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Abstract

State of the art models using deep neural
networks have become very good in learn-
ing an accurate mapping from inputs to out-
puts. However, they still lack generalization
capabilities in conditions that differ from the
ones encountered during training. This is even
more challenging in specialized, and knowl-
edge intensive domains, where training data
is limited. To address this gap, we introduce
MedNLI1 – a dataset annotated by doctors,
performing a natural language inference task
(NLI), grounded in the medical history of pa-
tients. We present strategies to: 1) leverage
transfer learning using datasets from the open
domain, (e.g. SNLI) and 2) incorporate do-
main knowledge from external data and lexi-
cal sources (e.g. medical terminologies). Our
results demonstrate performance gains using
both strategies.

1 Introduction

Natural language inference (NLI) is the task of
determining whether a given hypothesis can be
inferred from a given premise. This task, for-
merly known as recognizing textual entailment
(RTE) (Dagan et al., 2006) has long been a popular
task among researchers. Moreover, contribution
of datasets from past shared tasks (Dagan et al.,
2009), and recent research (Bowman et al., 2015;
Williams et al., 2018) have pushed the boundaries
for this seemingly simple, but challenging prob-
lem.

The Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015) is a large,
high quality dataset and serves as a benchmark to
evaluate NLI systems. However, it is restricted
to a single text genre (Flickr image captions) and
mostly consists of short and simple sentences. The

∗ Work done during an internship at IBM Research
1https://jgc128.github.io/mednli/

MultiNLI corpus (Williams et al., 2018) which in-
troduced NLI corpora from multiple genres (e.g.
fiction, travel) was a welcome step towards ad-
dressing these limitations. MultiNLI offers diver-
sity in linguistic phenomena, which makes it more
challenging.

Following these efforts, we explore the prob-
lem of NLI in the clinical domain. Language in-
ference in specialized domains such as medicine
is extremely complex and remains unexplored by
the machine learning community. Moreover, since
this domain has a distinct sublanguage (Friedman
et al., 2002), clinical text also presents unique
challenges (abbreviations, inconsistent punctua-
tion, misspellings, etc.) that differentiate it from
open-domain data (Meystre et al., 2008).

In this paper, we address these gaps and make
the following contributions:

• Introduce MedNLI - a new, publicly avail-
able, expert annotated dataset for NLI in the
clinical domain.

• A systematic comparison of several state-of-
the-art open domain models on MedNLI.

• A study of transfer learning techniques from
the open domain to the clinical domain.

• Techniques for incorporating domain-
specific knowledge from knowledge bases
(KB) and domain specific data into neural
networks.

2 The MedNLI dataset

Let us recall the procedure followed for creating
the SNLI dataset: annotators were presented with
captions for a Flickr photo (the premise) without
the photos themselves. They were asked to write
three sentences (hypotheses): 1) A clearly true de-
scription of the photo, 2) A clearly false descrip-
tion, and 3) A description that might be true or
false. This procedure produces three training pairs

https://jgc128.github.io/mednli/
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# Premise Hypothesis Label

1 ALT , AST , and lactate were elevated as noted
above

patient has abnormal lfts entailment

2 Chest x-ray showed mild congestive heart failure The patient complains of cough neutral
3 During hospitalization , patient became progres-

sively more dyspnic requiring BiPAP and then a
NRB

The patient is on room air contradiction

4 She was not able to speak , but appeared to com-
prehend well

Patient had aphasia entailment

5 T1DM : x 7yrs , h/o DKA x 6 attributed to poor
medication compliance , last A1c [ ** 3-23 ** ] :
13.3 % 2

The patient maintains strict glucose control contradiction

6 Had an ultimately negative esophagogastroduo-
denoscopy and colonoscopy

Patient has no pain neutral

7 Aorta is mildly tortuous and calcified . the aorta is normal contradiction

Table 1: Examples from the development set of MedNLI

of sentences for each premise with three differ-
ent labels: entailment, contradiction, and neutral,
respectively. In order to produce a comparable
dataset, we used the same approach adjusted for
the clinical domain.

2.1 Premise sampling and hypothesis
generation

As the source of premise sentences, we used the
MIMIC-III v1.3 (Johnson et al., 2016) database.
With de-identified records of 38,597 patients, it is
the largest repository of publicly available clini-
cal data. Along with medications, lab values, vital
signs, etc. MIMIC-III contains 2,078,705 clinical
notes written by healthcare professionals in En-
glish. The hypothesis sentences were generated by
clinicians.

Clinical notes are typically organized into
sections such as Chief Complaint, Past
Medical History, Physical Exam,
Impression, etc. These sections can be easily
identified since the formatting for associated
section headers often resembles capital letters,
followed by a colon. The clinicians in our team
suggested Past Medical History to be the
most informative section of a clinical note, from
which critical inferences can be drawn about the
patient.

Therefore, we segmented these notes into sec-
tions using a simple rule based program capturing
the formatting of these section headers. We ex-
tracted the Past Medical History section
and used a sentence splitter trained on biomedical
articles (Lingpipe, 2008) to get a pool of candi-
date premises. We then randomly sampled a sub-
set from these candidates and presented them to

You will be shown a sentence from the Past
Medical History section of a de-identified clinical
note. Using only this sentence, your knowledge about
the field of medicine, and common sense:

• Write one alternate sentence that is definitely a
true description of the patient. Example, for the
sentence “Patient has type II diabetes” you could
write “Patient suffers from a chronic condition“

• Write one alternate sentence that might be a true
description of the patient. Example, for the sen-
tence “Patient has type II diabetes” you could
write “Patient has hypertension”

• Write one sentence that is definitely a false de-
scription of the patient. Example, for the sentence
“Patient has type II diabetes” you could write
“The patient’s insulin levels are normal without
any medications.”

Figure 1: Annotation prompt shown to clinicians

the clinicians for annotation. Figure 1 shows the
exact prompt shown to the clinicians for the anno-
tation task. SNLI annotations are grounded since
they are associated with captions of the same im-
age. We seek to achieve the same goal by ground-
ing the annotations against the medical history of
the same patient.

As discussed earlier, examples shown in Table 1
depict unique challenges that involve reasoning
over domain-specific knowledge. For instance, the
first three examples require the knowledge about
clinical terminology. The fourth example requires
awareness of medications and the last example
elicits knowledge about radiology images. We
make the MedNLI dataset available2 through the

2https://jgc128.github.io/mednli/

https://jgc128.github.io/mednli/
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MIMIC-III derived data repository. Thus, any in-
dividual certified to access MIMIC-III can also ac-
cess MedNLI.

2.2 Annotation collection

Conclusions in the clinical domain are known to
be context dependent and a source of multiple un-
certainties (Han et al., 2011). We had to ensure
that such subjective interpretations do not result
in annotation conflicts affecting the quality of the
dataset. To ensure agreement, we worked with
clinicians and generated annotation guidelines for
a pilot study. Two board certified radiologists
worked on the annotation task, and were presented
with the 100 unique premises each.

Some premises, often marred by de-
identification artifacts, did not contain any
information from which useful inferences could
be drawn, e.g. This was at the end of
[**Month (only) 1702**] of this
year. Such sentences were deemed as invalid
for the task and discarded based on clinician
judgment. The MIMIC-III dataset contains many
de-identification artifacts associated with dates
and names (persons and places) which also makes
MedNLI more challenging.

After discarding 16 premises, the result of hy-
pothesis generation was a set of 552 pairs. To
calculate agreement, we presented pairs generated
by one clinician, and sought annotations from the
other clinician, determining if the inference was
“Definitely true”, “Maybe true”, or “Definitely
false” (Bowman et al., 2015). Comparison of
these annotations resulted in a Cohen’s kappa of
κ = 0.78. While this is substantial if not perfect
agreement by itself (McHugh, 2012), it is particu-
larly good given the challenging nature of NLI and
the complexity of the domain.3

On reviewing the annotations, we found that la-
beling differences between “Definitely true” and
“Maybe true” were the major source of disagree-
ment. This was primarily because one clinician
would think of a scenario that is generally true,
while the other would think of assumptions (e.g.
patient might be lying, or patient might be preg-
nant) when it would not.

A discussion with clinicians concluded that the
annotation guideline was clear and any person
with a formal background of medicine should be

3Rajpurkar et al. (2017) report F1 < 0.45 for four radiol-
ogists when compared among themselves

able to complete the task successfully. To generate
the final dataset, we recruited two additional clin-
icians, both board certified medical students pur-
suing their residency programs. Unlike SNLI, we
did not collect multiple annotations per sentence
pair because of the time and funding constraints.

2.3 Dataset statistics
Together, the four clinicians worked on a total of
4,683 premises over a period of six weeks. The re-
sulting dataset consists of 14,049 unique sentence
pairs. Following Bowman et al. (2015), we split

Dataset size
Training pairs 11232
Development pairs 1395
Test pairs 1422

Average sentence length in tokens
Premise 20.0
Hypothesis 5.8

Maximum sentence length in tokens
Premise 202
Hypothesis 20

Table 2: Key statistics of the dataset

the dataset into training, development, and testing
subsets and ensured that no premise was overlap-
ping between the three subsets. Table 2 presents
key statistics of MedNLI.

3 Models

To establish a baseline performance on MedNLI,
we experimented with a feature-based system. To
further explore the performance of modern neural
networks-based systems, we experimented several
models of various degrees of complexity: Bag of
Words (BOW), InferSent (Conneau et al., 2017)
and ESIM (Chen et al., 2017). Note that our goal
here is not to outperform existing models, but to
explore the relative gain of the proposed methods,
and compare them to a baseline. We used the same
set of hyperparameters in all models to ensure that
any difference in performance is exclusively due
to the algorithms.

Feature-based system We used a gradient
boosting classifier incorporating a variety of hand
crafted features. Apart from standard NLP fea-
tures, we also infused clinical knowledge from the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004). Each terminology in the UMLS
can be viewed as a graph where nodes represent
medical concepts, and edges represent relations
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between them. These are canonical relationships
found in ontologies such as IS A and SYNONYMY.
For instance, diabetes IS A disorder of the en-
docrine system. The domain specific features we
added to the model represent similarity between
UMLS concepts from the premise and the hypoth-
esis, based how close they appear in the UMLS
graph (Pedersen et al., 2007). Following (Shiv-
ade et al., 2015; Pedersen et al., 2007) we used the
SNOMED-CT terminology in our experiments.

The groups below summarize the feature sets
used in our model (35 features in total):

1. BLEU score
2. Number of tokens (e.g. min, max, difference)
3. Negations (e.g. keywords such as no, do not)
4. TF-IDF similarity (e.g. cosine, euclidean)
5. Edit distances (e.g. Levenshtein)
6. Embedding similarity (e.g. cosine, eu-

clidean)
7. UMLS similarity features (e.g. shortest path

distance between UMLS concepts)

Bag of words We use a bag-of-words (BOW)
model as a simple baseline for the NLI task: the
Sum of words model by Bowman et al. (2015) with
a small modification. While Bowman et al. (2015)
use tanh as the activation function in the model,
we use ReLU, since it trained faster and achieved
better results (Glorot et al., 2011). In order to rep-
resent an input sentence as a single vector, this
architecture simply sums up the vectors of indi-
vidual tokens. The premise and hypothesis vec-
tors are then concatenated and passed through a
multi-layer neural network. Recent work shows
that even this straightforward approach encodes a
non-trivial amount of information about the sen-
tence (Adi et al., 2017).

InferSent InferSent (Conneau et al., 2017) is
a model for sentence representation that demon-
strated close to state-of-the-art performance across
a number of tasks in NLP (including NLI) and
computer vision. The main differences from the
BOW model are as follows:

• A bidirectional LSTM encoder of input sen-
tences and a max-pooling operation over
timesteps are used to get a vector for the
premise (p) and for the hypothesis (h);

• A more complex scheme of interaction be-
tween the vectors p and h to get a single vec-
tor z that contains all the information needed

to produce a decision about the relationship
between the input sentences: z = [p, h, |p −
h|, p ∗ h].

ESIM The ESIM model, developed by Chen
et al. (2017), is shown in Figure 2. It is a fairly
complex model that makes use of two bidirec-
tional LSTM networks. The basic idea of ESIM
is as follows:

• The first LSTM produces a sequence of hid-
den states.

• Pairwise attention matrix e is computed be-
tween all tokens in the premise and the hy-
pothesis to produce new sequences of “at-
tended” hidden states, which are then fed into
the second LSTM.

• Max and average pooling are performed over
the output of the LSTMs.

• The output of the pooling operations is com-
bined in a way similar to the InferSent model.

Figure 2: ESIM model. Dashed blocks illustrate
the knowledge-directed attention matrix and the
corresponding vectors (see Section 4.2.2 for de-
tails).
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The three aforementioned models exemplify the
architectures that are, perhaps, the most widely
used for NLI task, spanning from simple bag-of-
words approaches to complicated models with Bi-
LSTM and inter-sentence attention. We addition-
ally experimented with a plain Bi-LSTM model as
well as GRU (Cho et al., 2014), but since their per-
formance was not remarkable (in the same range
as BOW) we do not report it here.

4 Transfer learning

Given the existence of larger general-domain NLI
datasets such as SNLI and MultiNLI, it stands to
reason to try to leverage them to improve the per-
formance in the clinical domain. Transfer learning
has been shown to improve performance on vari-
ety of tasks such as: machine translation on low-
resource languages (Zoph et al., 2016) and also
some tasks from the bio-medical domain in par-
ticular (Sahu and Anand, 2017; Lee et al., 2018).
To see if a corresponding boost would be possi-
ble for the NLI task, we investigated three com-
mon transfer learning techniques on the MedNLI
dataset using SNLI and five different genres from
MultiNLI.

Direct transfer is the simplest method of trans-
fer learning. After training a model on a large
source domain dataset, the model is directly tested
on the target domain dataset. If the source and the
target domains are similar to some extent, one can
achieve a reasonable accuracy by simply applying
a model pre-trained on the source domain to the
target domain. In our case the source domain is
general domain in SNLI and the various genres in
MultiNLI, and the target domain is clinical.

Sequential transfer is the most widely used
technique. After pre-training the model on a large
source domain, the model is further fine-tuned us-
ing the smaller training data of the target domain.
The assumption is that while the model would
learn domain-specific features, it would also learn
some domain-independent features that will be
useful for the target domain. Furthermore, the
fine-tuning process would affect the learned fea-
tures from the source domain and make them more
suitable for the target domain.

Multi-target transfer is a more complex
method involving separation of the model into
three components (or layers):

• The shared component is trained on both the
source and target domains;

• The source domain component is trained only
during the pre-training phase and does not
participate in the prediction of the target do-
main;

• The target domain component is trained dur-
ing the fine-tuning stage and it produces the
predictions together with the shared compo-
nent.

The motivation for multi-target transfer is that
performance should be improved by splitting
deeper layers of the model into domain-specific
parts and having a shared block early in the
network, where it presumably learns domain-
independent features.

4.1 Word embeddings
Another way to improve the accuracy on the tar-
get domain is to use domain-specific word embed-
dings instead of, or, in addition to, open-domain
ones. For example, Stanovsky et al. (2017)
achieved state of the art results on the task of
recognizing Adverse Drug Reaction using graph-
based embeddings trained on the “Drugs” and
“Diseases” categories from DBpedia (Lehmann
et al., 2015), as well as embeddings trained on
web-pages categorized as “medical domain”.

We experimented with the following publicly
available general-domain word embeddings:

• GloVe[CC]: GloVe embeddings (Pennington
et al., 2014), trained on Common Crawl4.

• fastText[Wiki]: fastText embeddings (Bo-
janowski et al., 2017), trained on Wikipedia.

• fastText[CC]: fastText embeddings, trained
on Common Crawl.

Furthermore, we trained fastText embeddings
on the following domain-specific corpora:

• fastText[BioASQ]:A collection of PubMed
abstracts from the BioASQ challenge
data (Tsatsaronis et al., 2015). This data
includes abstracts from 12,834,585 scientific
articles from the biomedical domain.

• fastText[MIMIC-III]: Clinical notes for pa-
tients from the MIMIC-III database (Johnson
et al., 2016): 2,078,705 notes with 320 tokens
in each on average.

Finally, we experimented with initializing word
embeddings with pre-trained vectors from general

4http://commoncrawl.org/

http://commoncrawl.org/
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domain and further training on a domain-specific
corpus:

• GloVe[CC] → fastText[BioASQ]: GloVe embed-
dings for initialization, and the BioASQ data
for fine-tuning.

• GloVe[CC] → fastText[BioASQ] →
fastText[MIMIC-III]: GloVe embeddings
for initialization, and two consequent fine-
tuning using the BioASQ and MIMIC-III
data.

• fastText[Wiki] → fastText[MIMIC-III]: fastText
Wikipedia embeddings for initialization, and
the MIMIC-III data for fine-tuning.

Experiments using other approaches to word
embeddings, such as word2vec (Mikolov et al.,
2013) and CoVe (McCann et al., 2017) did not
show any gains. All the above trained embeddings
are available for download.

4.2 Knowledge integration
Since understanding medical texts requires
domain-specific knowledge, we experimented
with different ways of incorporating such knowl-
edge into the systems. First, we can modify
the input to the system so it carries a portion
of clinical information. Second, we can modify
the model itself, integrating domain knowledge
directly into it.

The UMLS is the largest, publicly available,
and regularly updated database of medical ter-
minologies, concepts, and relationships between
them. It can be viewed as a graph where clini-
cal concepts are nodes, connected by edges rep-
resenting relations, such as synonymy, parent-
child, etc. Following past work, we restricted to
the SNOMED-CT terminology in UMLS and ex-
perimented with two techniques for incorporating
knowledge: retrofitting and attention.

4.2.1 Retrofitting
Retrofitting (Faruqui et al., 2015) modifies pre-
trained word embeddings based on an ontology.
The basic idea is to try to bring the representations
of the concepts that are connected in the ontology
closer to one another in vector space. The authors
showed that retrofitting using WordNet (Fellbaum,
1998) synsets improves accuracy on several word-
level tasks, as well as sentiment analysis.

4.2.2 Knowledge-directed attention
Attention proved to be a useful technique for
many NLP tasks, starting from machine transla-

tion (Bahdanau et al., 2015) to parsing (Vinyals
et al., 2015) and NLI itself (Parikh et al., 2016;
Rocktäschel et al., 2016). In most models (includ-
ing the ESIM model that we use in our experi-
ments) attention is learned in an end-to-end fash-
ion. However, if we have knowledge about rela-
tionships between concepts, we could leverage it
to explicitly tell the model to attend to specific
concepts during the processing of the input sen-
tence.

For example, there is an edge in SNOMED-CT
from the concept Lung consolidation to Pneumo-
nia. Using this information, during the processing
of a sentence pair

• Premise The patient has pneumonia.
• Hypothesis The patient has a lung disease.

the model could attend to the token lung while pro-
cessing pneumonia.

We propose to integrate this knowledge in a
way similar to how attention is used in the ESIM
model. Specifically, we calculate the attention ma-
trix e ∈ Rn×m between all pairs of tokens ai
and bj in the inputs sentences, where n is the
length of the hypothesis and m is the length of
the premise. The value in each cell reflects the
length of the shortest path lij between the corre-
sponding concepts of the premise and the hypoth-
esis in SNOMED-CT (the shorter is the path, the
higher is the value).

This process could be informally described as
follows: each token ãi of the premise is a weighted
sum of relevant tokens bj of the hypothesis, ac-
cording to the medical ontology, and vice versa.
This enables the medical domain knowledge to be
integrated directly into the system.

We used the original tokens ai as well as the
attended ãi inside the model for both InferSent and
ESIM. For InferSent, we simply concatenate them
across the time dimension:

â = [a1, a2, . . . , an, ã1, ã2, . . . , ãn]

where n is the length of the inputs sequence. For
the ESIM model, we concatenate ai and ãi before
passing them to the composition layer (see Fig-
ure 2 and Section 3.3 in the original paper (Chen
et al., 2017)). This enables the model to learn
the relative importance of both the token and the
knowledge directed attention.
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Set Features BOW InferSent ESIM

Dev 51.9 71.9 76.0 74.4
Test 51.9 70.2 73.5 73.1

Table 3: Baseline accuracy on the development and
the test set of MedNLI for different models.

5 Results and discussion

We implemented all models using PyTorch5 and
trained them with the Adam optimizer (Kingma
and Ba, 2015) until the validation loss showed
no improvement for 5 epochs. The epoch with
the lowest loss on the validation set was selected
for testing. We used the GloVe word embed-
dings (Pennington et al., 2014) in all experiments,
except for subsection 5.3. In all experiments we
report the average result of 6 different runs, with
the same hyperparameters and different random
seeds. Medical concepts in SNOMED-CT were
identified in the premise and hypothesis sentences
using Metamap (Aronson and Lang, 2010). The
code for all experiments is publicly available.6

5.1 Baselines
Table 3 shows the baseline results: the perfor-
mance of a model when trained and tested on
the MedNLI dataset. The feature-based system
performed the worst. As for neural networks-
based systems, the BOW model showed the low-
est performance on the both development and test
sets. The InferSent model, in contrast, achieved
the highest accuracy, despite ESIM outperform-
ing it on SNLI. This could be attributed to the
fact that ESIM has twice as many parameters as
InferSent, and so InferSent overfits less to the
smaller MedNLI dataset.

5.2 Transfer learning
As expected, Table 4 shows that direct transfer
is worse than the baseline but is still better than a
random baseline of 33.3%. Sequential and multi-
target transfer learning, in contrast, yields a con-
siderable gain for all the models. The maximum
gain is 2.4%, 0.9%, and 0.3% for the BOW, In-
ferSent, and ESIM models correspondingly.

Second, note that the biggest SNLI domain gave
the most boost in only two out of six cases, imply-
ing that the size of the domain should not be the

5https://pytorch.org/
6https://jgc128.github.io/mednli/

most important factor in choosing the source do-
main for transfer learning. The best accuracy for
all the models was obtained with the “slate” do-
main from MultiNLI corpus with sequential trans-
fer (note, however, that the accuracy of ESIM is
actually lower than the baseline accuracy). This
is consistent with observations of Williams et al.
(2018). Finally, although some domains are better
for particular transfer learning methods with par-
ticular models, there is no single combination that
works for all cases.

5.3 Word embeddings

Table 5 shows that simply using of the embed-
dings trained on the MIMIC-III notes significantly
increases the accuracy for all the models. Fur-
thermore, the InferSent models achieves a 3.1%
boost with the fastText Wikipedia embeddings,
fine-tuned on the MIMIC-III data. Note that the
results fastText[Wiki] are worse than the baseline
GloVe[CC] for all models, which could be due to
the source corpus size. However, the results on
BioASQ are worse than on MIMIC-III, despite the
significantly larger corpus of the BioASQ embed-
dings. Overall, our experiments show the bene-
fit of domain-specific rather than general-domain
word embeddings.

5.4 Knowledge integration

5.4.1 Retrofitting
Table 6 shows that retrofitting only hurts the per-

formance. This is in contrast with the results of
the original study, where retrofitting was bene-
ficial not only for word-level tasks but also for
tasks such as sentiment analysis (Faruqui et al.,
2015). We hypothesize that although WordNet
and UMLS are structurally similar, significant dif-
ferences in the content (Burgun and Bodenrei-
der, 2001) might be the reason for these results.
Retrofitting should be more useful when it is used
on a WordNet-like database where the main rela-
tion is synonymy, and tested on tasks such as word
similarity tests or sentiment analysis. The UMLS
semantic network is more complex and contains
relations that may not be suitable for retrofitting.

Moreover, retrofitting works only on directly
related concepts in a knowledge graph (although
it might affect, to some extent, indirectly related
concepts by transitivity). However, as Figure 3
shows, UMLS contains few training pairs that
have such concepts (namely, pairs with a path of

https://pytorch.org/
https://jgc128.github.io/mednli/
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Source domain Direct transfer Sequential transfer Multi-target transfer

BOW InferSent ESIM BOW InferSent ESIM BOW InferSent ESIM

snli -21.8 -24.2 -22.8 1.8 -1.8 -2.5 2.4 -2.5 -0.7
fiction -21.6 -25.6 -21.4 1.3 0.4 -0.5 1.4 0.1 0.3
government -23.8 -27.2 -26.2 1.0 0.8 -0.7 1.3 0.2 0.2
slate -23.2 -25.7 -21.6 1.9 0.9 -0.2 1.1 0.6 -0.1
telephone -25.7 -27.3 -25.6 1.7 -0.2 -1.1 1.2 0.4 -0.1
travel -25.4 -29.1 -23.5 1.6 0.0 -0.7 0.2 -0.3 0.1

Table 4: Absolute gain in accuracy with respect to the baseline (see Table 3) on the MedNLI test set for
different transfer learning modes. Bold indicates the best source domain for each model and transfer.

Embeddings BOW InferSent ESIM

fastText[Wiki] -3.5 -3.5 -4.4
fastText[CC] (600B) -0.6 1.3 -0.3
fastText[BioASQ] (2.3B) 0.5 0.6 0.2
fastText[MIMIC-III] (0.8B) 1.1 2.3 1.2
GloVe[CC] → fastText[BioASQ] 0.2 0.7 1.4
GloVe[CC] → fastText[BioASQ] → fastText[MIMIC-III] 0.9 2.7 1.8
fastText[Wiki] → fastText[MIMIC-III] 0.1 3.1 1.7

Table 5: Absolute gain in accuracy with respect to
the baseline (GloVe[CC]) for different word embed-
dings (the number in parentheses reflects the num-
ber of tokens in the corresponding training cor-
pora).

length 1). In contrast, the lengths of the shortest
path in SNLI using WordNet fall close to 1. This
suggests that the medical inferences represented in
MedNLI requires more complex reasoning, typi-
cally involving multiple steps.

As a sanity check, we applied retrofitting to
the GloVe embeddings and tested the InferSent
model on the “fiction” domain from the MultiNLI
corpus. We used the code and lexicons pro-
vided by Faruqui et al. (2015) and confirmed that
retrofitting hurts the performance in that case as
well.

BOW InferSent ESIM

-1.7 -2.0 -2.7

Table 6: Absolute gain in accuracy using
retrofitting for MedNLI.

5.4.2 Knowledge-directed attention
To evaluate the potential of knowledge-directed
attention, let us consider its effect on a base-
line embedding (GloVe[CC]) and a fastText em-
bedding trained on MIMIC-III (fastText[MIMIC-III])
that showed good performance in section 5.3.

Knowledge-directed attention showed positive
effect with the InferSent model on GloVe[CC] (0.3
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Figure 3: Lengths of the shortest paths between
concepts in the premise and the hypothesis. 0 in-
dicates that they contain the same concept.

gain), and was not detrimental to ESIM. How-
ever, in case of the fastText[MIMIC-III] embeddings
knowledge-directed attention was beneficial to
both models, as shown in Table 7. Note that while
retrofitting can use only direct relations during the
training process, our method incorporates infor-
mation about relationships of any length, which is
a necessity (as evident from Figure 3).

Embedding InferSent ESIM

GloVe[CC] 0.3 0.0
fastText[MIMIC-III] 0.2 0.3

Table 7: Absolute gain in accuracy using
knowledge-directed attention.

6 Error analysis

The neutral class is the hardest to recognize for
all models. Majority errors stem from confusion
between entailment and the neutral class. Use of
domain-specific embeddings trained on MIMIC-
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Category Premise Hypothesis Predicted Expected

Numerical Reasoning WBC 12 , Hct 41 . WBC slightly elevated contradiction entailment

World Knowlegde No known sick contacts No recent travel entailment neutral

Abbreviations No CP or fevers. Patient has no angina neutral entailment

Medical Knowledge EKG showed T-wave depres-
sion in V3-5, with no prior
EKG for comparison.

Patient has a normal EKG neutral contradiction

Negations Head CT was negative for
bleed.

The patient has intracranial
hemorrhage

neutral contradiction

Table 8: Representative errors made by different models

III result in gains which are equally distributed
across all three classes. Interestingly, gains from
knowledge-directed attention stem mostly (60%)
from the neutral class. Moreover, 87% of these
neutral predictions were predicted as entailment
before adding the knowledge directed attention.

We categorized the errors made by all the mod-
els in four broad categories. Table 8 outlines rep-
resentative errors made by most models in these
categories. Numerical reasoning such as abnor-
mal lab value → disease or abnormal vital sign
→ finding are very hard for a model to learn un-
less it has seen multiple instances of the same nu-
merical value.7 The first step is to learn what val-
ues are abnormal and the next is to actually per-
form the inference. Many inferences require world
knowledge that could be deemed close to open do-
main NLI. While these are very subtle, some are
quite domain specific (e.g. emergency admission
9 planned visit). Abbreviations are ubiquitously
found in clinical text. While some are standard
and therefore frequent, clinicians tend to use non
standard abbreviations making inference harder.
Finally, many inferences are at the core of rea-
soning with clinical knowledge. While training
on large datasets maybe a natural but impractical
solution, this is an open research problem for re-
searchers in the community.

7 Limitations

Unlike SNLI and MultiNLI, each example in the
MedNLI dataset was single annotated. However,
this was the best we could do in the limited time
and resources available. Very recently Gururan-
gan et al. (2018) discovered annotation artifacts in
NLI datasets. Since we followed the exact same
process, we found them to be present in MedNLI
as well. The premise-oblivious text-classifier that

7The symbol → represents entailment relationship

achieves 67.0 F1 on SNLI, and 53.9 on Multi-NLI
achieves 61.9 on MedNLI.

8 Conclusion

We have presented MedNLI, an expert annotated,
public dataset for natural language inference in the
clinical domain. To the best of our knowledge,
MedNLI is the first dataset of its kind. Our ex-
periments with several state-of-the-art models pro-
vide a strong baseline for this dataset. Our work
compliments the current efforts in NLI by present-
ing thorough experiments for the specialized and
knowledge intensive field of medicine. We also
demonstrated that a simple use of domain-specific
word embeddings provides a performance boost.
Finally, we also presented a method for integrat-
ing domain ontologies into the training regime of
models. We hope the released code and dataset
with clear benchmarks help advance research in
clinical NLP and the NLI task.

Acknowledgments

This work would not have been possible with-
out Adam Coy, Andrew Colucci, Chanida Tham-
machart, and Hassan Ahmad – the clinicians in
our team who helped us in creating the dataset.
We are grateful to Vandana Mukherjee and Tan-
veer Syeda-Mahmood for supporting the project.
We would also like to thank Anna Rumshisky and
Anna Rogers for their help in this work. Most
importantly, we would like to thank Leo Anthony
Celi and Alistair Johnson from the MIMIC team
for helping us in making MedNLI publicly avail-
able.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-



1595

ysis of sentence embeddings using auxiliary predic-
tion tasks. In Proceedings of ICLR.

Alan R Aronson and François-Michel Lang. 2010. An
overview of metamap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association, 17(3):229–236.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Olivier Bodenreider. 2004. The Unified Medical
Language System (UMLS): Integrating biomed-
ical terminology. Nucleic Acids Research,
32(suppl 1):D267–D270.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP.

Anita Burgun and Olivier Bodenreider. 2001. Compar-
ing terms, concepts and semantic classes in Word-
Net and the Unified Medical Language System. In
Proceedings of the NAACL Workshop: WordNet and
other lexical resources: Applications, extensions
and customizations., pages 77–82.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Procedings of ACL.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
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