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Abstract

We propose a conditional non-autoregressive
neural sequence model based on iterative re-
finement. The proposed model is designed
based on the principles of latent variable mod-
els and denoising autoencoders, and is gen-
erally applicable to any sequence generation
task. We extensively evaluate the proposed
model on machine translation (En$De and
En$Ro) and image caption generation, and
observe that it significantly speeds up decod-
ing while maintaining the generation quality
comparable to the autoregressive counterpart.

1 Introduction

Conditional neural sequence modeling has be-
come a de facto standard in a variety of tasks (see,
e.g., Cho et al., 2015, and references therein).
Much of this recent success is built on top of au-
toregressive sequence models in which the proba-
bility of a target sequence is factorized as a prod-
uct of conditional probabilities of next symbols
given all the preceding ones. Despite its success,
neural autoregressive modeling has its weakness
in decoding, i.e., finding the most likely sequence.
Because of intractability, we must resort to sub-
optimal approximate decoding, and due to its se-
quential nature, decoding cannot be easily paral-
lelized and results in a large latency (see, e.g., Cho,
2016). This has motivated the recent investiga-
tion into non-autoregressive neural sequence mod-
eling by Gu et al. (2017) in the context of machine
translation and Oord et al. (2017) in the context of
speech synthesis.

In this paper, we propose a non-autoregressive
neural sequence model based on iterative refine-
ment, which is generally applicable to any se-
quence generation task beyond machine transla-
tion. The proposed model can be viewed as both

⇤ Equal Contribution

a latent variable model and a conditional denois-
ing autoencoder. We thus propose a learning algo-
rithm that is hybrid of lowerbound maximization
and reconstruction error minimization. We further
design an iterative inference strategy with an adap-
tive number of steps to minimize the generation
latency without sacrificing the generation quality.

We extensively evaluate the proposed condi-
tional non-autoregressive sequence model and
compare it against the autoregressive counterpart,
using the state-of-the-art Transformer (Vaswani
et al., 2017), on machine translation and im-
age caption generation. In the case of ma-
chine translation, the proposed deterministic non-
autoregressive models are able to decode approx-
imately 2 � 3⇥ faster than beam search from
the autoregressive counterparts on both GPU and
CPU, while maintaining 90-95% of translation
quality on IWSLT’16 En$De, WMT’16 En$Ro
and WMT’14 En$De. On image caption genera-
tion, we observe approximately 3⇥ and 5⇥ faster
decoding on GPU and CPU, respectively, while
maintaining 85% of caption quality.1

2 Non-Autoregressive Sequence Models

Sequence modeling in deep learning has largely
focused on autoregressive modeling. That is,
given a sequence Y = (y1, . . . , yT ), we use some
form of a neural network to parametrize the con-
ditional distribution over each variable yt given all
the preceding variables, i.e.,

log p(yt|y<t) = f✓(y<t),

where f✓ is for instance a recurrent neural net-
work. This approach has become a de facto
standard in language modeling (Mikolov et al.,

1 We release the implementation, preprocessed datasets as
well as trained models online at https://github.com/
nyu-dl/dl4mt-nonauto.

https://github.com/nyu-dl/dl4mt-nonauto
https://github.com/nyu-dl/dl4mt-nonauto
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2010). When this is conditioned on an extra vari-
able X , it becomes a conditional sequence model
log p(Y |X) which serves as a basis on which
many recent advances in, e.g., machine transla-
tion (Bahdanau et al., 2014; Sutskever et al., 2014;
Kalchbrenner and Blunsom, 2013) and speech
recognition (Chorowski et al., 2015; Chiu et al.,
2017) have been made.

Despite the recent success, autoregressive se-
quence modeling has a weakness due to its nature
of sequential processing. This weakness shows
itself especially when we try to decode the most
likely sequence from a trained model, i.e.,

ˆ

Y = argmax

Y
log p(Y |X).

There is no known polynomial algorithm for solv-
ing it exactly, and practitioners have relied on ap-
proximate decoding algorithms (see, e.g., Cho,
2016; Hoang et al., 2017). Among these, beam
search has become the method of choice, due to
its superior performance over greedy decoding,
which however comes with a substantial compu-
tational overhead (Cho, 2016).

As a solution to this issue of slow decoding, two
recent works have attempted non-autoregressive
sequence modeling. Gu et al. (2017) have mod-
ified the Transformer (Vaswani et al., 2017) for
non-autoregressive machine translation, and Oord
et al. (2017) a convolutional network (Oord et al.,
2016) for non-autoregressive modeling of wave-
form. Non-autoregressive modeling factorizes the
distribution over a target sequence given a source
into a product of conditionally independent per-
step distributions:

p(Y |X) =

TY

t=1

p(yt|X),

breaking the dependency among the target vari-
ables across time. This allows us to trivially
find the most likely target sequence by tak-
ing argmaxyt p(yt|X) for each t, effectively
bypassing the computational overhead and sub-
optimality of decoding from an autoregressive se-
quence model.

This desirable property of exact and parallel de-
coding however comes at the expense of poten-
tial performance degradation (Kaiser and Bengio,
2016). The potential modeling gap, which is the
gap between the underlying, true model and the
neural sequence model, could be larger with the

non-autogressive model compared to the autore-
gressive one due to challenge of modeling the fac-
torized conditional distribution above.

3 Iterative Refinement for Deterministic
Non-Autoregressive Sequence Models

3.1 Latent variable model
Similarly to two recent works (Oord et al., 2017;
Gu et al., 2017), we introduce latent variables to
implicitly capture the dependencies among target
variables. We however remove any stochastic be-
havior by interpreting this latent variable model,
introduced immediately below, as a process of it-
erative refinement.

Our goal is to capture the dependencies among
target symbols given a source sentence without
auto-regression by introducing L intermediate ran-
dom variables and marginalizing them out:

p(Y |X) =

X

Y 0,...,Y L

 
TY

t=1

p(yt|Y L
, X)

!
(1)

 
TY

t=1

p(y

L
t |Y L�1

, X)

!
· · ·
 

TY

t=1

p(y

0
t |X)

!
.

Each product term inside the summation is mod-
elled by a deep neural network that takes as input
a source sentence and outputs the conditional dis-
tribution over the target vocabulary V for each t.

Deterministic Approximation The marginal-
ization in Eq. (1) is intractable. In order to avoid
this issue, we consider two approximation strate-
gies; deterministic and stochastic approximation.
Without loss of generality, let us consider the case
of single intermediate latent variable, that is L =

1. In the deterministic case, we set ŷ0t to the most
likely value according to its distribution p(y

0
t |X),

that is ŷ0t = argmaxy0t
p(y

0
t |X). The entire lower

bound can then be written as:

log p(Y |X) �
 

TX

t=1

log p(yt| ˆY L
, X)

!
+ · · ·

+

 
TX

t=1

log p(y

1
t | ˆY 0

, X)

!
+

 
TX

t=1

log p(ŷ

0
t |X)

!
.

Stochastic Approximation In the case of
stochastic approximation, we instead sample ŷ

0
t

from the distribution p(y

0
t |X). This results in the

unbiased estimate of the marginal log-probability
log p(Y |X). Other than the difference in whether
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most likely values or samples are used, the remain-
ing steps are identical.

Latent Variables Although the intermediate
random variables could be anonymous, we con-
strain them to be of the same type as the output Y
is, in order to share an underlying neural network.
This constraint allows us to view each conditional
p(Y

l| ˆY l�1
, X) as a single-step of refinement of a

rough target sequence ˆ

Y

l�1. The entire chain of
L conditionals is then the L-step iterative refine-
ment. Furthermore, sharing the parameters across
these refinement steps enables us to dynamically
adapt the number of iterations per input X . This is
important as it substantially reduces the amount of
time required for decoding, as we see later in the
experiments.

Training For each training pair (X,Y

⇤
), we

first approximate the marginal log-probability. We
then minimize

JLVM(✓) = �
L+1X

l=0

 
TX

t=1

log p✓(y
⇤
t | ˆY l�1

, X)

!
,

(2)

where ˆ

Y

l�1
= (ŷ

l�1
1 , . . . , ŷ

l�1
T ), and ✓ is a set of

parameters. We initialize ŷ

0
t (t-th target word in

the first iteration) as xt0 , where t0 = (T

0
/T ) · t. T 0

and T are the lengths of the source X and target
Y

⇤, respectively.

3.2 Denoising Autoencoder
The proposed approach could instead be viewed
as learning a conditional denoising autoencoder
which is known to capture the gradient of the log-
density. That is, we implicitly learn to find a di-
rection �Y in the output space that maximizes
the underlying true, data-generating distribution
logP (Y |X). Because the output space is discrete,
much of the theoretical analysis by Alain and Ben-
gio (2014) are not strictly applicable. We however
find this view attractive as it serves as an alterna-
tive foundation for designing a learning algorithm.

Training We start with a corruption process
C(Y |Y ⇤

), which introduces noise to the correct
output Y ⇤. Given the reference translation Y

⇤, we
sample ˜

Y ⇠ C(Y |Y ⇤
) which becomes as an input

to each conditional in Eq. (1). Then, the goal of
learning is to maximize the log-probability of the
original reference Y

⇤ given the corrupted version.
That is, to minimize

JDAE(✓) = �
TX

t=1

log p✓(y
⇤
t | ˜Y ,X). (3)

Once this cost JDAE is minimized, we can re-
cursively perform the maximum-a-posterior infer-
ence, i.e., ˆ

Y = argmaxY log p✓(Y |X), to find ˆ

Y

that (approximately) maximizes log p(Y |X).

Corruption Process C There is little consen-
sus on the best corruption process for a sequence,
especially of discrete tokens. In this work, we
use a corruption process proposed by Hill et al.
(2016), which has recently become more widely
adopted (see, e.g., Artetxe et al., 2017; Lam-
ple et al., 2017). Each y

⇤
t in a reference target

Y

⇤
= (y

⇤
1, . . . , y

⇤
T ) is corrupted with a probability

� 2 [0, 1]. If decided to corrupt, we either (1) re-
place y⇤t+1 with this token y

⇤
t , (2) replace y⇤t with a

token uniformly selected from a vocabulary of all
unique tokens at random, or (3) swap y

⇤
t and y

⇤
t+1.

This is done sequentially from y

⇤
1 until y⇤T .

3.3 Learning
Cost function Although it is possible to train
the proposed non-autoregressive sequence model
using either of the cost functions above (JLVM or
JDAE,) we propose to stochastically mix these two
cost functions. We do so by randomly replacing
each term ˆ

Y

l�1 in Eq. (2) with ˜

Y in Eq. (3):

J(✓) = �
L+1X

l=0

 
↵l

TX

t=1

log p✓(y
⇤
t | ˆY l�1

, X) (4)

+(1� ↵l)

TX

t=1

log p✓(y
⇤
t | ˜Y ,X)

!
,

where ˜

Y ⇠ C(Y |Y ⇤
), and ↵l is a sample from

a Bernoulli distribution with the probability pDAE.
pDAE is a hyperparameter. As the first conditional
p(Y

0|X) in Eq. (1) does not take as input any tar-
get Y , we set ↵0 = 1 always.

Distillation Gu et al. (2017), in the context of
machine translation, and Oord et al. (2017), in
the context of speech generation, have recently
discovered that it is important to use knowledge
distillation (Hinton et al., 2015; Kim and Rush,
2016) to successfully train a non-autoregressive
sequence model. Following Gu et al. (2017),
we also use knowledge distillation by replacing
the reference target Y ⇤ of each training example
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(X,Y

⇤
) with a target Y AR generated from a well-

trained autoregressive counterpart. Other than this
replacement, the cost function in Eq (4) and the
model architecture remain unchanged.

Target Length Prediction One difference be-
tween the autoregressive and non-autoregressive
models is that the former naturally models the
length of a target sequence without any arbitrary
upper-bound, while the latter does not. It is hence
necessary to separately model p(T |X), where T

is the length of a target sequence, although during
training, we simply use the length of each refer-
ence target sequence.

3.4 Inference: Decoding
Inference in the proposed approach is en-
tirely deterministic. We start from the in-
put X and first predict the length of the tar-
get sequence ˆ

T = argmaxT log p(T |X). Then,
given X and ˆ

T we generate the initial tar-
get sequence by ŷ

0
t = argmaxyt log p(y

0
t |X), for

t = 1, . . . , T We continue refining the target se-
quence by ŷ

l
t = argmaxyt log p(y

l
t| ˆY l�1

, X), for
t = 1, . . . , T .

Because these conditionals, except for the ini-
tial one, are modeled by a single, shared neu-
ral network, this refinement can be performed
as many iterations as necessary until a pre-
defined stopping criterion is met. A crite-
rion can be based either on the amount of
change in a target sequence after each iteration
(i.e., D(

ˆ

Y

l�1
,

ˆ

Y

l
)  ✏), or on the amount of

change in the conditional log-probabilities (i.e.,
| log p( ˆY l�1|X)� log p(

ˆ

Y

l�1|X)|  ✏) or on the
computational budget. In our experiments, we use
the first criterion and use Jaccard distance as our
distance function D.

4 Related Work

Non-Autoregressive Neural Machine Transla-
tion Schwenk (2012) proposed a continuous-
space translation model to estimate the conditional
distribution over a target phrase given a source
phrase, while dropping the conditional dependen-
cies among target tokens. The evaluation was
however limited to reranking and to short phrase
pairs (up to 7 words on each side) only. Kaiser and
Bengio (2016) investigated neural GPU (Kaiser
and Sutskever, 2015), for machine translation.
They evaluated both non-autoregressive and au-
toregressive approaches, and found that the non-

autoregressive approach significantly lags behind
the autoregressive variants. It however differs
from our approach that each iteration does not out-
put a refined version from the previous iteration.
The recent paper by Gu et al. (2017) is most rel-
evant to the proposed work. They similarly intro-
duced a sequence of discrete latent variables. They
however use supervised learning for inference, us-
ing the word alignment tool (Dyer et al., 2013). To
achieve the best result, Gu et al. (2017) stochas-
tically sample the latent variables and rerank the
corresponding target sequences with an external,
autoregressive model. This is in contrast to the
proposed approach which is fully deterministic
during decoding and does not rely on any extra
reranking mechanism.

Parallel WaveNet Simultaneously with Gu
et al. (2017), Oord et al. (2017) presented a non-
autoregressive sequence model for speech genera-
tion. They use inverse autoregressive flow (IAF,
Kingma et al., 2016) to map a sequence of in-
dependent random variables to a target sequence.
They apply the IAF multiple times, similarly to
our iterative refinement strategy. Their approach is
however restricted to continuous target variables,
while the proposed approach in principle could be
applied to both discrete and continuous variables.

Post-Editing for Machine Translation Novak
et al. (2016) proposed a convolutional neural net-
work that iteratively predicts and applies token
substitutions given a translation from a phase-
based translation system. Unlike their system, our
approach can edit an intermediate translation with
a higher degree of freedom. QuickEdit (Grang-
ier and Auli, 2017) and deliberation network (Xia
et al., 2017) incorporate the idea of refinement into
neural machine translation. Both systems consist
of two autoregressive decoders. The second de-
coder takes into account the translation generated
by the first decoder. We extend these earlier ef-
forts by incorporating more than one refinement
steps without necessitating extra annotations.

Infusion Training Bordes et al. (2017) pro-
posed an unconditional generative model for im-
ages based on iterative refinement. At each step
l of iterative refinement, the model is trained to
maximize the log-likelihood of target Y given the
weighted mixture of generated samples from the
previous iteration ˆ

Y

l�1 and a corrupted target ˜

Y .
That is, the corrupted version of target is “infused”
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(a) (b)

Figure 1: (a) BLEU scores on
WMT’14 En-De w.r.t. the num-
ber of refinement steps (up to
10

2). The x-axis is in the loga-
rithmic scale. (b) the decoding
latencies (sec/sentence) of dif-
ferent approaches on IWSLT’16
En!De. The y-axis is in the
logarithmic scale.
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Figure 2: We compose three transformer blocks (“En-
coder”, “Decoder 1” and “Decoder 2”) to implement
the proposed non-autoregressive sequence model.

into generated samples during training. In the do-
main of text, however, computing a weighted mix-
ture of two sequences of discrete tokens is not well
defined, and we propose to stochastically mix de-
noising and lowerbound maximization objectives.

5 Network Architecture

We use three transformer-based network blocks
to implement our model. The first block
(“Encoder”) encodes the input X , the second
block (“Decoder 1”) models the first conditional
log p(Y

0|X), and the final block (“Decoder 2”)
is shared across iterative refinement steps, model-
ing log p(Y

l| ˆY l�1
, X). These blocks are depicted

side-by-side in Fig. 2. The encoder is identical to
that from the original Transformer (Vaswani et al.,
2017). We however use the decoders from Gu
et al. (2017) with additional positional attention
and use the highway layer (Srivastava et al., 2015)
instead of the residual layer (He et al., 2016).

The original input X is padded or shortned to fit
the length of the reference target sequence before
being fed to Decoder 1. At each refinement step
l, Decoder 2 takes as input the predicted target se-
quence ˆ

Y

l�1 and the sequence of final activation
vectors from the previous step.

6 Experimental Setting

We evaluate the proposed approach on two se-
quence modeling tasks: machine translation and
image caption generation. We compare the pro-
posed non-autoregressive model against the au-
toregressive counterpart both in terms of genera-
tion quality, measured in terms of BLEU (Papineni
et al., 2002), and generation efficiency, measured
in terms of (source) tokens and images per second
for translation and image captioning, respectively.

Machine Translation We choose three tasks of
different sizes: IWSLT’16 En$De (196k pairs),
WMT’16 En$Ro (610k pairs) and WMT’14
En$De (4.5M pairs). We tokenize each sentence
using a script from Moses (Koehn et al., 2007)
and segment each word into subword units us-
ing BPE (Sennrich et al., 2016). We use 40k
tokens from both source and target for all the
tasks. For WMT’14 En-De, we use newstest-2013
and newstest-2014 as development and test sets.
For WMT’16 En-Ro, we use newsdev-2016 and
newstest-2016 as development and test sets. For
IWSLT’16 En-De, we use test2013 for validation.

We closely follow the setting by Gu et al.
(2017). In the case of IWSLT’16 En-De, we
use the small model (dmodel = 278, dhidden =

507, pdropout = 0.1, nlayer = 5 and nhead =

2).2 For WMT’14 En-De and WMT’16 En-Ro,
we use the base transformer by Vaswani et al.
(2017) (dmodel = 512, dhidden = 512, pdropout =

0.1, nlayer = 6 and nhead = 8). We use the
warm-up learning rate scheduling (Vaswani et al.,
2017) for the WMT tasks, while using linear an-
nealing (from 3 ⇥ 10

�4 to 10

�5) for the IWSLT
task. We do not use label smoothing nor aver-
age multiple check-pointed models. These deci-
sions were made based on the preliminary exper-
iments. We train each model either on a single

2 Due to the space constraint, we refer readers to (Vaswani
et al., 2017; Gu et al., 2017) for more details.
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IWSLT’16 En-De WMT’16 En-Ro WMT’14 En-De MS COCO
En! De! GPU CPU En! Ro! GPU CPU En! De! GPU CPU BLEU GPU CPU

A
R b = 1 28.64 34.11 70.3 32.2 31.93 31.55 55.6 15.7 23.77 28.15 54.0 15.8 23.47 4.3 2.1

b = 4 28.98 34.81 63.8 14.6 32.40 32.06 43.3 7.3 24.57 28.47 44.9 7.0 24.78 3.6 1.0

N
AT

FT 26.52 – – – 27.29 29.06 – – 17.69 21.47 – – – – –
FT+NPD 28.16 – – – 29.79 31.44 – – 19.17 23.30 – – – – –

O
ur

M
od

el

idec = 1 22.20 27.68 573.0 213.2 24.45 25.73 694.2 98.6 13.91 16.77 511.4 83.3 20.12 17.1 8.9
idec = 2 24.82 30.23 423.8 110.9 27.10 28.15 332.7 62.8 16.95 20.39 393.6 49.6 20.88 12.0 5.7
idec = 5 26.58 31.85 189.7 52.8 28.86 29.72 194.4 29.0 20.26 23.86 139.7 23.1 21.12 6.2 2.8
idec = 10 27.11 32.31 98.8 24.1 29.32 30.19 93.1 14.8 21.61 25.48 90.4 12.3 21.24 2.0 1.2

Adaptive 27.01 32.43 125.9 29.3 29.66 30.30 118.3 16.5 21.54 25.43 107.2 20.3 21.12 10.8 4.8

Table 1: Generation quality (BLEU") and decoding efficiency (tokens/sec" for translation, images/sec" for image
captioning). Decoding efficiency is measured sentence-by-sentence. AR: autoregressive models. b: beam width.
idec: the number of refinement steps taken during decoding. Adaptive: the adaptive number of refinement steps.
NAT: non-autoregressive transformer models (Gu et al., 2017). FT: fertility. NPD reranking using 100 samples.

P40 (WMT’14 En-De and WMT’16 En-Ro) or on
a single P100 (IWSLT’16 En-De) with each mini-
batch consisting of approximately 2k tokens. We
use four P100’s to train non-autoregressive models
on WMT’14 En-De.

Image Caption Generation: MS COCO We
use MS COCO (Lin et al., 2014). We use the
publicly available splits (Karpathy and Li, 2015),
consisting of 113,287 training images, 5k valida-
tion images and 5k test images. We extract 49
512-dimensional feature vectors for each image,
using a ResNet-18 (He et al., 2016) pretrained on
ImageNet (Deng et al., 2009). The average of
these vectors is copied as many times to match
the length of the target sentence (reference dur-
ing training and predicted during evaluation) to
form the initial input to Decoder 1. We use the
base transformer (Vaswani et al., 2017) except that
nlayer is set to 4. We train each model on a single
1080ti with each minibatch consisting of approxi-
mately 1,024 tokens.

Target Length Prediction We formulate the tar-
get length prediction as classification, predict-
ing the difference between the target and source
lengths for translation and the target length for im-
age captioning. All the hidden vectors from the
nlayer layers of the encoder are summed and fed to
a softmax classifier after affine transformation. We
however do not tune the encoder’s parameters for
target length prediction. We use this length predic-
tor only during test time. We find it important to
accurately predict the target length for good over-
all performance. See Appendix A for an analysis
on our length prediction model.

Training and Inference We use Adam (Kingma
and Ba, 2014) and use L = 3 in Eq. (1) dur-
ing training (itrain = 4 from hereon.) We use
pDAE = 0.5. We use the deterministic strat-
egy for IWSLT’16 En-De, WMT’16 En-Ro and
MS COCO, while the stochastic strategy is used
for WMT’14 En-De. These decisions were made
based on the validation set performance. After
both the non-autogressive sequence model and tar-
get length predictor are trained, we decode by first
predicting the target length and then running itera-
tive refinement steps until the outputs of consecu-
tive iterations are the same (or Jaccard distance be-
tween consecutive decoded sequences is 1). To as-
sess the effectiveness of this adaptive scheme, we
also test a fixed number of steps (idec). In machine
translation, we remove any repetition by collaps-
ing multiple consecutive occurrences of a token.

7 Results and Analysis

We make some important observations in Table 1.
First, the generation quality improves across all
the tasks as we run more refinement steps idec even
beyond that used in training (itrain = 4), which
supports our interpretation as a conditional denois-
ing autoencoder in Sec. 3.2. To further verify this,
we run decoding on WMT’14 (both directions) up
to 100 iterations. As shown in Fig. 1 (a), the qual-
ity improves well beyond the number of refine-
ment steps used during training.

Second, the generation efficiency decreases as
more refinements are made. We plot the average
seconds per sentence in Fig. 1 (b), measured on
GPU while sequentially decoding one sentence at
a time. As expected, decoding from the autore-
gressive model linearly slows down as the sen-
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En!De De!En
itrain pDAE distill rep no rep rep no rep

A
R b = 1 28.64 34.11

b = 4 28.98 34.81

O
ur

M
od

el
s 1 0 14.62 18.03 16.70 21.18

2 0 17.42 21.08 19.84 24.25
4 0 19.22 22.65 22.15 25.24
4 1 19.83 22.29 24.00 26.57
4 0.5 20.91 23.65 24.05 28.18
4 0.5

p
26.17 27.11 31.92 32.59

Table 2: Ablation study on the dev set of IWSLT’16.

tence length grows, while decoding from the non-
autoregressive model with a fixed number of iter-
ations has the constant complexity. However, the
generation efficiency of non-autoregressive model
decreases as more refinements are made. To make
a smooth trade-off between the quality and speed,
the adaptive decoding scheme allows us to achieve
near-best generation quality with a significantly
lower computational overhead. Moreover, the
adaptive decoding scheme automatically increases
the number of refinement steps as the sentence
length increases, suggesting that this scheme cap-
tures the amount of information in the input well.
The increase in latency is however less severe than
that of the autoregressive model.

We also observe that the speedup in decoding
is much clearer on GPU than on CPU. This is a
consequence of highly parallel computation of the
proposed non-autoregressive model, which is bet-
ter suited to GPUs, showcasing the potential of
using the non-autoregressive model with a spe-
cialized hardware for parallel computation, such
as Google’s TPUs (Jouppi et al., 2017). The re-
sults of our model decoded with adaptive decod-
ing scheme are comparable to the results from (Gu
et al., 2017), without relying on any external tool.
On WMT’14 En-De, the proposed model outper-
forms the best model from (Gu et al., 2017) by two
points.

Lastly, it is encouraging to observe that the pro-
posed non-autoregressive model works well on
image caption generation. This result confirms the
generality of our approach beyond machine trans-
lation, unlike that by Gu et al. (2017) which was
for machine translation or by Oord et al. (2017)
which was for speech synthesis.

Ablation Study We use IWSLT’16 En-De to in-
vestigate the impact of different number of refine-
ment steps during training (denoted as itrain) as
well as probability of using denoising autoencoder
objective during training (denoted as pDAE). The

stochastic distill IWSLT’16 (En!) WMT’14 (En!)

23.65 7.56p
22.80 16.56

p
27.11 18.91p p
25.39 21.22

Table 3: Deterministic and stochastic approximation

results are presented in Table 2.
First, we observe that it is beneficial to use mul-

tiple iterations of refinement during training. By
using four iterations (one step of decoder 1, fol-
lowed by three steps of decoder 2), the BLEU
score improved by approximately 1.5 points in
both directions. We also notice that it is neces-
sary to use the proposed hybrid learning strategy to
maximize the improvement from more iterations
during training (itrain = 4 vs. itrain = 4, pDAE =

1.0 vs. itrain = 4, pDAE = 0.5.) Knowledge distil-
lation was crucial to close the gap between the pro-
posed deterministic non-autoregressive sequence
model and its autoregressive counterpart, echoing
the observations by Gu et al. (2017) and Oord et al.
(2017). Finally, we see that removing repeating
consecutive symbols improves the quality of the
best trained models (itrain = 4, pDAE = 0.5) by ap-
proximately +1 BLEU. This suggests that the pro-
posed iterative refinement is not enough to remove
repetitions on its own. Further investigation is nec-
essary to properly tackle this issue, which we leave
as a future work.

We then compare the deterministic and
stochastic approximation strategies on IWSLT’16
En!De and WMT’14 En!De. According to
the results in Table 3, the stochastic strategy is
crucial with a large corpus (WMT’14), while the
deterministic strategy works as well or better with
a small corpus (IWSLT’16). Both of the strategies
benefit from knowledge distillation, but the gap
between the two strategies when the dataset is
large is much more apparent without knowledge
distillation.

7.1 Qualitative Analysis

Machine Translation In Table 4, we present
three sample translations and their iterative refine-
ment steps from the development set of IWSLT’16
(De!En). As expected, the sequence generated
from the first iteration is a rough version of trans-
lation and is iteratively refined over multiple steps.
By inspecting the underlined sub-sequences, we
see that each iteration does not monotonically
improve the translation, but overall modifies the
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Src seitdem habe ich sieben Häuser in der Nachbarschaft mit den Lichtern versorgt und sie funktionierenen wirklich gut .
Iter 1 and I ’ve been seven homes since in neighborhood with the lights and they ’re really functional .
Iter 2 and I ’ve been seven homes in the neighborhood with the lights , and they ’re a really functional .
Iter 4 and I ’ve been seven homes in neighborhood with the lights , and they ’re a really functional .
Iter 8 and I ’ve been providing seven homes in the neighborhood with the lights and they ’re a really functional .
Iter 20 and I ’ve been providing seven homes in the neighborhood with the lights , and they ’re a very good functional .
Ref since now , I ’ve set up seven homes around my community , and they ’re really working .

Src er sah sehr glücklich aus , was damals ziemlich ungewöhnlich war , da ihn die Nachrichten meistens deprimierten .
Iter 1 he looked very happy , which was pretty unusual the , because the news was were usually depressing .
Iter 2 he looked very happy , which was pretty unusual at the , because the news was s depressing .
Iter 4 he looked very happy , which was pretty unusual at the , because news was mostly depressing .
Iter 8 he looked very happy , which was pretty unusual at the time because the news was mostly depressing .
Iter 20 he looked very happy , which was pretty unusual at the time , because the news was mostly depressing .
Ref there was a big smile on his face which was unusual then , because the news mostly depressed him .

Src furchtlos zu sein heißt für mich , heute ehrlich zu sein .
Iter 1 to be , for me , to be honest today .
Iter 2 to be fearless , me , is to be honest today .
Iter 4 to be fearless for me , is to be honest today .
Iter 8 to be fearless for me , me to be honest today .
Iter 20 to be fearless for me , is to be honest today .
Ref so today , for me , being fearless means being honest .

Table 4: Three sample De!En translations from
the non-autoregressive sequence model. Source sen-
tences are from the dev set of IWSLT’16. The first
iteration corresponds to Decoder 1, and from thereon,
Decoder 2 is repeatedly applied. Sub-sequences with
changes across the refinement steps are underlined.

translation towards the reference sentence. Miss-
ing words are added, while unnecessary words
are dropped. For instance, see the second exam-
ple. The second iteration removes the unnecessary
“were”, and the fourth iteration inserts a new word
“mostly”. The phrase “at the time” is gradually
added one word at a time.

Image Caption Generation Table 5 shows two
examples of image caption generation. We ob-
serve that each iteration captures more and more
details of the input image. In the first example
(left), the bus was described only as a “yellow bus”
in the first iteration, but the subsequent iterations
refine it into “yellow and black bus”. Similarly,
“road” is refined into “lot”. We notice this behav-
ior in the second example (right) as well. The first
iteration does not specify the place in which “a
woman” is “standing on”, which is fixed immedi-
ately in the second iteration: “standing on a tennis
court”. In the final and fourth iteration, the pro-
posed model captures the fact that the “woman” is
“holding” a racquet.

8 Conclusion

Following on the exciting, recent success of non-
autoregressive neural sequence modeling by Gu
et al. (2017) and Oord et al. (2017), we proposed a
deterministic non-autoregressive neural sequence
model based on the idea of iterative refinement.
We designed a learning algorithm specialized to
the proposed approach by interpreting the entire

model as a latent variable model and each refine-
ment step as denoising.

We implemented our approach using the Trans-
former and evaluated it on two tasks: machine
translation and image caption generation. On both
tasks, we were able to show that the proposed non-
autoregressive model performs closely to the au-
toregressive counterpart with significant speedup
in decoding. Qualitative analysis revealed that
the iterative refinement indeed refines a target se-
quence gradually over multiple steps.

Despite these promising results, we observed
that proposed non-autoregressive neural sequence
model is outperformed by its autoregressive coun-
terpart in terms of the generation quality. The
following directions should be pursued in the fu-
ture to narrow this gap. First, we should inves-
tigate better approximation to the marginal log-
probability. Second, the impact of the corruption
process on the generation quality must be stud-
ied. Lastly, further work on sequence-to-sequence
model architectures could yield better results in
non-autoregressive sequence modeling.
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Generated Caption

Iter 1 a yellow bus parked on parked in of parking road .
Iter 2 a yellow and black on parked in a parking lot .
Iter 3 a yellow and black bus parked in a parking lot .
Iter 4 a yellow and black bus parked in a parking lot .

Reference Captions

a tour bus is parked on the curb waiting
city bus parked on side of hotel in the rain .
bus parked under an awning next to brick sidewalk
a bus is parked on the curb in front of a building .
a double decked bus sits parked under an awning

Generated Caption

Iter 1 a woman standing on playing tennis on a tennis racquet .
Iter 2 a woman standing on a tennis court a tennis racquet .
Iter 3 a woman standing on a tennis court a a racquet .
Iter 4 a woman standing on a tennis court holding a racquet .

Reference Captions

a female tennis player in a black top playing tennis
a woman standing on a tennis court holding a racquet .
a female tennis player preparing to serve the ball .
a woman is holding a tennis racket on a court
a woman getting ready to reach for a tennis ball on the ground

Table 5: Two sample image captions from the proposed non-autoregressive sequence model. The images are
from the development set of MS COCO. The first iteration is from decoder 1, while the subsequent ones are from
decoder 2. Subsequences with changes across the refinement steps are underlined.
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