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Abstract
There is growing interest in the language de-
veloped by agents interacting in emergent-
communication settings. Earlier studies have
focused on the agents’ symbol usage, rather
than on their representation of visual input. In
this paper, we consider the referential games
of Lazaridou et al. (2017), and investigate the
representations the agents develop during their
evolving interaction. We find that the agents
establish successful communication by induc-
ing visual representations that almost perfectly
align with each other, but, surprisingly, do not
capture the conceptual properties of the ob-
jects depicted in the input images. We con-
clude that, if we are interested in develop-
ing language-like communication systems, we
must pay more attention to the visual seman-
tics agents associate to the symbols they use.

1 Introduction

There has recently been a revival of interests in
language emergence simulations involving agents
interacting in visually-grounded games. Unlike
earlier work (e.g., Briscoe, 2002; Cangelosi and
Parisi, 2002; Steels, 2012), many recent simula-
tions consider realistic visual input, for example,
by playing referential games with real-life pictures
(e.g., Jorge et al., 2016; Lazaridou et al., 2017;
Havrylov and Titov, 2017; Lee et al., 2018; Ev-
timova et al., 2018). This setup allows us to ad-
dress the exciting issue of whether the needs of
goal-directed communication will lead agents to
associate visually-grounded conceptual represen-
tations to discrete symbols, developing natural-
language-like word meanings. However, while
most studies present some analysis of the agents’
symbol usage, they pay little or no attention to the
representation of the visual input that the agents
develop as part of their evolving interaction.

We study here agent representations following
the model and setup of Lazaridou et al. (2017).

This is an ideal starting point, since it involves an
extremely simple signaling game (Lewis, 1969),
that is however played with naturalistic images,
thus allowing us to focus on the question of how
the agents represent these images, and whether
such representations meet our expectations for
natural word meanings. In their first game, Lazari-
dou’s Sender and Receiver are exposed to the
same pair of images, one of them being randomly
marked as the “target”. The Sender always sees
the target in the left position, and it must pick
one discrete symbol from a fixed vocabulary to
send to the Receiver. The Receiver sees the im-
ages in random order, together with the sent sym-
bol, and it tries to guess which image is the tar-
get. In case of success, both players get a pay-
off of 1. Since an analysis of vocabulary usage
brings inconclusive evidence that the agents are
using the symbols to represent natural concepts
(such as beaver or bayonet), Lazaridou and col-
leagues next modify the game, by presenting to
the Sender and the Receiver different images for
each of the two concepts (e.g., the Sender must
now signal that the target is a beaver, while see-
ing a different beaver from the one shown to the
Receiver). This setup should encourage concept-
level thinking, since the two agents should not
be able to communicate about low-level percep-
tual characteristics of images they do not share.
Lazaridou and colleagues present preliminary evi-
dence suggesting that, indeed, agents are now de-
veloping conceptual symbol meanings. We repli-
cate Lazaridou’s games, and we find that, in both,
the agents develop successfully aligned represen-
tations that, however, are not capturing conceptual
properties at all. In what is perhaps our most strik-
ing result, agents trained in either version of the
game succeed at communicating about pseudo-
images generated from random noise (Fig. 2). We
conclude that, if we want interactive agents to
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develop a vocabulary of words denoting natural
meanings, more attention must be paid to the way
in which they are representing their perceptual in-
put.

2 Experimental setup

Architecture We re-implement Lazaridou’s
Sender and Receiver architectures (using their
better-behaved “informed” Sender). Both agents
are feed-forward networks. The Sender takes
image representations as input, it projects them
into its own representational space, compares
them, and finally outputs a probability distribution
over vocabulary symbols, from which a single
discrete symbol is then sampled. We report here
results obtained with an output vocabulary of 100
symbols, but the same patterns were observed
using a range of sizes from 2 to 1, 000. The
Receiver takes as input the target and distractor
input image representations in random order, as
well as the symbol produced by the sender (as a
vocabulary-sized one-hot vector). It embeds the
images and the symbol into its own representa-
tional space, where it performs a symbol-to-image
comparison, producing a probability distribution
over the two images, one of which is selected by
sampling from this distribution. If the Receiver
selected the target image, a reward of 1 is assigned
to both agents. The whole architecture is jointly
trained by letting the agents play, and updating
their parameters with Reinforce (Williams, 1992).
See Lazaridou et al. (2017) for details.

Data Following Lazaridou et al. (2017), for each
of the 463 concepts they used, we randomly sam-
ple 100 images from ImageNet (Deng et al., 2009).
We construct 50, 000 mini-batches of 32 image
pairs during training and 1, 024 pairs for valida-
tion. We construct a held-out test set in the same
way by sampling 10 images per concept from Ima-
geNet (for 2 concepts, we were not able to assem-
ble enough further images), for a total of 4, 610.
We compute RSA scores (see below) on the cross-
product of these images. We also use the held-
out set to construct mini-batches of images pairs
to compute test performance. Following Lazari-
dou, the images are passed through a pre-trained
VGG ConvNet (Simonyan and Zisserman, 2015).
The input vector fed to the agents is the second-to-
last 4096-D fully connected layer1.

1We found very similar results with the top 1000-D soft-
max layer.

Games We re-implement both Lazaridou’s
same-image game, where Sender and Receiver
are shown the same two images (always of differ-
ent concepts), and their different-image game,
where the Receiver sees different images than
the Sender’s. We repeat all experiments using
100 random initialization seeds. As we faithfully
reproduced the setup of Lazaridou et al. (2017),
we refer the reader there for hyper-parameters and
training details.

3 Experiments

We first asked in which way playing the game af-
fects the way agents “see” the input data, that is,
in which way their image embeddings differ from
the input image representations, and from each
other. Concerning Sender and Receiver, a reason-
able expectation is that successful communication
implies a convergence of representations. How
should these representations relate to the input?
Recall that input representations are from one of
the top layers of a state-of-the-art ConvNet trained
on ImageNet concept categorization, and the top
layers of such networks are known to capture high-
level concept semantics (Zeiler and Fergus, 2014).
The game image pairs are always sampled from
different concepts. So, it would make sense for the
agents to simply learn to carry through the simi-
larity structure of the input space, in order to com-
municate about distinct concepts. Consequently,
we predicted that, as training proceeds, Sender
and Receiver representations will become closer
to each other, and to the input ones.

In order to compare the similarity structure of
input, Sender and Receiver spaces, we borrow
representational similarity analysis (RSA) from
computational neuroscience (Kriegeskorte et al.,
2008). Given two sets r1 and r2 of representa-
tions of the same item collection (e.g., r1 is the
collection of input images mapped in Sender em-
bedding space and r2 is the same collection rep-
resented by Receiver), we first compute s1 as all
possible pairwise (cosine) similarities between the
representations in r1, and s2 as those in r2. We
then compute the (Spearman) correlation between
the similarity vectors s1 and s2. This latter value,
which we will call RSA score, measures the global
agreement between s1 and s2, relative to the cho-
sen input collection. If N is the number of items
in the collection that we compute representations
for, both similarity vectors s1 and s2 are of length
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Figure 1: RSA scores of the two agents (ρS/R), and
of each agent with the input (ρS/I and ρR/I ), dur-
ing the first 10, 000 training games. S refers to
Sender, R to Receiver, I to input. Values remain
stable until end of training. Best viewed in color.

N(N − 1). Therefore, it is not necessary for rep-
resentations r1 and r2 to belong to the same space
(for example, in our case, input and agent vectors
have different dimensionality).

Figure 1 shows RSA and mean validation re-
ward (MVR) development curves for the cross-
validated best seed in the same-image game. At
the beginning of training, the RSA scores are non-
zeros, which is expected as the two agents archi-
tectures are similar and randomly initialized the
same way. They are also somewhat correlated
with the input, which we attribute to the fact that
untrained neural networks can already extract rel-
evant image features (Jarrett et al., 2009). As
training converges, Sender and Receiver similar-
ity spaces also converge. However, contrary to
our prediction, the agent similarity spaces are not
strongly correlated with the input visual space. We
note that, during the first few hundred games, the
Sender (green curve) aligns with the input, but
the Receiver (blue curve) does not. Therefore,
it seems that, in order to establish communica-
tion, the two agents have to drift from the input.
Indeed, when communication is successfully es-
tablished at the end of training,2 the two agents
have a RSA score of ρS/R = 0.98. However ei-
ther agent’s score with the input is a much lower
ρS/I = ρR/I = 0.33.3 On the contrary, when the
agents fail to establish communication, by the end
of training their RSA score is just ρS/R = 0.39,
but they stay closer to the input (ρS/I = 0.58 and

2We consider training successful if MVR ≥ 80%.
3Values averaged over the 96 successful seeds.

ρR/I = 0.42).4

The drift of the agents from input similarity
could be attributed to the characteristics of the
game they are playing. Since they are only asked
to distinguish between pictures of different con-
cepts, they have no incentive to keep different
instances of a concept distinct (if the agents are
never asked to distinguish one dog from another,
they might eventually become unable to tell dogs
apart). That is, we might be assisting to the in-
ception of a form of categorical perception (Gold-
stone and Hendrickson, 2010), whereby the agents
lose sensitivity to within-category differences. If
this is the case, we should observe that same-
concept image similarity is higher in Sender (or
Receiver) space with respect to input space. How-
ever, this turns out not to be the case. To the con-
trary, average pairwise same-concept similarity is
consistently lower in Sender space than in the in-
put (mean z-normalized same-concept similarity
in input space is at 1.94 vs. 0.57 in Sender space,
averaged across successful seeds). A similar effect
is observed by looking at higher-class (mammal,
furniture, etc.) similarities: images from the same
classes become less similar in Sender space (0.61
z-normalized within-class input similarity vs. 0.30
in Sender space). This suggests that the agents
are becoming less proficient at capturing the sim-
ilarity among instances of the same concept or of
the same class. The same conclusion is qualita-
tively supported by the pairs of images that un-
derwent the largest shift between input and Sender
space. For example, for two test images of avoca-
dos which have an input similarity of 0.82 (and are
reasonably similar to the human eye), the Sender
similarity is at the low value of −0.27 (Receiver
similarity is −0.59). Contrarily, for an image of a
cabin in a field and an image of a telephone that
have an intuitively correct very low input similar-
ity of 0.02, the Sender similarity for these images
is 0.94 (Receiver similarity is 0.95).

Lazaridou et al. (2017) designed their second
game to encourage more general, concept-like ref-
erents. Unfortunately, we replicate the anomalies
above in the different-image setup, although to a
less marked extent. When successful communica-
tion is established at the end of training, the agents
have ρS/R = 0.90. But again, the agents’ repre-
sentation do not align with the input space: their
scores with the input are at lower values of ρS/I =

4Values averaged over the 4 failing seeds.



984

Test

Tr
ai

n

Same im. Diff. im. Noise
Same im. 100 72 95
Diff. im. 98 83 87

Table 1: Percentage average rewards on the same-
image, different-image and noise test sets for
agents trained in the same- and different-image
games (chance level at 50%). For each game,
values are averaged on 10 test runs consisting of
1, 000 games of mini-batches of 32 image pairs,
using the cross-validated best seed.

0.40 and ρR/I = 0.37.5 In case of communication
failure, by the end of training their RSA score is
at the lower value of ρS/R = 0.74, and their val-
ues with respect to the input are ρS/I = 0.36 and
ρR/I = 0.34.6 Again, same-concept images drift
apart in agent space, although now to a lesser ex-
tent (1.94 z-normalized mean similarity in input
space vs. 1.07 in Sender space). More encourag-
ingly, we don’t find the same pattern for within-
class mean similarities (0.61 input space vs. 0.75
Sender space).

We must conjecture that the agents are compar-
ing low-level properties of the image pairs, inde-
pendently of the game they play. As an extreme
way to test this, we look at how agents trained to
play the two games behave when tested with in-
put pairs that are just random noise vectors drawn
from a standard Normal distribution.7 If the agents
are indeed indifferent to the objects represented by
images, the radical shift in the nature of the input
to the game should not affect them much.

Results are shown in Table 1. We confirm that
the same-image game is the easiest, and we ob-
serve that agents trained in one game perform rea-
sonably well on the other. More importantly, no
matter which game they are trained on, the agents
perform very well on noise input! This confirms
our hypothesis that the Sender and Receiver are
able to communicate about input data that contain
no conceptual content at all, which in turn suggests
that they haven’t extracted any concept-level in-
formation (e.g., features that would allow them to
recognize instances of the dog or chair category)
during training. To get a sense of the sort of noise
pairs agents succeed to communicate about, Fig-

5Values averaged over the 19 successful seeds.
6Values averaged over the 81 failing seeds.
7As during training inputs are divided by their norm, we

also normalize each noise vector, so multiple noise variances
would have no effect.

Figure 2: Noise vectors agents trained on the same-
image game successfully communicate about.

ure 2 provides an example.
Finally, we draw 1, 000 noise pairs (z1, z2), and

present each to the Sender with either z1 or z2 as
target. We then compare, pair by pair, whether
the highest probability symbol changes when the
target is swapped. We average across 10 random
runs using the best cross-validated seed. In both
versions of the game, for more than 99% of the
pairs, the symbol with highest probability changes
when the target is swapped. This suggests that the
agents perform a relative comparison of the two
inputs, rather than an absolute one, in line with
the general conclusion that they are not using the
vocabulary to denote stable conceptual properties
of the objects depicted in the images.

4 Discussion

Existing literature in game theory already showed
that convergence towards successful communi-
cation is ensured under specific conditions (see
Skyrms (2010) and references therein). How-
ever, the important contribution of Lazaridou et al.
(2017) is to play a signaling game with real-life
images instead of artificial symbols. This raises
new empirical questions that are not answered by
the general mathematical results, such as: When
the agents do succeed at communicating, what are
the input features they rely upon? Do the internal
representations they develop relate to the concep-
tual properties of the input? Our study suggests
that the agents’ representations are not capturing
general conceptual properties of different objects,
but they are rather specifically tuned to success-
fully distinguish images based on inscrutable low-
level relational properties.

Interestingly, our conclusions can be aligned
with findings in psycholinguistic experimental lit-
erature on dialogue. In order to achieve communi-
cation, the agents develop a form of ‘’conceptual
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pact” (Brennan and Clark, 1996): Their internal
representations align while at the same time drift-
ing away from human-level properties of the input.
The agents agree on a shared use of the vocabu-
lary, that does not correspond to concepts in the
input data.

In future work, we would like to encourage the
development of more natural word meanings by
enforcing the agent representations to stay more
faithful to the perceptual input they receive. Mov-
ing ahead, it is fundamental to design setups where
agents would have stronger reasons to develop
human-like communication strategies.
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