel-
case encoding leads to a small drop mainly because
many variable (method) names are single words.



1650

Category Fraction

Totally Wrong 62%
Marginally Correct 9%
Mostly Correct 16%
Exact Match 11%
Semantically Equivalent 2%

Table 4: Qualitative distribution of errors on the development
set.

7 Error Analysis

Subfigures 5(e)-(i) show cases where our model
output did not exactly match the reference. In (e)-
(g), the model output is semantically equivalent to
the reference and is a very reasonable prediction
in a practical setting. For example, in (e) the only
difference between the prediction and the reference
is the string concatenations to the url. Interestingly,
in example (f) the prediction is a cleaner way to
achieve the same effect as the reference, and this is
a great example of the application of these models
for suggesting standard and efficient code. Un-
fortunately, our model is penalized by the exact
match metric here. Similarly, in (g), the model uses
a generic list (List<?>) in place of the specific
type (Transformer[]). Example (h) demonstrates
a case where the model is unaware of methods that
can be called on class members (specifically that
evictAll is a member of the TimestampsRegion
class), and requires augmenting the environment
with additional member type documentation, which
we believe will be an important area for future
work. Example (i) calls for richer encoder repre-
sentations, since our model incorrectly uses the
values variable instead of register, as it is un-

able to associate the word “registry” with the right
elements.

We further perform a qualitative analysis of 100
predictions on our development set (Table 4) and
find that there is significant room for improvement
with 71% of the predictions differing significantly
from their references. 16% of the predictions are
very close to their references with the difference
being 1-2 tokens, while 11% are exactly correct.
2% of the predictions were semantically equivalent
but not exactly equal to their references.

8 Related Work

There is significant existing research on mapping
NL directly to executable programs in the form
of logical forms (Zettlemoyer and Collins, 2005),

λ-DCS (Liang et al., 2013), regular expressions
(Kushman and Barzilay, 2013; Locascio et al.,
2016), database queries (Iyer et al., 2017; Zhong
et al., 2017) and general purpose programs (Balog
et al., 2016; Allamanis et al., 2015b). Ling et al.
(2016) generate Java and Python source code from
NL for card games, conditioned on categorical card
attributes. Manshadi et al. (2013) generate code
based on input/output examples for applications
such as database querying. Gu et al. (2016b) use
neural models to map NL queries to a sequence of
API calls, and Neelakantan et al. (2015) augment
neural models with a small set of basic arithmetic
and logic operations to generate more meaning-
ful programs. In this work, we introduce a new
task of generating programs from NL based on the
environment in which the generated code resides,
following the frequently occurring pattern in large
repositories where the code depends on the types
and availability of variables and methods in the
environment.

Neural encoder-decoder models have proved ef-
fective in mapping NL to logical forms and also for
directly producing general purpose programs. Ling
et al. (2016) use a sequence-to-sequence model
with attention and a copy mechanism to gener-
ate source code. Instead of directly generating
a sequence of code tokens, recent methods focus
on constrained decoding mechanisms to generate
syntactically correct output using a decoder that
is either grammar-aware or has a dynamically-
determined modular structure paralleling the struc-
ture of the abstract syntax tree (AST) of the code
(Dong and Lapata, 2016; Rabinovich et al., 2017;
Krishnamurthy et al., 2017; Yin and Neubig, 2017).
Our model also uses a grammar-aware decoder
similar to Yin and Neubig (2017) to generate syn-
tactically valid parse trees, augmented with a two-
step attention mechanism (Chen et al., 2016), fol-
lowed by a supervised copying mechanism (Gu
et al., 2016a) over the class environment.

Recent models for mapping NL to code have
been evaluated on datasets containing highly tem-
plated code for card games (Hearthstone & MTG;
Ling et al., 2016), or manually labeled per-line
comments (DJANGO; Oda et al., 2015). These
datasets contain ∼20,000 programs with short tex-
tual descriptions possibly paired with categorical
data, whose values need to be copied onto the re-
sulting code from a single domain. In this work, we
collect a new dataset of over 100,000 NL and code
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pairs, together with the corresponding class envi-
ronment. Each environment and NL describe a spe-
cific domain and the dataset comprises thousands
of different domains, that poses additional chal-
lenges. Having an order of magnitude more data
than existing datasets makes training deep neural
models very effective, as we saw in the experimen-
tal evaluation. While massive amounts of Github
code have been used before for creating datasets
on source code only (Allamanis and Sutton, 2013,
2014; Allamanis et al., 2016), we instead extract
from Github a dataset of NL and code with an em-
phasis on context, in order to learn to map NL to
code within a class.

9 Conclusion

In this paper, we introduce new data and methods
for learning to generate source code from language
within the context of a real-world code base. To
train models for this task, we collect and release
CONCODE, a large new dataset of NL, code, and
context tuples from online repositories, featuring
code from a variety of domains. We also introduced
a new encoder decoder model with a specialized
context encoder which outperforms strong neural
baselines by 1.95% exact match accuracy. Finally,
analysis suggests that even richer models of pro-
grammatic context could further improve these re-
sults.
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Wang, and Andrew Senior. 2016. Latent predic-
tor networks for code generation. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 599–609. Association for Computational Lin-
guistics.

Nicholas Locascio, Karthik Narasimhan, Eduardo
De Leon, Nate Kushman, and Regina Barzilay. 2016.
Neural generation of regular expressions from natu-
ral language with minimal domain knowledge. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1918–1923, Austin, Texas. Association for Compu-
tational Linguistics.

Thang Luong, Hieu Pham, and D. Christopher Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

Mehdi Hafezi Manshadi, Daniel Gildea, and James F
Allen. 2013. Integrating programming by example
and natural language programming. In AAAI.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever.
2015. Neural programmer: Inducing latent pro-
grams with gradient descent. arXiv preprint
arXiv:1511.04834.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation (t). In Automated Software Engi-
neering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 574–584. IEEE.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of

the 40th annual meeting on association for compu-
tational linguistics, pages 311–318.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 878–888, Beijing,
China. Association for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
UAI ’05, Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.


