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Abstract

Distributional semantic models (DSMs) gen-
erally require sufficient examples for a word
to learn a high quality representation. This is
in stark contrast with human who can guess
the meaning of a word from one or a few
referents only. In this paper, we propose
Mem2Vec, a memory based embedding learn-
ing method capable of acquiring high quality
word representations from fairly limited con-
text. Our method directly adapts the represen-
tations produced by a DSM with a longterm
memory to guide its guess of a novel word.
Based on a pre-trained embedding space, the
proposed method delivers impressive perfor-
mance on two challenging few-shot word sim-
ilarity tasks. Embeddings learned with our
method also lead to considerable improve-
ments over strong baselines on NER and sen-
timent classification.

1 Introduction

Humans can learn a new word quickly from min-
imal exposure to its context, as in the following
example:

The Labrador runs happily towards me, barking
and wagging its tail.

Even this is the first time one hears about
Labrador, we can guess it should be an animal
or even further a dog easily, since it runs, barks
and has a tail. Such ability to efficiently acquire
representation from small data, namely fast map-
ping, is thought to be the hallmark of human in-
telligence that a cognitive plausible agent should
strive to reach (Xu and Tenenbaum, 2007; Lake
et al., 2015).

However, as the mainstream of text represen-
tation learning in NLP, most distributed seman-
tic models (DSMs) don’t fare well in tiny data
(Lazaridou et al., 2017; Herbelot and Baroni,

2017; Wang et al., 2016). Even if they have
learned a lot of words, they still need sufficient
examples to acquire a high-quality representation
for a novel word. This not only constitutes a
blow to DSM’s cognitive plausibility but also lim-
its its practical usage in NLP. Because plentiful
enough data is not always available, especially in
domain specific tasks. Even if a large corpora is at
hand, low-frequency words in it are still more than
highly frequent ones, according to the Zipfian dis-
tribution of natural language.

Given the above reasons, it’s desirable to build
a word embedding method capable of acquir-
ing high quality representations with limited con-
texts, i.e., few shot word representation learn-
ing. We take lessons from hypothesis constraint
(HC) theory to achieve this goal. HC is an in-
fluential proposal for human’s fast mapping (Xu
and Tenenbaum, 2007). It indicates that people
learn a new word by eliminating incorrect hy-
potheses about the word meaning, based on usage
of the target word and prior knowledge of con-
text words. This is instructive to us since embed-
ding a word in the high-dimensional vector space
also faces nearly unlimited candidate hypotheses
(Wang et al., 2018) . General DSMs can’t effi-
ciently handle these candidates, so they fall back
on multiple context examples to find the path,
while we propose to let a memory show the way.
We augment DSM with an longterm memory to
transfer knowledge from a large general domain
corpora to adapt the representation learning on the
small text. In context of the HC theory, we directly
constrain the hypothesis a DSM makes about the
target word by its current usage and prior knowl-
edge acquired from a large corpora. Experiments
show our method makes educated guess of a novel
word efficiently with fairly limited examples, just
as humans do in the fast mapping.

It’s worth noting that us attaching importance
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to few-shot word representation learning doesn’t
mean we need to learn words, no matter frequent
or rare, all in the few-shot way. DSMs have
done pretty well in frequent words learning with
large corpus. We augment a DSM with an ex-
ternal memory for few-shot representation learn-
ing, under the assumption that gradual acquisition
of frequent words plus fast learning of rare words
make an integrated word representation learning
scheme. Our ultimate goal is certainly an all-
round architecture that learns text representations
from any amount of data. We believe Mem2Vec,
which bridges the word representation learning
from big data to small text, will be a building block
of that ideal architecture.

The primary contribution of this work is a mem-
ory augmented word embedding model with a fast
adaptation mechanism, capable of learning rep-
resentations efficiently from tiny data. Experi-
mental results show that the proposed Mem2Vec
learns high quality target word representation with
both single informative sentence and a few casual
sentences as contexts. To show its performance
in downstream applications, Mem2Vec is used to
pre-train embeddings for three NER tasks and also
surpasses strong baselines. Since our model trans-
fers from general domain corpus to a target small
text, it is highly possible to face the problem of do-
main shift. Mem2vec is impressively competent in
tackling domain shift, as demonstrated in a series
of cross-domain sentiment classification tasks.

2 Related Work

Rare Word Embedding Acquiring representa-
tions for rare words has long been a well-known
challenge of natural language understanding (Her-
belot and Baroni, 2017; Wang and Zong, 2017).
Khodak et al. (2018) learn a linear transforma-
tion with pretrained word vectors and linear re-
gression, which can be efficient adapted for novel
words. Lazaridou et al. (2017) directly sum the
context embedding of a novel word as its represen-
tation, based on a pre-trained embedding space.
Though not explicitly stated, their idea actually
matches the HC theory. They constrain the hy-
pothesis solely within the current context of the
target word which we think is not enough. We con-
strain the hypothesis with memory and the con-
text. Another strand of solutions rely on auxil-
iary information, such as morphological structure
(Luong et al., 2013; Kisselew et al., 2015) and

external knowledge (Long et al., 2017). Lazari-
dou et al. (2013) derive morphologically complex
words from sub-word parts with phrase composi-
tion methods. Ling et al. (2015) read characters of
the rare word with a bidirectional LSTM to deal
with open vocabulary problem in language model-
ing and NER. Hill et al. (2016) learn an embedding
of a dictionary definition to match the pre-trained
headword vector, while Weissenborn (2017) re-
fines the word embeddings with explicit back-
ground knowledge from a commonsense knowl-
edge base. Different from this strand of work, our
method doesn’t fall back on auxiliary information.
We acquire knowledge from a large unlabeled gen-
eral domain corpora which is widely available.

Cross Domain Word Embedding The knowl-
edge accumulation phase of our model aims to
learn an embedding space from a large general
domain corpora. This is partially in line with
cross domain word embedding work. Among
these work, a strand of approach hypothesizes
that a word frequent in multiple domains should
mean nearly across these domains. Bollegala et al.
(2015) call such word pivot, share its embeddings
across domains and use them to predict the sur-
rounding non-pivots. Yang et al. (2017) selectively
incorporate source domain information to target
domain word embeddings with a word-frequency-
based regularization. These pivot-based methods
have delivered improvements on sentiment anal-
ysis and NER. However, they have a defect that
only limited target domain words benefit from the
knowledge transfer.

Memory based Meta Learning Memory aug-
mented neural networks (MANN) are widely used
in different tasks for efficient recall of experience
and fast adaptation to new knowledge (Bahdanau
et al., 2014; Merity et al., 2017; Miller et al., 2016;
Grave et al., 2017; Sprechmann et al., 2018; Wang
et al., 2017). Intuitively, Meta-learning, which
aims to train a model that quickly adapts to a new
task, should benefit from memory architecture,
and empirically it does do (Santoro et al., 2016;
Duan et al., 2016; Wang et al., 2016; Munkhdalai
and Yu, 2017; Kaiser et al., 2017). The memory
we use is closely related to (Kaiser et al., 2017),
but still get three major differences. First,they only
retrieve the single nearest neighbor from the mem-
ory while we retrieve an average of the K nearest
neighbors weighted by how they match the current
context. Second, they focus on supervised learn-
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Figure 1: The proposed model architecture. K and V respectively denotes the key and value vector of the memory.
# refers to equation(3). Left: Knowledge accumulation phase. The model learns word embeddings and store
prototypes in memory. Right: Fast Adaptation phase. Prototypes retrieved from memory with the given context
are combined with the context embedding to form the target word representation.

ing and don’t have a fast adaptation mechanism for
acquiring representation. Third, they update the
memory according to whether the returned value
is strictly the same as the target. However, syn-
onyms are common in natural language text. We
thus take a softer criterion and update the mem-
ory according to vector similarity between the ad-
dressed value and the target word embedding.

3 Methods

Our model in brief is a neural network based DSM
augmented by a longterm memory. As showed in
Fig.1, it operates in two consecutive phases, first
accumulating knowledge and then doing fast adap-
tation on new words, just as the human learning
process goes. In the knowledge acquisition phase,
we train the memory augmented DSM to learn a
semantic space. We also accumulate similar con-
texts of target words in the memory and gradually
form “prototype” representations. The pre-trained
embedding space and the saved prototypes are just
the knowledge acquired. The fast adaption phase
occurs when we need to learn a new word from
minimal context. In this phase, we directly com-
bine the context embedding and retrieve content
from the memory to form the target word repre-
sentation.

In the following sections, we will first introduce
the memory architecture and the content based ad-
dressing. We then detail how exactly our model
runs respectively in the knowledge accumulation
and fast adaption phase.

3.1 Memory Addressing
M is a non-parametric key-value memory which
stores a key-value pair (ki, vi) in each memory
slot i. Inspired by (Kaiser et al., 2017), we keep
an additional vector A tracking the age of slots.
The initial age of all is zero. So the whole mem-
ory M looks like (Km×ks, Vm, Am) where m de-
notes memory size and ks denotes key vector size.
Given a normalized query q, its nearest neighbor
in M is defined as any of the keys that maximize
the cosine similarity with q:

NN(q,M) = arg max
i

q ·Ki. (1)

During training, a query to the memory M
searches k nearest neighbors which is a natural ex-
tension to (1):

(n1, ..., nk) = NNk(q,M). (2)

We take an average weighted by how the ad-
dressed memory slots match the query:

RK , RV =
K∑
k=i

softmax(
q ·M [nk]√

dk
) ·M [nk].

(3)

This is actually a dot-product attention on the k
nearest neighbors. RK , RV are the final output of
the memory. Note that here we use softmax with
temperature T :

softmax(a) =
ea

T

Σn
i=1

ei

T

. (4)

T is normally set to 1. Using a higher value for
T produces a softer probability distribution. We
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set different temperatures in the knowledge accu-
mulation and fast adaptation phase, which will be
detailed in the following subsections.

3.2 Knowledge Accumulation
Given a target word embedding tj with its context
embedding cj as input, we query the memory with
cj as (1)-(3) and retrieve Rk, RV . The semantic
relation between the current example and the re-
trieved content from memory is hoped to be con-
sistent from context to target words, so we derive
the following loss:

Lm =
∑

tj ,cj∈D
logσ ((RK −RV ) · (cj − tj)) (5)

We also hope the target word representation fully
incorporates context information and stay far from
negative examples, so we also inherit the loss from
(Mikolov et al., 2013):

Ls =
∑

tj ,cj∈D
#(tj , cj)

(
logσ(tj · cj)

+
k∑

i=1

Ep∼i P (tj)[logσ (tj · −pi)]
)
,

(6)

where D denotes the whole corpora, and #(tj , cj)
means times the target and the context word co-
occur. The word pi is a negative sample sam-
pled from the distribution P (tj), as Mikolov et al.
(2013) do. We minimize the sum of Lm and Ls:

L = Lm + Ls (7)

Memory Update. After each query, we update a
memory slot according to how frequently the key
is addressed and how useful the addressed value
is. The update is done piecewise according to sim-
ilarity between the addressed values (Vn1 , ..., Vnk

)
and the target word. For all the addressed values
Vni whose similarity to the target word is higher
than the threshold β, we only update its corre-
sponding key by taking a weighted average of the
current key and the query:

K[ni]←
q +K[ni]

||q +K[ni]||
. (8)

Otherwise, it means no addressed value correlates
enough with the target, we then choose memory
slots n′ with maximum age and rewrite the stored
items in it:

K[n′]← q, V [n′]← tj . (9)

The age of each updated slot will be reset to zero
while all other non-updated slots get incremented
by 1 in age. Memory updated in this way grad-
ually accumulates similar contexts of a word into
the same slot, which in another word, forms the
prototype representation of a word.

3.3 Fast Adaptation
Now we show how to poll the memory to effi-
ciently learn a new word representation from lim-
ited context. This is where the hypothesis con-
straint takes place. To be specific, given a new
word embedding t∗j to be learned and its context
embedding c∗j , we retrieve memory relevant to c∗j
as (2)-(3) and get R∗K . Then we adapt context em-
bedding with the retrieved memory to form the tar-
get word representation:

t∗j = αR∗K + (1− α)c∗j , (10)

where α can be tuned a hyper-parameter or learned
with regression models. Actually we also try to
incorporate R∗V , but the aggregated prototype R∗K
seems to continuously perform better.

We here pay additional attention to the softmax
temperature T . T is emphasized since it condi-
tions how the model “treats” the retrieved memory.
Contexts are fairly limited in the few-shot case, so
how the retrieved memory is treated crucially af-
fects the quality of the learned representation. A
higher temperature leads to a softer attention dis-
tribution , which means the model will be more
likely to sample from all retrieved contents. A
lower temperature makes the model focus more on
the memory with highest similarity to the query.
We predict a slightly higher temperature will gen-
erally be better in the fast adaptation phase. Since
the HC theory points out that hypotheses are not
in strict mutual-exclusions, they overlap with each
other which corresponds to the higher-temperature
condition. We will test this in the experiments.

4 Few-shot Word Similarity Tasks

We test the proposed method on two few-shot
word similarity tasks. Fig.2 gives examples of the
two tasks. In the following subsections we will in-
troduce these datasets in detail and show the per-
formance of tested methods on these tasks.

4.1 Tasks and Datasets
Definitional Nonce Task We evaluate on the
Definitional Nonce dataset (Herbelot and Baroni,
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Nonce Definition
Provided Context : 
___ international  inc is an american multinational conglomerate company that produces a variety of 
commercial and consumer products  engineering services  and aerospace systems for a wide variety of 
customers  from private consumers to major corporations and governments
Ground Truth Word: Honeywell
Chimera-l2
Provided Context : 
1. Canned sardines and ____ between two slices of whole meal bread and thinly spread Flora Original.
2. Erm, ____, low fat dairy products, incidents of heart disease for those who have an olive oil rich diet.

Probe Words: rhubarb, onion, pear, strawberry, limousine, cushion
Human Response: 2.57,  4.43 ,  3.86,  3.71,  1.43,  2.14

Figure 2: Examples of the Nonce Definition and Chimera Task

2017) to simulate the process where a competent
speaker learns a novel word from one informative
sentence. 1000 words are included in the dataset
as targets, with 700 for training and 300 for test-
ing. Each target word corresponds to only one
sentence extracted from its Wikipedia definition as
context. All context sentences have been manually
checked to be definitional enough to describe the
corresponding target words. After tuning parame-
ters on training data, the model is required to learn
the target word representation with the provided
context in test set. Learned representations are as-
sessed by similarity to ground truth vectors pro-
duced in exposure to the whole corpora. We use
the Reciprocal Rank (RR) of the ground vector in
all nearest neighbors to the learnt representation
for fair comparison of different methods, follow-
ing Herbelot and Baroni (2017)’s settings. The
mean value of RR over all test instances in the
dataset is calculated as the final score.

Chimera Task Our second evaluation on the
Chimera dataset (Lazaridou et al., 2017) means to
simulate the case where a speaker learns the new
word in a more casual multi-sentence context, not
as highly informative as definitions in the Nonce
dataset. There are 3 sub-tasks in Chimera:L2, L4
and L6, respectively providing 2, 4, 6 sentences
as context to for each of the 330 instances in the
dataset. The tested model needs to learn target
word representation from the provided contexts.
The similarity between learned embeddings and
each of the probe words is measured and com-
pared to human judgments by Spearman corre-
lation. The final score is the average Spearman
across all test pairs.

4.2 Baselines

Our model is compared to several baselines, in-
cluding Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), SUM (Lazaridou et al.,
2017) and N2V (Herbelot and Baroni, 2017).
Glove and Word2Vec are representatives of tra-
ditional DSMs. With them we want to test
how exactly traditional DSMs perform in the few
shot representation learning without any addi-
tional mechanism for small data. SUM and N2V
are proposed especially for learning on small cor-
pus. They adapt Word2Vec’s skip-gram structure
for incremental learning and show improvements
on the Chimera dataset. They partially match the
HC theory which Mem2Vec is based on. Note
that several rare word learning methods (Long
et al., 2017; Xu et al., 2014; Lazaridou et al.,
2013) that rely on auxiliary information don’t ap-
ply with most of our task settings. In the Nonce
and Chimera task, context for target word learn-
ing is strictly limited for fair comparison, so exter-
nal knowledge is banned. And the target word, as
showed in Fig.2, is just a slot which doesn’t pro-
vide any morphological hints, so sub-word meth-
ods are also excluded.

Both the above baselines and the proposed
Mem2Vec use a dump of Wikipedia to learn a fun-
damental semantic space. To be specific, N2V and
SUM use embeddings pre-trained by Word2Vec,
while Mem2Vec acquires prior-knowledge, all
from that Wiki corpora. We calculate correlation
with the similarity ratings in the MEN and SIM-
LEX dataset to verify if the pre-trained semantic
space is ready for use.
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Model
Task Nonce Chimera

MRR Med. Rank L2 ρ L4 ρ L6 ρ

Word2Vec 0.00007 111012 0.1459 0.2457 0.2498
GloVe 0.00008 108002 0.1402 0.2397 0.2533
SUM 0.03686 861 0.3176 0.3534 0.3880
N2V 0.04907 623 0.3120 0.3628 0.3790

Mem2Vec 0.05416 518 0.3301 0.3717 0.3897

Table 1: Results of Nonce Definition and Chimera task. MRR and Med Rank respectively denotes mean reciprocal
rank and median rank of the ground truth word. ρ denotes precision.
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Figure 3: Performance of Nonce Definitional Task under different softmax temperature (left) and memory size
(right). The left figure is in semilog coordinate.

4.3 Results

Nonce Definition Task We show the results of
Nonce Definition Task in Table 1. Before ana-
lyzing the results we need to explain that MRR
achieved by the tested models seems pretty low.
This is no odd since matching the ground truth
word in a vocabulary of 210,512 sets a potentially
very large denominator in the reciprocal rank cal-
culation. Our model achieves an MRR of 0.05416,
which means the median rank of the true vector
is 518 in the challenging two hundred thousand
neighbors, surpassing all the baselines. N2V and
SUM also deliver satisfactory performance with
N2V working better. We are sorry to find that
the naive Word2Vec and GloVe totally fail in the
Nonce task, supporting the importance of adapting
traditional DSMs for few-shot word representation
learning.
Chimera Task The results on 3 chimera tasks
are shown in Table 1, too. Mem2vec out-performs
baselines in all the 3 context length settings. SUM
performs steadily well from Nonce to the Chimera
task, suggesting the effectiveness of constraining
hypothesis space with contexts. But the contin-
uous improvement of Mem2Vec over SUM con-
firms the advantage of our model, which incor-
porates “global” semantic information from the

memory with the local contexts. N2V also works
here but not as well as in the Nonce task, prob-
ably because the contexts in chimera are not as
informative. Such performance drop may indi-
cate N2V’s limited scalability to downstream NLP
tasks since not all real world texts are as informa-
tive as in Nonce Definition Task. We will test this
speculation with NER tasks in section 5.

4.4 Memory Parameter Analysis

We are interested to know how the two key param-
eters of memory, the softmax temperature T , and
the memory size influence the quality of learned
representations. We use the Nonce Definition task
as the testbed. While studying the influence of one
parameter, the other parameters are fixed. We run
the model for 3 times with each candidate parame-
ter and calculate the average precision as the final
score.
Softmax Temperature Fig.3 (left) shows task
performance under different softmax temperatures
in semilog coordinate. We are a little bit surprised
to find that it roughly fits a normal distribution
and a mid-high temperature leads to best perfor-
mance. A mid-high T means the model doesn’t
give too large or too small weights to certain re-
trieved memory. This meets the HC theory about
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how humans weight the constrained hypothesis.
We don’t just trust a single hypothesis, nor do we
treat all the hypotheses equally. The experiments
shows similar principle also applies to our model.
Memory Size Fig.3 (right) shows task perfor-
mance under different memory size. We find that
increasing the memory size does lead to improved
performance . But the improvements tend to be
minor after the memory size is larger than 20,000.
We owe it to the fact that we does not save spe-
cific examples, we accumulate similar contexts to-
gether in the memory to form prototypes. While
we retrieve the memory, prototypes can be com-
bined in different ways to represent multiple ex-
amples, thus a smaller memory can also work as
well as the bigger one.

5 Extrinsic Tasks

We hope that the learned representations not only
perform well on word similarity tasks but also ap-
ply to downstream NLP tasks. NER on domain
specific datasets is an ideal benchmark. Named
entities in these datasets are relatively low in fre-
quency and not well covered by general domain
corpus, tough for a traditional DSM to learn. Be-
sides, while transferring from general domain cor-
pus to a target small text, domain shift is a highly
possible issue. We test if Mem2Vec could tackle
the domain shift with a series of cross-domain sen-
timent analysis tasks.

5.1 Tasks and datasets

Domain Specific NER We use BioNLP11-
species (Kim et al., 2011), AnatEMs (Pyysalo
and Ananiadou, 2013) and NCBI-disease (Doğan
et al., 2014) dataset, respectively from taxonomy,
anatomy and pathology literatures. We train em-
beddings with tested methods to initialize the rec-
ognizer, whose performance then demonstrates
whether the tested models learn representations
well for rare words.
Cross Domain Sentiment Classification cross
domain sentiment classification on Amazon Re-
view dataset (Blitzer et al., 2007) is chosen as a
benchmark. This dataset includes reviews from
4 product categories: books, DVDs, kitchens and
electronics, suitable for the cross-domain setting.
Using one as source domain and one as the target,
we get 16 pairs for experiments. We train the clas-
sifier with source domain data and directly test it
on the target domain, using the pre-trained embed-

dings as input feature. Note that through this task
we also test how Mem2Vec performs when trans-
ferring from a small text, since in all the above ex-
periments we learn prior knowledge from a large
corpora.

5.2 Baselines

Except for the four baselines considered in word
similarity tasks, we also compare with DAREP
(Bollegala et al., 2015) and CRE (Yang et al.,
2017) in the NER and sentiment classification
tasks. They are both pivot-based methods for
cross domain embedding learning which fare well
in some downstream tasks. Besides we intro-
duce SCL(Blitzer et al., 2006), a well-cited cross-
domain sentiment analyser, as a baseline only for
the sentiment classification task.

For NER, we use pre-trained embeddings by the
tested methods as only input features for a LSTM-
CRF recognition model (Lample et al., 2016). We
simply mix the Wikipedia corpora with a dump of
PubMed as our source corpora. Note that N2V
and SUM can’t be directly used to pre-train em-
beddings for downstream tasks since they focus
on novel word learning. We thus explicitly divide
words which occur less than 5 times as rare words
while others as frequent words. N2V and SUM
learn the frequent words with Word2Vec and learn
the rare words in their own way. This setting also
applies to the sentiment classification task.

For sentiment classification, we use a multi-
layer perceptron (MLP) as the classifier, with one
hidden layer of 400 nodes, ReLu activation and
softmax output function.

5.3 Results

Named Entity Recognition Table 2 shows the
results of domain specific named entity recogni-
tion. Used for pre-training embeddings, Mem2Vec
achieves higher F1-score than all the baselines. It
first surpasses CRE and DAREP that only bring
slight improvements over Word2Vec. CRE and
DAREP are both methods which relies on words
with cooccurance patterns in source and target do-
main as the pivots for cross-domain transfer. This
indicates the advantage of Mem2Vec over the tra-
ditional word frequency based methods in fast
mapping cases where word cooccurrence pattern
is not clear.

Our improvements over the N2V and SUM are
more obvious than in the two word similarity
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Model
Task AnatEM BioNLP NCBI

P R F1 P R F1 P R F1
Word2Vec 76.12 69.80 72.82 73.13 54.79 62.64 75.22 75.37 74.39

GloVe 75.83 67.04 71.14 72.58 53.35 61.50 75.76 72.33 74.01
N2V 76.81 66.8 71.46 73.91 54.21 62.54 72.45 74.37 73.30
SUM 77.06 69.01 72.81 74.36 58.58 62.25 74.89 74.02 74.45

DAREP 79.03 67.95 73.07 77.18 54.19 63.67 78.76 75.60 77.15
CRE 80.04 67.90 73.47 76.74 56.98 65.40 78.98 76.63 77.79

Mem2Vec 81.23 67.90 73.96 76.70 57.81 65.92 79.56 76.63 78.06

Table 2: Results of domain specific Named Entity Recognition. P, R, F1 respectively denotes precision, recall and
F1 score
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Figure 4: Results of cross domain sentiment classification on Amazon Review dataset. B denotes books, D for
DVD, E for electronics, K for kitchen. B-K means B is the source domain and K is the target domain.

tasks. This again affirms our speculation that con-
straining hypothesis solely with the context is not
enough. In the setting of NER, the context of
one named entity is likely to be filled with other
named entities which are also low in frequency.
Directly summing the context as SUM does or tak-
ing risk to enlarge the window size as N2V may
lead to over-fitting. While every training step of
our method incorporates relative information from
all the experienced examples stored in the mem-
ory, alleviating the danger of learn representations
that over fits the local contexts.

In addition, it’s worth noting that parameter tun-
ing for N2V is no picnic. In our experiments, the
original settings: high learning rate, large window
size and short iteration span don’t lead to satisfac-
tory performance. More conservative parameter
selection gets N2V back in track but departs from
its fast mapping intention.

Sentiment Classification Fig.4 shows the re-
sults of Amazon Review sentiment classification.
Mem2Vec delivers impressive performance, beat-
ing all the baselines in 10 of the total 12 pairs, in-
cluding CRE and DAREP. This demonstrates the
advantage of the memory as a transfer medium
over the word- frequency based transfer of CRE
and DAREP. But CRE and DAREP are still strong
baselines in the cross domain task, surpassing SCL
by a large margin. N2V and SUM are built for
learning representation from small data, but they
don’t consider the possible domain discrepancy
when using pre-trained embeddings on the target
small text. So they don’t bring much improve-
ments over Word2Vec and GloVe. This also re-
minds us that to get the few-shot word represen-
tation learning methods in practical use, domain
shift should be properly addressed.
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6 Conclusion

We presented an integrated representation learn-
ing scheme which gradually learns from a big cor-
pora and quickly adapt on tiny data. It accumu-
lates knowledge with a long-term memory to adapt
the representation learning of a novel word, in the
few-shot learning case. Such adaptation means
to constrain the “guess” of a DSM for the novel
word according to the most relevant representa-
tion learning experience, inspired by hypothesis
constraint theory for fast mapping. Experiments
show the proposed method learns high quality rep-
resentation from both highly informative and less
definitional contexts in limited size. Pre-trained
embeddings with our model also lead to improve-
ments in Named Entity Recognition and sentiment
analysis.

This work is our effort towards an ideal word
representation learning scheme which learns from
any amount of data. In the future work, we will
explore more effective memory addressing and up-
dating approaches to boost the few-shot represen-
tation learning. We believe not all examples are
equally important and worth memorizing. Learn-
ing to memorize core examples should alleviate
the data-hungry of representation learning meth-
ods.
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