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Abstract
The current leading paradigm for temporal
information extraction from text consists of
three phases: (1) recognition of events and
temporal expressions, (2) recognition of tem-
poral relations among them, and (3) time-line
construction from the temporal relations. In
contrast to the first two phases, the last phase,
time-line construction, received little attention
and is the focus of this work. In this paper,
we propose a new method to construct a linear
time-line from a set of (extracted) temporal re-
lations. But more importantly, we propose a
novel paradigm in which we directly predict
start and end-points for events from the text,
constituting a time-line without going through
the intermediate step of prediction of tempo-
ral relations as in earlier work. Within this
paradigm, we propose two models that pre-
dict in linear complexity, and a new training
loss using TimeML-style annotations, yielding
promising results.

1 Introduction

The current leading perspective on temporal infor-
mation extraction regards three phases: (1) a tem-
poral entity recognition phase, extracting events
(blue boxes in Fig. 1) and their attributes, and ex-
tracting temporal expressions (green boxes), and
normalizing their values to dates or durations, (2)
a relation extraction phase, where temporal links
(TLinks) among those entities, and between events
and the document-creation time (DCT) are found
(arrows in Fig. 1, left). And (3), construction of a
time-line (Fig. 1, right) from the extracted tempo-
ral links, if they are temporally consistent. Much
research concentrated on the first two steps, but
very little research looks into step 3, time-line con-
struction, which is the focus of this work.

In this paper, we propose a new time-line con-
struction paradigm that evades phase 2, the re-
lation extraction phase, because in the classical

paradigm temporal relation extraction comes with
many difficulties in training and prediction that
arise from the fact that for a text with n tempo-
ral entities (events or temporal expressions) there
are n2 possible entity pairs, which makes it likely
for annotators to miss relations, and makes infer-
ence slow as n2 pairs need to be considered. Tem-
poral relation extraction models consistently give
lower performance than those in the entity recog-
nition phase (UzZaman et al., 2013; Bethard et al.,
2016, 2017), introducing errors in the time-line
construction pipe-line.

The ultimate goal of our proposed paradigm is
to predict from a text in which entities are already
detected, for each entity: (1) a probability distribu-
tion on the entity’s starting point, and (2) another
distribution on the entity’s duration. The proba-
bilistic aspect is crucial for time-line based deci-
sion making. Constructed time-lines allow for fur-
ther quantitative reasoning with the temporal in-
formation, if this would be needed for certain ap-
plications.

As a first approach towards this goal, in this pa-
per, we propose several initial time-line models in
this paradigm, that directly predict - in a linear
fashion - start points and durations for each entity,
using text with annotated temporal entities as input
(shown in Fig. 1). The predicted start points and
durations constitute a relative time-line, i.e. a total
order on entity start and end points. The time-line
is relative, as start and duration values cannot (yet)
be mapped to absolute calender dates or durations
expressed in seconds. It represents the relative
temporal order and inclusions that temporal enti-
ties have with respect to each other by the quanti-
tative start and end values of the entities. Relative
time-lines are a first step toward our goal, building
models that predict statistical absolute time-lines.
To train our relative time-line models, we define
novel loss functions that exploit TimeML-style an-
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notations, used in most existing temporal corpora.
This work leads to the following contributions:

• A new method to construct a relative
time-line from a set of temporal relations
(TL2RTL).

• Two new models that, for the first time, di-
rectly predict (relative) time-lines - in lin-
ear complexity - from entity-annotated texts
without doing a form of temporal relation ex-
traction (S-TLM & C-TLM).

• Three new loss functions based on the map-
ping between Allen’s interval algebra and the
end-point algebra to train time-line models
from TimeML-style annotations.

In the next sections we will further discuss the
related work on temporal information extraction.
We will describe the models and training losses in
detail, and report on conducted experiments.

2 Related Work

2.1 Temporal Information Extraction

The way temporal information is conveyed in lan-
guage has been studied for a long time. It can
be conveyed directly through verb tense, explicit
temporal discourse markers (e.g. during or af-
terwards) (Derczynski, 2017) or temporal expres-
sions such as dates, times or duration expressions
(e.g. 10-05-2010 or yesterday). Temporal infor-
mation is also captured in text implicitly, through
background knowledge about, for example, dura-
tion of events mentioned in the text (e.g. even
without context, walks are usually shorter than
journeys).

Most temporal corpora are annotated with
TimeML-style annotations, of which an example
is shown in Fig 1, indicating temporal entities,
their attributes, and the TLinks among them.

The automatic extraction of TimeML-style tem-
poral information from text using machine learn-
ing was first explored by Mani et al. (2006). They
proposed a multinomial logistic regression classi-
fier to predict the TLinks between entities. They
also noted the problem of missed TLinks by anno-
tators, and experimented with using temporal rea-
soning (temporal closure) to expand their training
data.

Since then, much research focused on further
improving the pairwise classification models, by

exploring different types of classifiers and fea-
tures, such as (among others) logistic regression
and support vector machines (Bethard, 2013; Lin
et al., 2015), and different types of neural network
models, such as long short-term memory networks
(LSTM) (Tourille et al., 2017; Cheng and Miyao,
2017), and convolutional neural networks (CNN)
(Dligach et al., 2017). Moreover, different sieve-
based approaches were proposed (Chambers et al.,
2014; Mirza and Tonelli, 2016), facilitating mix-
ing of rule-based and machine learning compo-
nents.

Two major issues shared by these existing ap-
proaches are: (1) models classify TLinks in a pair-
wise fashion, often resulting in an inference com-
plexity of O(n2), and (2) the pair-wise predictions
are made independently, possibly resulting in pre-
diction of temporally inconsistent graphs. To ad-
dress the second, additional temporal reasoning
can be used at the cost of computation time, dur-
ing inference (Chambers and Jurafsky, 2008; De-
nis and Muller, 2011; Do et al., 2012), or dur-
ing both training and inference (Yoshikawa et al.,
2009; Laokulrat et al., 2015; Ning et al., 2017;
Leeuwenberg and Moens, 2017). In this work, we
circumvent these issues, as we predict time-lines
- in linear time complexity - that are temporally
consistent by definition.

2.2 Temporal Reasoning

Temporal reasoning plays a central role in tempo-
ral information extraction, and there are roughly
two approaches: (1) Reasoning directly with
Allen’s interval relations (shown in Table 1), by
constructing rules like: If event X occurs before
Y, and event Y before Z then X should happen be-
fore Z (Allen, 1990). Or (2), by first mapping the
temporal interval expressions to expressions about
interval end-points (start and endings of entities)
(Vilain et al., 1990). An example of such map-
ping is that If event X occurs before Y then the
end of X should be before the start of Y. Then rea-
soning can be done with end-points in a point al-
gebra, which has only three point-wise relations
(=, <,>), making reasoning much more efficient
compared to reasoning with Allen’s thirteen inter-
val relations.

Mapping interval relations to point-wise expres-
sions has been exploited for model inference by
Denis and Muller (2011), and for evaluation by
UzZaman and Allen (2011). In this work, we ex-
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TLink Extraction: O(n²) S-TLM and C-TLM: O(n)

Output: Relative TimelineTimeML Annotations
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Last week, John jogged for many hours.
t1 t2
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Input: Text with Temporal Entities (n=3)
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DCT
TL2RTL

DCT
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Figure 1: An overview of two paradigms: (1) The indirect approach (dashed arrows), where first TLinks
are predicted from which we can build a relative time-line using TL2RTL. And (2), the direct approach
(solid arrow), where a relative time-line is predicted directly from the input by S-TLM or C-TLM.

ploit it for the first time for model training, in our
loss functions.

3 Models

We propose two model structures for direct
time-line construction: (1) a simple context-
independent model (S-TLM), and (2) a contex-
tual model (C-TLM). Their structures are shown in
Fig. 2. Additionally, we propose a method to con-
struct relative time-lines from a set of (extracted)
TLinks (TL2RTL). In this section we first explain
the first two direct models S-TLM and C-TLM,
and afterwards the indirect method TL2RTL.

3.1 Direct Time-line Models

Word representation

In both S-TLM and C-TLM, words are repre-
sented as a concatenation of a word embedding,
a POS embedding, and a Boolean feature vector
containing entity attributes such as the type, class,
aspect, following (Do et al., 2012). Further details
on these are given in the experiments section.

Simple Time-line Model (S-TLM)

For the simple context-independent time-line
model, each entity is encoded by the word repre-
sentation of the last word of the entity (generally
the most important). From this representation we
have a linear projection to the duration d, and the
start s. S-TLM is shown by the dotted edges in
Fig 2. An advantage of S-TLM is that it has very
few parameters, and each entity can be placed on
the time-line independently of the others, allow-
ing parallelism during prediction. The downside
is that S-TLM is limited in its use of contextual
information.

Contextual Time-line Model (C-TLM)
To better exploit the entity context we also propose
a contextual time-line model C-TLM (solid edges
in Fig 2), that first encodes the full text using two
bi-directional recurrent neural networks, one for
entity starts (BiRNNs), and one for entity dura-
tions (BiRNNd).1 On top of the encoded text we
learn two linear mappings, one from the BiRNNd

output of the last word of the entity mention to its
duration d, and similarly for the start time, from
the BiRNNs output to the entity’s start s.

Predicting Start, Duration, and End
Both proposed models use linear mappings2 to
predict the start value si and duration di for the
encoded entity i. By summing start si and dura-
tion di we can calculate the entity’s end-point ei.

ei = si +max(di, dmin) (1)

Predicting durations rather than end-points makes
it easy to control that the end-point lies after the
start-point by constraining the duration di by a
constant minimum duration value dmin above 0,
as shown in Eq. 1.

Modeling Document-Creation Time
Although the DCT is often not found explicitly in
the text, it is an entity in TimeML, and has TLinks
to other entities. We model it by assigning it a
text-independent start sDCT and duration dDCT.

Start sDCT is set as a constant (with value 0).
This way the model always has the same reference
point, and can learn to position the entities w.r.t.
the DCT on the time-line.

1We also experimented with sharing weights among
BiRNNd and BiRNNs. In our experiments, this gave worse
performance, so we propose to keep them separate.

2Adding more layers did not improve results.
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Last week , John jogged for many hours .
t1 e1 t2
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Figure 2: Schematic overview of our two time-line models: C-TLM (solid edges), exploiting entity
context, and the simpler S-TLM (dotted edges), which is context independent. The models predict a
starting point (s) and duration (d) for each given temporal entity (t1, e1, and t2) in the input.

In contrast, DCT duration dDCT is modeled as
a single variable that is learned (initialized with
1). Since multiple entities may be included in the
DCT, and entities have a minimum duration dmin,
a constant dDCT could possibly prevent the model
from fitting all entities in the DCT. Modeling dDCT

as a variable allows growth of dDCT and averts this
issue.3

Training Losses
We propose three loss functions to train time-line
models from TimeML-style annotations: a regular
time-line loss Lτ , and two slightly expanded dis-
criminative time-line losses, Lτce and Lτh.

Regular Time-line Loss (Lτ )
Ground-truth TLinks can be seen as constraints on
correct positions of entities on a time-line. The
regular time-line loss Lτ expresses the degree to
which these constraints are met for a predicted
time-line. If all TLinks are satisfied in the time-
line for a certain text, Lτ will be 0 for that text.

As TLinks relate entities (intervals), we first
convert the TLinks to expressions that relate the
start and end points of entities. How each TLink
is translated to its corresponding point-algebraic
constraints is given in Table 1, following Allen
(1990).

As can be seen in the last column there are only
two point-wise operations in the point-algebraic
constraints: an order operation (<), and an equal-
ity operation (=). To model to what degree each
point-wise constraint is met, we employ hinge
losses, with a margin mτ , as shown in Eq. 2.

3Other combinations of modeling sDCT and dDCT as vari-
able or constant decreased performance.

4No TLink for Allen’s overlap relation is present in
TimeML, also concluded by UzZaman and Allen (2011).

Table 1: Point algebraic interpretation (IPA) of
temporal links used to construct the loss function.
The start and end points of event X are indicated
by sx and ex respectively.

Allen Algebra Temporal Links Point Algebra

X precedes Y
Y preceded by X

X before Y
Y after X

ex < sy

X starts Y
Y started by X

X begins Y
Y begun by X

sx = sy
ex < ey

X finishes Y
Y finished by X

X ends Y
Y ended by X

ex = ey
sy < sx

X during Y
Y includes X

X is included Y
Y includes X

sy < sx
ex < ey

X meets Y
Y met by X

X immediately before Y
Y immediately after X

ex = sy

X overlaps Y
Y overlapped by X

absent4

absent4
sx < sy
sy < ex
ex < ey

X equals Y
X simultaneous Y
X identity Y

sx = sy
ex = ey

To explain the intuition and notation: If we have
a point-wise expression ξ of the form x < y (first
case of Eq. 2), then the predicted point x̂ should
be at least a distance mτ smaller (or earlier on the
time-line) than predicted point ŷ in order for the
loss to be 0. Otherwise, the loss represents the dis-
tance x̂ or ŷ still has to move to make x̂ smaller
than ŷ (and satisfy the constraint). For the sec-
ond case, if ξ is of the form x = y, then point x̂
and ŷ should lie very close to each other, i.e. at
most a distance mτ away from each other. Any
distance further than the margin mτ is counted as
loss. Notice that if we set margin mτ to 0, the
second case becomes an L1 loss |x̂ − ŷ|. How-
ever, we use a small margin mτ to promote some
distance between ordered points and prevent con-
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fusion with equality. Fig. 3 visualizes the loss for
three TLinks.

Y ey sy

Xsx ex

X simultaneous Y

X before Y

X includes Y

mτ mτmτ

Figure 3: Visualization of the time-line loss Lτ
with margin mτ , for two events X and Y, and
TLinks simultaneous, before, and includes. The
red arrows’ lengths indicate the loss per relation,
i.e. how much the points should be shifted to sat-
isfy each relation.

Lp(ξ|t, θ) =

{
max(x̂+mτ − ŷ, 0) iff x < y

max(|x̂− ŷ| −mτ , 0) iff x = y

(2)

The total time-line loss Lτ (t|θ) of a model with
parameters θ on text t with ground-truth TLinks
R(t), is the sum of the TLink-level losses of
all TLinks r ∈ R(t). Each TLink-level loss
Lr(r|t, θ) for TLink r is the sum of the point-
wise losses Lp(ξ|t, θ) of the corresponding point-
algebraic constraints ξ ∈ IPA(r) from Table 1.5

Lr(r|t, θ) =
∑

ξ∈IPA(r)

Lp(ξ|t, θ) (3)

Lτ (t, θ) =
∑
r∈R(t)

Lr(r|t, θ) (4)

Discriminative Time-line Losses
To promote a more explicit difference between the
relations on the time-line we introduce two dis-
criminative loss functions, Lτce and Lτh, which
build on top of Lr. Both discriminative loss func-
tions use an intermediate score S(r|t, θ) for each
TLink r based on the predicted time-line. As scor-
ing function, we use the negativeLr loss, as shown
in Eq. 5.

S(r|t, θ) = −Lr(r|t, θ) (5)

5The TLink during and its inverse are mapped to simulta-
neous, following the evaluation of TempEval-3.

Then, a lower time-line loss Lr(r|t, θ) results in
a higher score for relation type r. Notice that the
maximum score is 0, as this is the minimum Lr.

Probabilistic Loss (Lτce)
Our first discriminative loss is a cross-entropy
based loss. For this the predicted scores are nor-
malized using a soft-max over the possible rela-
tion types (TL). The resulting probabilities are
used to calculate a cross-entropy loss, shown in
Eq. 6. This way, the loss does not just promote the
correct relation type but also distantiates from the
other relation types.

Lτce(t|θ) =
∑
r∈R(t)

r · log
( eS(r|t,θ)∑

r′∈TL e
S(r′|t,θ)

)
(6)

Ranking Loss (Lτh)
When interested in discriminating relations on the
time-line, we want the correct relation type to have
the highest score from all possible relation types
TL. To represent this perspective, we also define
a ranking loss with a score margin mh in Eq. 7.

Lτh(t|θ) =∑
r∈R(t)

∑
r′∈TL\{r}

max(S(r′|t, θ)−S(r|t, θ)+mh, 0)

(7)

Training Procedure
S-TLM and C-TLM are trained by by iterating
through the training texts, sampling mini-batches
of 32 annotated TLinks. For each batch we (1)
perform a forward pass, (2) calculate the total loss
(for one of the loss functions), (3) derive gradients
using Adam6 (Kingma and Ba, 2014), and (4) up-
date the model parameters θ via back-propagation.
After each epoch we shuffle the training texts.
As stopping criteria we use early stopping (Mor-
gan and Bourlard, 1990), with a patience of 100
epochs and a maximum number of 1000 epochs.

3.2 From TLinks to Time-lines (TL2RTL)

To model the indirect route, we construct a novel
method, TL2RTL, that predicts relative time lines
from a subset of TLinks, shown in Fig 1. One
can choose any method to obtain a set of TLinks
R(t) from a text t, serving as input to TL2RTL.

6Using the default parameters from the paper.
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TL2RTL constructs a relative time-line, by assign-
ing start and end values to each temporal entity,
such that the resulting time-line satisfies the ex-
tracted TLinksR(t) by minimizing a loss function
that is 0 when the extracted TLinks are satisfied.
TL2RTL on itself is a method and not a model.
The only variables over which it optimizes the loss
are the to be assigned starts and duration values.

In detail, for a text t, with annotated entities
E(t), we first extract a set of TLinks R(t). In
this work, to extract TLinks, we use the current
state-of-the-art structured TLink extraction model
by Ning et al. (2017). Secondly, we assign a start
variable si, and duration variable di to each en-
tity i ∈ E(t). Similar to S-TLM and C-TLM, for
each i ∈ E(t), di is bounded by a minimum dura-
tion dmin to ensure start si always lies before end
ei. Also, we model the DCT start sDCT as a con-
stant, and its duration dDCT as a variable. Then we
minimize one of the loss functions Lτ , Lτce, or
Lτh on the extracted TLinks R(t), obtaining three
TL2RTL variants, one for each loss. If the initially
extracted set of TLinks R(t) is consistent, and the
loss is minimized sufficiently, all si and di form
a relative time-line that satisfies the TLinks R(t),
but from which we can now also derive consistent
TLinks for any entity pair, also the pairs that were
not in R(t). To minimize the loss we use Adam
for 10k epochs until the loss is zero for each doc-
ument.7

4 Experiments

4.1 Evaluation and Data

Because prediction of relative time-lines trained
on TimeML-style annotations is new, we cannot
compare our model directly to relation extraction
or classification models, as the latter do not pro-
vide completely temporally consistent TLinks for
all possible entity pairs, like the relative time-
lines do. Neither can we compare directly to ex-
isting absolute time-line prediction models such
as Reimers et al. (2018) because they are trained
on different data with a very different annotation
scheme.

To evaluate the quality of the relative time-line
models in a fair way, we use TimeML-style test
sets as follows: (1) We predict a time-line for each
test-text, and (2) we check for all ground-truth an-

7For some documents the extracted TLinks were tempo-
rally inconsistent, resulting in a non-zero loss. Nevertheless,
> 96% of the extracted TLinks were satisfied.

notated TLinks that are present in the data, what
would be the derived relation type based on the
predicted time-line, which is the relation type that
gives the lowest time-line loss Lr. This results
in a TLink assignment for each annotated pair
in the TimeML-style reference data, and there-
for we can use similar metrics. As evaluation
metric we employ the temporal awareness met-
ric, used in TempEval-3, which takes into account
temporal closure (UzZaman et al., 2013). Notice
that although we use the same metric, compari-
son against relation classification systems would
be unfair, as our model assigns consistent labels
to all pairs, whereas relation classification systems
do not.

For training and evaluation we use two data
splits, TE‡ and TD‡, exactly following Ning et al.
(2017). Some statistics about the data are shown
in Table 2.8 The splits are constituted from various
smaller datasets: the TimeBank (TB) (Pustejovsky
et al., 2002), the AQUANT dataset (AQ), and the
platinum dataset (PT) all from TempEval-3 (Uz-
Zaman et al., 2013). And, the TimeBank Dense
(Cassidy et al., 2014) , and the Verb-Clause dataset
(VC) (Bethard et al., 2007).

4.2 Hyper-parameters and Preprocessing

Hyper-parameters shared in all settings can be
found in Table 3. The following hyper-parameters
are tuned using grid search on a development
set (union of TB and AQ): dmin is chosen from
{1, 0.1, 0.01}, mτ from {0, 0.025, 0.05, 0.1},
αd from {0, 0.1, 0.2, 0.4, 0.8}, and αrnn from
{10, 25, 50}. We use LSTM (Hochreiter and
Schmidhuber, 1997) as RNN units9 and em-
ploy 50-dimensional GloVe word-embeddings
pre-trained10 on 6B words (Wikipedia and
NewsCrawl) to initialize the models’ word embed-
dings.

We use very simple tokenization and consider
punctuation11 or newline tokens as individual to-
kens, and split on spaces. Additionally, we low-
ercase the text and use the Stanford POS Tagger
(Toutanova et al., 2003) to obtain POS.

8We explicitly excluded all test documents from training
as some corpora annotated the same documents.

9We also experimented with GRU as RNN type, obtaining
similar results.

10https://nlp.stanford.edu/projects/glove
11, ./\"’=+-;:()!?<>%&$*|[]{}
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Table 2: Dataset splits used for evaluation (indicated with ‡).

Split Training data #TLinks #Documents Test data #TLinks #Documents

TD‡ TD (train+dev) 4.4k 27 TD (test) 1.3k 9
TE3‡ TB, AQ, VC, TD (full) 17.5k 256 PT 0.9k 20

Table 3: Hyper-parameters from the experiments.

Hyper-parameter Value

Document-creation starting time (sDCT) 0
Minimum event duration (dmin) 0.1
Time-line margin (mτ ) 0.025
Hinge loss margin (mh) 0.1

Dropout (αd) 0.1
Word-level RNN units (αrnn) 25
Word-embedding size (αwemb) 50
POS-embedding size 10

Table 4: Evaluation of relative time-lines for each
model and loss function, where L∗ indicates the
(unweighted) sum of Lτ , Lτce, and Lτh.

TE3‡ TD‡
Model P R F P R F

Indirect: O(n2)
TL2RTL (Lτ ) 53.5 51.1 52.3 59.1 61.2 60.1
TL2RTL (Lτce) 53.9 51.7 52.8 61.2 60.7 60.9
TL2RTL (Lτh) 52.8 51.1 51.9 57.9 60.6 59.2
TL2RTL (L∗) 52.6 52.0 52.3 62.3 62.3 62.3

Direct: O(n)
S-TLM (Lτ ) 50.1 50.4 50.2 57.8 59.5 58.6
S-TLM (Lτce) 50.1 50.0 50.1 53.4 53.5 53.5
S-TLM (Lτh) 51.5 51.7 51.6 55.1 56.4 55.7
S-TLM (L∗) 50.9 51.0 51.0 56.5 55.3 55.9
C-TLM (Lτ ) 56.2 56.1 56.1 57.1 59.7 58.4
C-TLM (Lτce) 54.4 55.4 54.9 52.4 57.3 54.7
C-TLM (Lτh) 55.7 55.5 55.6 55.3 54.9 55.1
C-TLM (L∗) 54.0 54.3 54.1 54.6 53.5 54.1

5 Results

We compared our three proposed models for the
three loss functions Lτ , Lτce, and Lτh, and their
linear (unweighted) combination L∗, on TE3‡ and
TD‡, for which the results are shown in Table 4.

A trend that can be observed is that overall per-
formance on TD‡ is higher than that of TE3‡, even
though less documents are used for training. We
inspected why this is the case, and this is caused
by a difference in class balance between both test
sets. In TE3‡ there are many more TLinks of type
simultaneous (12% versus 3%), which are very

difficult to predict, resulting in lower scores for
TE3‡ compared to TD‡. The difference in perfor-
mance between the datasets is probably also be re-
lated to the dense annotation scheme of TD‡ com-
pared to the sparser annotations of TE3‡, as dense
annotations give a more complete temporal view
of the training texts. For TL2RTL better TLink
extraction12 is also propagated into the final time-
line quality.

If we compare loss functions Lτ , Lτce, and
Lτh, and combination L∗, it can be noticed that,
although all loss functions seem to give fairly
similar performance, Lτ gives the most robust
results (never lowest), especially noticeable for
the smaller dataset TD‡. This is convenient, be-
cause Lτ is fastest to compute during training,
as it requires no score calculation for each TLink
type. Lτ is also directly interpretable on the time-
line. The combination of losses L∗ shows mixed
results, and has lower performance for S-TLM
and C-TLM, but better performance for TL2RTL.
However, it is slowest to compute, and less inter-
pretable, as it is a combined loss.

Moreover, we can clearly see that on TE3‡, C-
TLM performs better than the indirect models,
across all loss functions. This is a very interesting
result, as C-TLM is an order of complexity faster
in prediction speed compared to the indirect mod-
els (O(n) compared to O(n2) for a text with n
entities).13 We further explore why this is the case
through our error analysis in the next section.

On TD‡, the indirect models seem to perform
slightly better. We suspect that the reason for this
is that C-TLM has more parameters (mostly the
LSTM weights), and thus requires more data (TD‡

has much fewer documents than TE3‡) compared
to the indirect methods. Another result supporting
this hypothesis is the fact that the difference be-
tween C-TLM and S-TLM is small on the smaller

12F1 of 40.3 for TE3‡ and 48.5 for TD‡ (Ning et al., 2017)
13We do not directly compare prediction speed, as it would

result in unfair evaluation because of implementation differ-
ences. However, currently, C-TLM predicts at∼100 w/s incl.
POS tagging, and ∼2000 w/s without. When not using POS,
overall performance decreases consistently with 2-4 points.



1244

B A II I S
B 24.8% 4.7% 2.8% 1.6% 0.1%
A 5.0% 15.8% 3.2% 0.5% 0.0%
II 3.2% 3.2% 13.0% 0.6% 0.1%
I 4.0% 1.2% 1.0% 3.2% 0.0%
S 4.4% 3.0% 2.6% 1.3% 0.4%

B A II I S
B 23.0% 8.2% 1.3% 0.9% 0.8%
A 4.7% 17.1% 1.8% 0.3% 0.5%
II 4.3% 4.4% 11.1% 0.4% 0.0%
I 1.6% 5.4% 0.5% 1.3% 0.5%
S 4.3% 4.1% 1.8% 0.6% 0.9%

Figure 4: On the left, the confusion matrix of C-TLM (Lτ ), and on the right of TL2RTL (Lτce), on TE3‡

for the top-5 most-frequent TLinks (together 95% of data): BEFORE (B), AFTER (A), IS INCLUDED (II),
INCLUDES (I), and SIMULTANEOUS (S). Predictions are shown on the x-axis and ground-truth on the
y-axis.

TD‡, indicating that C-TLM does not yet utilize
contextual information from this dataset, whereas,
in contrast, on TE3‡, the larger dataset, C-TLM
clearly outperforms S-TLM across all loss func-
tions, showing that when enough data is available
C-TLM learns good LSTM weights that exploit
context substantially.

6 Error Analysis

We compared predictions of TL2RTL(Lτ ) with
those of C-TLM (Lτ ), the best models of each
paradigm. In Table 4, we show the confusion ma-
trices of both systems on TE3‡.

When looking at the overall pattern in errors,
both models seem to make similar confusions on
both datasets (TD‡ was excluded for space con-
straints). Overall, we find that simultaneous is the
most violated TLink for both models. This can be
explained by two reasons: (1) It is the least fre-
quent TLink in both datasets. And (2), simulta-
neous entities are often co-referring events. Event
co-reference resolution is a very difficult task on
its own.

We also looked at the average token-distance
between arguments of correctly satisfied TLinks
by the time-lines of each model. For TL2RTL
(Lτ ) this is 13 tokens, and for C-TLM (Lτ ) 15.
When looking only at the TLinks that C-TLM (Lτ )
satisfied and TL2RTL (Lτ ) did not, the average
distance is 21. These two observations suggest
that the direct C-TLM (Lτ ) model is better at po-
sitioning entities on the time-line that lie further
away from each other in the text. An explana-
tion for this can be error propagation of TLink ex-
traction to the time-line construction, as the pair-
wise TLink extraction of the indirect paradigm ex-
tracts TLinks in a contextual window, to prune the
O(n2) number of possible TLink candidates. This

Table 5: Example events from the top-
shortest/longest durations and top-earliest/latest
start values assigned by the model.

Short d Long d Early s Late s

started going destroyed realize
meet expects finished bring
entered recession invaded able
told war pronounced got
arrived support created work
allow make took change
send think appeared start
asked created leaving reenergize

consequently prevents TL2RTL to properly posi-
tion distant events with respect to each other.

To get more insight in what the model learns we
calculated mean durations and mean starts of C-
TLM (Lτ ) predictions. Table 5 contains examples
from the top-shortest, and top-longest duration as-
signments and earliest and latest starting points.
We observe that events that generally have more
events included are assigned longer duration and
vice versa. And, events with low start values are
in the past tense and events with high start values
are generally in the present (or future) tense.

7 Discussion

A characteristic of our model is that it assumes
that all events can be placed on a single time-
line, and that it does not assume that unlabeled
pairs are temporally unrelated. This has big ad-
vantages: it results in fast prediction, and missed
annotation do not act as noise to the training, as
they do for pairwise models. Ning et al. (2018) ar-
gue that actual, negated, hypothesized, expected or
opinionated events should possibly be annotated
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on separate time-axis. We believe such multi-axis
representations can be inferred from the generated
single time-lines if hedging information is recog-
nized.

8 Conclusions

This work leads to the following three main contri-
butions14: (1) Three new loss functions that con-
nect the interval-based TimeML-annotations to
points on a time-line, (2) A new method, TL2RTL,
to predict relative time-lines from a set of pre-
dicted temporal relations. And (3), most impor-
tantly, two new models, S-TLM and C-TLM, that
– to our knowledge for the first time – predict (rel-
ative) time-lines in linear complexity from text,
by evading the computationally expensive (often
O(n2)) intermediate relation extraction phase in
earlier work. From our experiments, we conclude
that the proposed loss functions can be used effec-
tively to train direct and indirect relative time-line
models, and that, when provided enough data, the
– much faster – direct model C-TLM outperforms
the indirect method TL2RTL.

As a direction for future work, it would be
very interesting to extend the current models, div-
ing further into direct time-line models, and learn
to predict absolute time-lines, i.e. making the
time-lines directly mappable to calender dates and
times, e.g. by exploiting complementary data
sources such as the EventTimes Corpus (Reimers
et al., 2016) and extending the current loss func-
tions accordingly. The proposed models also pro-
vide a good starting point for research into prob-
abilistic time-line models, that additionally model
the (un)certainty of the predicted positions and du-
rations of the entities.
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