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Abstract
The goal of Word Sense Disambiguation
(WSD) is to identify the correct meaning of a
word in the particular context. Traditional su-
pervised methods only use labeled data (con-
text), while missing rich lexical knowledge
such as the gloss which defines the meaning
of a word sense. Recent studies have shown
that incorporating glosses into neural networks
for WSD has made significant improvement.
However, the previous models usually build
the context representation and gloss represen-
tation separately. In this paper, we find that
the learning for the context and gloss repre-
sentation can benefit from each other. Gloss
can help to highlight the important words in
the context, thus building a better context rep-
resentation. Context can also help to locate
the key words in the gloss of the correct word
sense. Therefore, we introduce a co-attention
mechanism to generate co-dependent repre-
sentations for the context and gloss. Fur-
thermore, in order to capture both word-level
and sentence-level information, we extend the
attention mechanism in a hierarchical fash-
ion. Experimental results show that our model
achieves the state-of-the-art results on several
standard English all-words WSD test datasets.

1 Introduction

Word Sense Disambiguation (WSD) is a cru-
cial task and long-standing problem in Natu-
ral Language Processing (NLP). Previous re-
searches mainly exploit two kinds of resources.
Knowledge-based methods (Lesk, 1986; Moro
et al., 2014; Basile et al., 2014) exploit the lexical
knowledge like gloss to infer the correct senses of
ambiguous words in the context. However, super-
vised feature-based methods (Zhi and Ng, 2010;
Iacobacci et al., 2016) and neural-based meth-
ods (Kågebäck and Salomonsson, 2016; Raganato
et al., 2017a) usually use labeled data to train one
or more classifiers.

Context As they often play football together,
they know each other quite well

Glosses
g1: participate in games or sports
g2: perform music on an instrument
g3: behave in a certain way

Table 1: An example of the context and three glosses
of different senses according to the target word “play”.
It shows that the words “games/sports” in the gloss g1
can help to highlight the important words “football” in
the context and ignore the words “know each other”
which are useless for distinguishing the sense of word
“play”. Meanwhile, the context can potentially help
to stress on the words “games/sports” of the gloss g1
which is actually the correct sense for the target word.

Although both lexical knowledge (especially
gloss) and labeled data are of great help for WSD,
previous supervised methods rarely take the inte-
gration of knowledge into consideration. To the
best of our knowledge, Luo et al. (2018) are the
first to directly incorporate the gloss knowledge
from WordNet into a unified neural network for
WSD. This model separately builds the context
representation and the gloss representation as dis-
tributed vectors and later calculates their similarity
in a memory network. However, we find that the
learning of the representations of the context and
gloss can contribute to each other. We use an ex-
ample to illustrate our ideas. Table 1 shows that
the red words are more important than the blue
words when distinguishing the sense of the tar-
get word. In other words, we should pay more at-
tention to the words which can “overlap” between
the context and the gloss when generating the rep-
resentations of context and gloss. Therefore, we
introduce a co-attention mechanism to model the
mutual influence between the representations of
context and gloss.

Moreover, we find that both word-level and
sentence-level information are crucial to WSD. As
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shown in Table 1, the local word “football” is cru-
cial for distinguishing the sense of word “play”.
However, in more complex sentences such as “In-
vestors played it carefully for maximum advan-
tage” 1, sentence-level information is necessary.
Therefore, we extend the co-attention model in a
hierarchical fashion to capture both the word-level
and sentence-level semantic information.

The main contributions are listed as follows.

• We propose a novel way to integrate gloss
knowledge into a neural network for WSD
via a co-attention mechanism in order to
build better representations of context and
gloss. In this way, our model can benefit from
both labeled data and lexical knowledge.

• We further extend the attention mechanism
into a hierarchical architecture, since both
word-level and sentence-level information
are crucial to disambiguating the word sense.

• We conduct a series of experiments, which
show that our models outperform the state-of-
the-art systems on several standard English
all-words WSD test datasets.

2 Related work

Lexical knowledge is a fundamental component
of Word Sense Disambiguation and provides
rich resources which are essential to associate
senses with words (Navigli, 2009). Unsupervised
knowledge-based methods have shown the effec-
tiveness of textual knowledge such as gloss (Lesk,
1986; Basile et al., 2014) and the structural knowl-
edge (Moro et al., 2014; Agirre et al., 2014) of
the lexical databases. However, the prime short-
coming of knowledge-based methods is that they
have worse performance than supervised methods,
but they have wider coverage for the polysemous
words, thanks to the use of large-scale knowledge
resources (Navigli, 2009).

There are many other tasks such as Chinese
Word Segmentation (Zhang et al., 2018), Lan-
guage Modeling (Ahn et al., 2016), and LSTMs
(Xu et al., 2016; Yang and Mitchell, 2017) show
that integrating knowledge and labeled data into
a unified system can achieve better performance
than other methods which only learn from large
scale labeled data. Therefore, it’s a promising and

1Play in the sentence means behave in a certain way.

challenging study to integrate labeled data and lex-
ical knowledge into a unified system.

A few recent studies of WSD have exploited
several ways to incorporate lexical resources into
supervised systems. In the field of traditional
feature-based methods (Chen et al., 2015; Rothe
and Schütze, 2015), they usually utilize knowl-
edge (to train word sense embeddings) as features
of the classifier like the support vector machine
(SVM). In the field of neural-based methods, Ra-
ganato et al. (2017a) regard lexical resource LEX
which is extracted from the WordNet as an aux-
iliary classification task, and propose a multi-task
learning framework for WSD and LEX. Luo et al.
(2018) integrate the context and glosses of the tar-
get word into a unified framework via a memory
network. It encodes the context and glosses of the
target word separately, and then models the se-
mantic relationship between the context vector and
gloss vector in the memory module. What’s more,
Luo et al. (2018) utilize much more knowledge
about gloss via its semantic relations such as hy-
pernymy and hyponymy in WordNet. All studies
listed above show that integrating lexical resources
especially gloss into supervised systems of WSD
can significantly improve the performance. There-
fore, we follow this direction and seek a new way
of better integrating gloss knowledge.

Instead of building representations for context
and gloss separately, we use the inner connection
between the gloss and the context to promote the
representation of each other. The interaction pro-
cess can be modeled by a co-attention mechanism
which has made great progress in the question an-
swering task (Xiong et al., 2016; Seo et al., 2016;
Hao et al., 2017; Lu et al., 2016). We are enlight-
ened by this iterative procedure and introduce it
into WSD. We then make some adaptations to the
output of the original co-attention model to get the
score of each word sense.

3 The Co-Attention Model for WSD

In this section, we first give an overview of the
CAN: co-attention neural network for WSD (Fig-
ure 1). And then, we extend it into a hierarchical
architecture HCAN (Figure 2).

3.1 Overview

The overall architecture of the proposed non-
hierarchical co-attention model is shown in Figure
1. It consists of three parts:
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Figure 1: The proposed co-attention neural network.

• Input Embedding Layer: First of all, we en-
code the input context and each gloss 2 into
distributed representations C and G, which
are also called embeddings in the paper. In
Figure 1, if C and G are word embeddings,
we call the model CANw in the paper. If C
and G are sentence embeddings, we call the
model CANs.

• Co-Attention Layer: Then, each co-
attention mechanism in this layer generates
a context vector and a gloss vector according
to the corresponding gloss and context rep-
resentations. The outputs of the co-attention
layer are N pairs of context vector and gloss
vector.

• Output Layer: Finally, the output layer
takes the N pairs of context vector and gloss
vector as inputs and calculates the score of
each word sense.

Figure 1 shows the non-hierarchical co-
attention model which generates either word-level
representations (CANw) or sentence-level repre-
sentations (CANs). Since both the word-level and
sentence-level representations can help to disam-
biguate the word sense, we extend CAN into a
hierarchical model, named as HCAN (Figure 2).
The extensions of each layer are listed as follows:

1. The input embedding layer is extended to
two sub-layers in the hierarchical architecture
which encodes both word-level and sentence-
level representations.

2. The co-attention layer is also extended to two
attention layers for capturing two different
levels’ attention.

2There are N glosses in total, where N is the sense num-
ber of the target word in the context.

3. The output layer merges the outputs of the
two levels’ co-attention layers and generates
a sense probability over all word senses.

Since the non-hierarchical model CAN is a
subset or a simplified version of the hierarchi-
cal model HCAN, the next sections are organized
to illustrate the hierarchical co-attention model
HCAN 3 shown in Figure 2.

3.2 Input Embedding Layer

We denote each input sentence (context or gloss)
as a sequence of words [x1, x2, . . . , xTx ], where
Tx is the length of the input sentence.

3.2.1 Word Embedding
After looking up a pre-trained word embedding
matrix Ew ∈ Rdw×V , we transfer a one-hot vec-
tor xi into a dw-dimensional vector ei. We treat
[e1, e2, . . . , eTx ] as the word-level representations
of the sentence. Specifically, context’s word-level
representations are denoted as [ec1, e

c
2, . . . , e

c
n] and

i-th gloss’s word-level representations are denoted
as [egi1 , e

gi
2 , . . . , e

gi
m], where n and m represent the

max length of context and gloss.

3.2.2 Sentence Embedding
We utilize a bi-directional long short-term mem-
ory network (Bi-LSTM) to generate the hidden
states of the input sentence. Each hidden state hi is
computed by the concatenation of the forward hid-
den state

−→
hi , and backward hidden state

←−
hi . So we

treat [h1, h2, . . . , hTx ] as the sentence-level repre-
sentations. Specifically, context’s sentence-level
representations are denoted as [hc1, h

c
2, . . . , h

c
n] and

i-th gloss’s sentence-level representations are de-
noted as [hgi1 , h

gi
2 , . . . , h

gi
m].

3.3 Co-Attention Layer

3.3.1 Co-Attention Mechanism
The right part of Figure 2 illustrates the co-
attention mechanism which is the most crucial part
of the model. The inputs are context representa-
tions C ∈ Rd×n and gloss representations G ∈
Rd×m, where d is the dimension of the input rep-
resentation vector. The outputs are the gloss-aware
context vector c ∈ Rd and the context-aware gloss
vector g ∈ Rd. Therefore, we can define the co-
attention mechanism as a function

(c, g) = CoAt(C,G) (1)

3CANw and CANs will also be expressed in Section 3.4.
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Figure 2: Hierarchical co-attention model for WSD.

Next, we give the detailed definition of the co-
attention mechanism function CoAt. We begin
to compute a similarity matrix A, in which each
element Aij indicates the similarity between i-th
context word and j-th gloss word. The similarity
matrix A is computed by

A = C>UG ∈ Rn×m (2)

where U ∈ Rd×d is a trainable parameter.
Based on the similarity matrix A, we can com-

pute the gloss-to-context attention matrix Ac and
context-to-gloss attention matrix Ag.

Gloss-to-Context Attention. Since each gloss
word may focus on different context words, we
can generate a context representation which is
aware of a particular gloss word. Note that each
element of A in the j-th column indicates the
similarity between j-th gloss word and each con-
text word. Thus, we can get the attention weight
for each context word through a softmax function
across the column of A:

Ac
:j = softmax(A:j) (3)

where A:j denotes j-th column of A and Ac
:j de-

notes j-th column of Ac ∈ Rn×m.
Hence we can get the gloss-aware context rep-

resentations Ĉ by a product of the initial context
representations C and attention weight matrix Ac:

Ĉ = CAc ∈ Rd×m (4)

Note that j-th column in Ĉ means the context
representation according to the j-th gloss word.

Therefore, we can get the final context vector c
by summing across the column of Ĉ:

c =
∑
j

Ĉ:j ∈ Rd (5)

Context-to-Gloss Attention. Conversely, each
context word may focus on different gloss words,
we can generate a gloss representation which is
aware of a particular context word. Since each el-
ement of A in the i-th row indicates the similarity
between i-th context word and each gloss word,
we can get the attention weight of each gloss word
through a softmax function across the row ofA (or
across the column of A>)

Ag
:j = softmax(B:j) (6)

where B = A>, B:j denotes j-th column of B
(also j-th row of A) and Ag

:j denotes j-th column
of Ag ∈ Rm×n.

Now we can get the context-aware gloss repre-
sentations in the same way as Equation 4:

Ĝ = GAg ∈ Rd×n (7)

Note that j-th column in Ĝ denotes the gloss
representation according to j-th context word.
Therefore, we can get the final gloss vector g by
summing across the column of Ĝ:

g =
∑
j

Ĝ:j ∈ Rd (8)
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3.3.2 Word-Level Co-Attention Layer
Since there areN glosses according toN different
word senses, we use N independent co-attention
mechanisms in both word-level and sentence-level
co-attention layers. And each layer shares a same
parameter U in Equation 2. For i-th word-level
co-attention mechanism, the inputs are word em-
beddings of the context and i-th gloss (in Sec-
tion 3.2.1). Define Cw = [ec1, e

c
2, . . . , e

c
n] and

Gw
i = [egi1 , e

gi
2 , . . . , e

gi
m], thus the outputs of i-th

word-level co-attention mechanism are computed
as

(cwi , g
w
i ) = CoAt(Cw, Gw

i ) (9)

Inspired by the well-known Lesk algorithm
(Lesk, 1986) and its variants (Basile et al., 2014),
the score of the i-th word sense can be computed
as the similarity of the context vector cwi and the
gloss vector gwi :

βwi = cwi · gwi (10)

The word-level context embedding vector ĉw

can be computed as the average of the N gloss-
aware context vectors cwi :

ĉw =
1

N

N∑
i=1

cwi (11)

3.3.3 Sentence-Level Co-Attention Layer
Same to word-level co-attention layer, for the i-
th co-attention mechanism, the inputs of sentence-
level co-attention layer are Bi-LSTM hidden
states of context and the i-th gloss (in Sec-
tion 3.2.2). Define Cs = [hc1, h

c
2, . . . , h

c
n] and

Gs
i = [hgi1 , h

gi
2 , . . . , h

gi
m], thus the outputs of i-th

sentence-level co-attention mechanism are com-
puted as

(csi , g
s
i ) = CoAt(Cs, Gs

i ) (12)

Like Equation 10, we can also calculate a
sentence-level score for the i-th word sense by a
dot product of the context vector csi and the gloss
vector gsi :

βsi = csi · gsi (13)

The sentence-level context embedding vector ĉs

is also computed as the average of N gloss-aware
context vectors csi :

ĉs =
1

N

N∑
i=1

csi (14)

3.4 Output Layer
The output layer aims to calculate the scores of N
senses of the target word xt and finally outputs a
sense probability distribution over the N senses.
The final score of each sense is a weighted sum of
two values: µ and ν. µ is the similarity score of
gloss and context, which reveals the influence of
knowledge. ν is generated by the context vector
through a linear projection layer, which reveals the
influence of labeled data. Finally, the probability
distribution ŷ over all the senses of the target word
is computed as

ŷ = softmax(λxtµ+ (1− λxt)ν))

where λxt ∈ [0, 1] is the parameter for word xt.
For the non-hierarchical model CAN in Fig-

ure 1, the final score µ and ν are generated only
by the outputs of the one level co-attention layer.
Specifically, for the word-level co-attention model
CANw:

µ = [βw1 , β
w
2 , . . . , β

w
N ] (15)

ν =Wxt ĉ
w + bxt (16)

For the sentence-level co-attention model
CANs:

µ = [βs1, β
s
2, . . . , β

s
N ] (17)

ν =Wxt ĉ
s + bxt (18)

For the hierarchical co-attention model HCAN
in Figure 2, the outputs of the word and sen-
tence level layer are merged together to generate
the final results. Therefore, the final similarity
score between i-th gloss and context is computed
as the weighted sum of word-level score βwi and
sentence-level score βsi :

βi = αβwi + (1− α)βsi (19)

Meanwhile, the final context embedding vector
is also generated by a combination of two lev-
els’ context embedding vector: ĉw and ĉs. In
order to transfer from word-level encoding space
to sentence-level encoding space, we introduce a
non-linear projection layer on top of the word-
level context vector ĉw. Therefore, the final con-
text embedding vector ĉ is generated by

ĉ = tanh(Wĉw + b) + ĉs (20)

In total, for the hierarchical co-attention model
HCAN:

µ = [β1, β2, . . . , βN ] (21)
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ν =Wxt ĉ+ bxt (22)

It’s noteworthy that in Equation 16, 18 and 22,
each ambiguous word xt has its corresponding
weight matrix Wxt and bias bxt .

During training, all model parameters θ are
jointly learned by minimizing a cross-entropy loss
between ŷ and the true label y.

L(θ) = − 1

M

M∑
i=1

Ni∑
j=1

yij log ŷij (23)

whereM is the number of examples in the dataset,
Ni is the word sense number of i-th example, yij
and ŷij are the true and predict probability of the
i-th example belongs to j-th label.

4 Experiments and Evaluation

4.1 Datasets
Validation and Evaluation Datasets: We evalu-
ate our model on several English all-words WSD
datasets. For a fair comparison, we use the bench-
mark datasets proposed by Raganato et al. (2017b)
which include five standard all-words fine-grained
WSD datasets from the Senseval and SemEval
competitions:

• Senseval-2 (Edmonds and Cotton, 2001,
SE2): It consists of 2282 sense annotations,
including nouns, verbs, adverbs and adjec-
tives.

• Senseval-3 task 1 (Snyder and Palmer, 2004,
SE3): It consists of 1850 sense annotations
from three different domains (editorial, news
story and fiction), including nouns, verbs, ad-
verbs and adjectives.

• SemEval-07 task 17 (Pradhan et al., 2007,
SE7): It consists of 455 sense annotations of
nouns and verbs, which is the smallest among
the five datasets. Like Luo et al. (2018) and
Raganato et al. (2017a), we choose SE7 as
the validation set.

• SemEval-13 task 12 (Navigli et al., 2013,
SE13): It consists of 1644 sense annotations
from thirteen documents of various domains.
SE13 contains nouns only.

• SemEval-15 task 13 (Moro and Navigli,
2015, SE15): It’s the latest WSD dataset,
which consists of 1022 sense annotations
from three heterogeneous domains.

Training Dataset: SemCor 3.0 is the largest
manually annotated corpus for WSD, which was
also used by Luo et al. (2018), Raganato et al.
(2017a), Raganato et al. (2017b), Iacobacci et al.
(2016), Zhi and Ng (2010), etc. It consists of
226,036 sense annotations from 352 documents,
which includes nouns, verbs, adverbs and adjec-
tives.

Knowledge Base: The original WordNet ver-
sion of sense inventory for SemCor 3.0, SE2, SE3,
SE7, SE13, SE15 are 1.4, 1.7, 1.7.1, 2.1, 3.0
and 3.0, respectively. Raganato et al. (2017b)
map all the sense annotations in the training and
test datasets to WordNet 3.0 via a semi-automatic
method. Therefore, We choose WordNet 3.0 as the
sense inventory for extracting the gloss.

Data Noun Verb Adj Adv
SE2 1066 517 445 254
SE3 900 588 350 12
SE7 159 296 0 0
SE13 1644 0 0 0
SE15 531 251 160 80
SemCor 87002 88334 31753 18947

Table 2: Statistics of the different parts of speech
annotations in English all-words WSD train and test
datasets.

.

4.2 Settings

We use the validation set (SE7) to find the optimal
hyper parameters of our models: the word embed-
ding size dw, the hidden state size ds of LSTM,
the optimizer, etc. However, since there are no ad-
verbs and adjectives in SE7, we randomly sample
some adverbs and adjectives from training dataset
into SE7 for validation. We use the pre-trained
word embeddings 4. The hidden state size ds is
256. The mini-batch size is set to 32. The opti-
mizer is Adam (Kingma and Ba, 2014) with 0.001
initial learning rate. In order to avoid over-fitting,
we use dropout regularization on the outputs of
LSTM and set drop rate to 0.5. Orthogonal ini-
tialization is used for initialing weights in LSTM
and random uniform initialization with range [-
0.1, 0.1] is used for others. Training runs for up
to 50 epochs with early stopping if the validation
loss doesn’t improve within the last 5 epochs.

4We download the pre-trained word embeddings from
https://github.com/stanfordnlp/GloVe

https://github.com/stanfordnlp/GloVe
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Test Datasets Concatenation of Test Datasets
System SE2 SE3 SE13 SE15 Noun Verb Adj Adv All
MFS baseline* 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
Leskext+emb (Basile et al., 2014) 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
Babelfy (Moro et al., 2014) 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4
IMS (Zhi and Ng, 2010)* 70.9 69.3 65.3 69.5 70.5 55.8 75.6 82.9 68.9
IMS+emb (Iacobacci et al., 2016)* 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
Bi-LSTM (Kågebäck and Salomonsson, 2016)* 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
Bi-LSTM+att.+LEX (Raganato et al., 2017a) 72.0 69.4 66.4 72.4 71.6 57.1 75.6 83.2 69.9
Bi-LSTM+att.+LEX+POS (Raganato et al., 2017a) 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9
GAS (Linear) (Luo et al., 2018) 72.0 70.0 66.7 71.6 71.7 57.4 76.5 83.5 70.1
GAS (Concatenation) (Luo et al., 2018) 72.1 70.2 67.0 71.8 72.1 57.2 76.0 84.4 70.3
GASext (Linear) (Luo et al., 2018) 72.4 70.1 67.1 72.1 71.9 58.1 76.4 84.7 70.4
GASext (Concatenation) (Luo et al., 2018) 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6
CANw 72.3 69.8 65.5 71.1 71.1 57.3 76.5 84.7 69.8
CANs 72.2 70.2 69.1 72.2 73.5 56.5 76.6 80.3 70.9
HCAN 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1

Table 3: F1-score (%) for fine-grained English all-words WSD on the test sets. Bold font indicates best systems.
The * represents the systems which don’t use any lexical knowledge. The five blocks list the baseline, 2 knowledge-
based systems, 2 supervised feature-based systems, 7 neural-based systems and our models, respectively.

.

4.3 Results and Discussion

4.3.1 English all-words results
Table 3 shows the results on four test datasets and
different parts of speech. Note that all the systems
in Table 3 are trained on SemCor 3.0.

In the first block, we show the MFS baseline,
which simply selects the most frequent sense in
the training dataset.

In the second block, we show two lat-
est knowledge-based (unsupervised) systems.
Leskext+emb is a variant of the well-known Lesk
algorithm (Lesk, 1986) which computes the over-
lap of gloss and context as the score of word
sense. Babelfy (Moro et al., 2014) is a graph-
based system performed on BabelNet (Navigli and
Ponzetto, 2012). We can find that MFS is a strong
baseline for knowledge-based systems.

In the third block, we show two traditional su-
pervised systems which only learn from labeled
data based on manual designed features. IMS (Zhi
and Ng, 2010) is a flexible framework which trains
K SVM classifiers for K polysemous words. Its
variant IMS+emb (Iacobacci et al., 2016) adds
word embedding features into IMS. Both of them
train a dedicated classifier for each word individu-
ally. In other words, each target word has its own
parameters. Therefore, IMS+emb is a hard to beat
system for many neural networks which also only
uses labeled data but builds a unified system for all
the polysemous words.

In the fourth block, we show four latest neu-
ral networks. Except for Bi-LSTM (Kågebäck
and Salomonsson, 2016), which is a baseline for

neural models, the others all utilize not only
labeled data but also lexical knowledge. Bi-
LSTM+att.+LEX (Raganato et al., 2017a) and its
variant Bi-LSTM+att.+LEX+POS are multi-task
learning frameworks for WSD, POS tagging and
LEX with context self-attention mechanism. GAS
(Luo et al., 2018) is a gloss-augmented neural net-
work in an improved memory network paradigm.
The best neural network is GASext which extends
from GAS and uses more gloss knowledge via the
semantic relations in WordNet. 5

In the last block, we give the performance of our
proposed co-attention models for WSD. We can
see that our best model HCAN improves state-of-
the-art result by 0.5% on the concatenation of four
datasets. Even though we use less gloss knowl-
edge than the previous best system GASext, our
co-attention models can still get the best results
on three test datasets. For non-hierarchical mod-
els, CANs performs much better than the CANw,
which reveals that global sentence-level informa-
tion is much more useful than local word-level
information. Integration of these two levels’ in-
formation (HCAN) can further boost the perfor-
mance. What’s more, we find that our best model
HCAN performs best on all parts of speech, ex-
cept for adverbs. However, there are only 346 ex-
amples about adverbs which account for 5% of the
four test datasets, thus 1% drop on adverbs means
only 4 examples are wrongly classified which will
make little influence on the overall score.

5The released code can be found in https://github.
com/luofuli/word-sense-disambiguation

https://github.com/luofuli/word-sense-disambiguation
https://github.com/luofuli/word-sense-disambiguation
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Test Datasets Concatenation of Test Datasets
System SE2 SE3 SE13 SE15 Noun Verb Adj Adv All
Full Model 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1
No Attention 70.2 68.1 67.6 68.9 71.2 54.3 74.3 82.1 68.8
W/O Word-level Attention 71.5 70.4 68.2 71.7 72.7 57.1 75.3 81.8 70.5
W/O Sentence-level Attention 70.0 69.5 66.8 70.3 71.3 55.2 74.4 83.0 69.1
W/O Context2Gloss Attention 70.7 69.7 68.2 71.0 72.2 55.2 75.5 82.7 69.9
W/O Gloss2Context Attention 72.3 70.3 68.2 71.9 73.2 56.4 75.4 83.8 70.7

Table 4: Ablation study of the proposed model HCAN.
.

4.4 Ablation Study

In this part, we further discuss the impacts of the
components of our hierarchical model HCAN. In
order to ablate the co-attention mechanism, we re-
place the co-attention function CoAt in Equation
1 with a function Avg which simply calculates the
average of input representation vectors. Specifi-
cally, in function Avg, the outputs c =

∑
j C:j

and g =
∑

j G:j .
We re-train HCAN by ablating certain compo-

nents:

• No Attention: We totally replace the co-
attention function CoAt with Avg in both
word-level and sentence-level co-attention
layers. This is the baseline for comparison.

• W/O Word-level Attention: We replace the
word-level co-attention function CoAt with
Avg. Note that this ablation model is differ-
ent from CANs, for that the word-level rep-
resentation vector ĉw is used to calculate the
final score in this ablation model.

• W/O Sentence-level Attention: We replace the
sentence-level co-attention function CoAt
withAvg. Note that this ablation model is not
same as CANw, for the sentence-level repre-
sentation vector ĉs is also used to calculate
the final score in this ablation model.

• W/O Context2Gloss Attention: We remove
the attention of generating the context vector,
which means all elements in Ag are set to 1.

• W/O Gloss2Context Attention: We remove
the attention of generating the gloss vector,
which means all elements in Ac are set to 1.

Table 4 indicates the effectiveness of differ-
ent components in the proposed model HCAN. It
shows that without any attention mechanism, the
overall score declines 2.3%.

Ablated versions without word, sentence level
co-attention decline 0.6% and 2.0%, respectively.
It reveals that sentence-level co-attention mech-
anism seems much more important to HCAN,
which is consistent with the scores of CANs

and CANw. However, we find that the re-
sults of ablated versions without word-level and
sentence-level co-attention are worse than CANs

and CANw. We hypothesize that it is because that
the context and gloss vector generated from the
layer (or level) which doesn’t use attention mech-
anism may bring some noise to the final scores.

Without the context-to-gloss attention, the score
declines 1.2% on concatenation of the four test
datasets. Conversely, without the gloss-to-context
attention, the score declines 0.4%. It is proba-
bly due to that the context-to-gloss attention which
generates the context-aware gloss vector is more
direct to find out the correct word sense.

In conclusion, the results in Table 4 show that
all components in the proposed hierarchical co-
attention model HCAN can contribute to boosting
the performance of WSD.

5 Conclusions

In this paper, we investigate the problem of in-
corporating gloss knowledge into neural network
for Word Sense Disambiguation. We find that the
gloss can highlight the important words in the con-
text, and later contribute to the representation of
the context. Meanwhile, context can also help
to focus on the words in gloss of the right word
sense. Therefore, we propose a co-attention mech-
anism to model the gloss-to-context and context-
to-gloss attention. Furthermore, in order to cap-
ture not only local word-level features but also
global sentence-level features, we extend the co-
attention model into a hierarchical architecture.
The experimental results show that our proposed
models achieve the state-of-the-art results on sev-
eral standard English all-words WSD datasets.
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