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Abstract

Existing neural semantic parsers mainly utilize
a sequence encoder, i.e., a sequential LSTM,
to extract word order features while neglect-
ing other valuable syntactic information such
as dependency or constituent trees. In this
paper, we first propose to use the syntactic
graph to represent three types of syntactic in-
formation, i.e., word order, dependency and
constituency features; then employ a graph-to-
sequence model to encode the syntactic graph
and decode a logical form. Experimental re-
sults on benchmark datasets show that our
model is comparable to the state-of-the-art on
Jobs640, ATIS, and Geo880. Experimental re-
sults on adversarial examples demonstrate the
robustness of the model is also improved by
encoding more syntactic information.

1 Introduction

The task of semantic parsing is to translate text to
its formal meaning representations, such as logical
forms or structured queries. Recent neural seman-
tic parsers approach this problem by learning soft
alignments between natural language and logical
forms from (text, logic) pairs (Jia and Liang, 2016;
Dong and Lapata, 2016; Krishnamurthy et al.,
2017). All these parsers follow the conventional
encoder-decoder architecture that first encodes the
text into a distributional representation and then
decodes it to a logical form. These parsers may
differ in the choice of the decoders, such as se-
quence or tree decoders, but they utilize the same
encoder which is essentially a sequential Long
Short-Term Memory network (SeqLSTM). This
encoder only extracts word order features while
neglecting useful syntactic information, such as
dependency parse and constituency parse.

However, the syntactic features capture im-
portant structural information of the natural lan-

∗ Work done when the author was at IBM Research.

guage input, which complements the simple word
sequence. For example, a dependency graph
presents grammatical relations that hold among
the words; and a constituent tree provides a phrase
structure representation. Intuitively, by incorpo-
rating such additional information, the encoder
could produce a more meaningful and robust sen-
tence representation. The combination of these
features (i.e., sequence + trees) forms a general
graph structure (see Figure 1). This inspires us
to apply a graph encoder to produce a represen-
tation of a graph-structured input. The graph en-
coder also has the advantages that it could simulta-
neously encode all types of syntactic contexts, and
incorporate multiple types of syntactic structures
in a unified way.

In this paper, we first introduce a structure,
namely syntactic graph, to represent three types
of syntactic information, i.e., word order, depen-
dency and constituency features (see §2). We then
employ a novel graph-to-sequence (Graph2Seq)
model (Xu et al., 2018), which consists of a graph
encoder and a sequence decoder, to learn the rep-
resentation of the syntactic graph (see §3). Specif-
ically, the graph encoder learns the representation
of each node by aggregating information from its
K-hop neighbors. Given the learned node em-
beddings, the graph encoder uses a pooling-based
method to generate the graph embedding. On the
decoder side, a Recurrent Neural Network (RNN)
decoder takes the graph embedding as its initial
hidden state to generate the logical form while
employing an attention mechanism over the node
embeddings. Experimental results show that our
model achieves the competitive performance on
Jobs640, ATIS, and Geo880 datasets.

Different from existing works, we also inves-
tigate the robustness of our model by evaluating
the model on two types of adversarial examples
(Belinkov and Bisk, 2017; Cheng et al., 2018).
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Figure 1: The syntactic graph for the Jobs640 question what are the jobs for programmer that has salary 50000 that uses c++
and not related with AI. Due to the space limitation, the constituent tree is partially shown here.

Experimental results show that the model cou-
pling all syntactic features has the best robustness,
achieving the best performance. Our code and
data is available at https://github.com/IBM/

Text-to-LogicForm.

2 Syntactic Graph

We represent three types of syntactic features, i.e.,
word order, dependency parse and constituency
parse, as the syntactic graph (see Figure 1).
•Word Order Features. Previous neural seman-
tic parsers mainly use these features by building a
SeqLSTM that works on the word sequence. Our
syntactic graph also incorporates this information
by generating a node for each word and connect-
ing them in the chain form. In order to capture the
forward and backward contextual information, we
link these nodes in two directions, that is, from left
to right and from right to left.
• Dependency Features. A dependency parse de-
scribes the grammatical relations that hold among
words. Reddy et al. (2016, 2017) have demon-
strated that the dependency parse tree could be
directly transformed to a logical form, which in-
dicates that the dependency information (i.e., tree
structure and dependency labels) is critical to the
semantic parsing task. We incorporate this infor-
mation into the syntactic graph by adding directed
edges between the word nodes and assign them
with dependency labels.
• Constituency Features. Similar to the depen-
dency parse, the constituency parse represents the
phrase structure, which is also important to the se-
mantic parsing task. Take Figure 1 as an example:
given the constituent tree that explicitly annotates
“not related with AI” (node #1) is a proposition
phrase, the model could learn a meaningful em-
bedding for this phrase by encoding this structure
into the model. Motivated by this observation, we

add the non-terminal nodes of the constituent tree
and the edges describing their parent-child rela-
tionships into the syntactic graph.

3 Graph-to-sequence Model for
Semantic Parsing

After building the syntactic graph for the input
text, we employ a novel graph-to-sequence model
(Xu et al., 2018), which includes a graph encoder
and a sequence decoder with attention mechanism,
to map the syntactic graph to the logical form.
Conceptually, the graph encoder generates node
embeddings for each node by accumulating infor-
mation from its K-hop neighbors, and then pro-
duces a graph embedding for the entire graph by
abstracting all these node embeddings. Next, the
sequence decoder takes the graph embedding as
the initial hidden state, and calculates the atten-
tion over all node embeddings on the encoder side
to generate logical forms. Note that this graph
encoder does not explicitly encode the edge label
information, therefore, for each labeled edge, we
add a node whose text attribute is the edge’s label.

Node Embedding. Given the syntactic graph
G = (V, E), we take the embedding generation
process for node v ∈ V as an example to explain
the node embedding generation algorithm1:
(1) We first transform node v’s text attribute to a
feature vector, av, by looking up the embedding
matrix We;
(2) The neighbors of v are categorized into for-
ward neighbors N`(v) and backward neighbors
Na(v) according to the edge direction. In partic-
ular, N`(v) returns the nodes that v directs to and
Na(v) returns the nodes that direct to v;
(3) We aggregate the forward representations of
v’s forward neighbors {hk−1

u` , ∀u ∈ N`(v)} into
1Interested readers may refer to (Xu et al., 2018) for more

implementation details.

https://github.com/IBM/Text-to-LogicForm
https://github.com/IBM/Text-to-LogicForm
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a single vector, hk
N`(v), where k∈{1, ...,K} is the

iteration index. Specifically, this aggregator feeds
each neighbor’s vector to a fully-connected neural
network and applies an element-wise max-pooling
operation to capture different aspects of the neigh-
bor set. Notice that, at iteration k, this aggregator
only uses the representations generated at k − 1.
The initial forward representation of each node is
its feature vector calculated in step (1);
(4) We concatenate v’s current forward represen-
tation hk−1

v` with the newly generated neighbor-
hood vector hk

N`(v). The resulted vector is fed into
a fully connected layer with nonlinear activation
function σ, which updates the forward represen-
tation of v, hk

v`, to be used at the next iteration;
(5) We update the backward representation of v,
hk
va using the similar procedure as introduced in

step (3) and (4) except that operating on the back-
ward representations;
(6) We repeat steps (3)∼(5) K times, and the con-
catenation of the final forward and backward rep-
resentations is used as the final representation of
v. Since the neighbor information from different
hops may have different impacts on the node em-
bedding, we learn a distinct aggregator at each it-
eration.
Graph Embedding. We feed the obtained node
embeddings into a fully-connected neural net-
work, and apply the element-wise max-pooling
operation on all node embeddings. We did not
find substantial performance improvement using
mean-pooling.
Sequence Decoding. The decoder is an RNN
which predicts the next token yi given all the pre-
vious words y<i = y1, ..., yi−1, the RNN hidden
state si for time-step i and the context vector ci
that captures the attention of the encoder side. In
particular, the context vector ci depends on a set
of node representations (h1,...,hV ) to which the
encoder maps the input graph. The context vec-
tor ci is dynamically computed using an attention
mechanism over the node representations. The
whole model is jointly trained to maximize the
conditional log-probability of the correct descrip-
tion given a source graph. In the inference phase,
we use the beam search algorithm to generate a
description with beam size = 3.

4 Experiments

We evaluate our model on three datasets: Jobs640,
a set of 640 queries to a database of job listings;

Method Jobs Geo ATIS
Zettlemoyer and Collins (2007) 79.3 86.1 84.6
Kwiatkowski et al. (2011) - 88.6 82.8
Liang et al. (2011) 90.7 87.9 -
Kwiatkowski et al. (2013) - 89.0 -
Wang et al. (2014) - 90.4 91.3
Zhao and Huang (2015) 85.0 88.9 84.2
Jia and Liang (2016) - 85.0 76.3
Dong and Lapata (2016)-Seq2Seq 87.1 85.0 84.2
Dong and Lapata (2016)-Seq2Tree 90.0 87.1 84.6
Rabinovich et al. (2017) 92.9 85.7 85.3
Graph2Seq 91.2 88.1 85.9

w/o word order features 86.7 84.4 82.9
w/o dependency features 89.3 85.8 83.8
w/o constituency features 88.9 84.7 84.6
w/ ONLY word order features 88.0 84.8 83.1

BASELINE 88.1 84.9 83.0

Table 1: Exact-match accuracy on Jobs640, Geo880 and
ATIS.

Geo880, a set of 880 queries to a database of
U.S. geography; and ATIS, a set of 5,410 queries
to a flight booking system. We use the standard
train/development/test split as previous works, and
the logical form accuracy as our evaluation metric.

The model is trained using the Adam optimizer
(Kingma and Ba, 2014), with mini-batch size 30.
Our hyper-parameters are cross-validated on the
training set for Jobs640 and Geo880, and tuned on
the development set for ATIS. The learning rate is
set to 0.001. The decoder has 1 layer, and its hid-
den state size is 300. The dropout strategy (Sri-
vastava et al., 2014) with the ratio of 0.5 is ap-
plied at the decoder layer to avoid overfitting. We

is initialized using GloVe word vectors from Pen-
nington et al. (2014) and the dimension of word
embedding is 300. For the graph encoder, the hop
size K is set to 10, the non-linearity function σ
is implemented as ReLU (Glorot et al., 2011), the
parameters of the aggregators are randomly initial-
ized. We use the Stanford CoreNLP tool (Manning
et al., 2014) to generate the dependency and con-
stituent trees.

Results and Discussion. Table 1 summarizes
the results of our model and existing semantic
parsers on three datasets. Our model achieves
competitive performance on Jobs640, ATIS and
Geo880. Our work is the first to use both multiple
trees and the word sequence for semantic parsing,
and it outperforms the Seq2Seq model reported in
Dong and Lapata (2016), which only uses limited
syntactic information.
Comparison with Baseline. To better demon-
strate that our work is an effective way to uti-
lize both multiple trees and the word sequence
for semantic parsing, we compare with an addi-
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tional straightforward baseline method (referred as
BASELINE in Table 1). To deal with the graph
input, the BASELINE decomposes the graph em-
bedding to two steps and applies different types of
encoders sequentially: (1) a SeqLSTM to extract
word order features, which results in word embed-
dings, Wseq; (2) two TreeLSTMs (Tai et al., 2015)
to extract the dependency tree and constituency
features while taking Wseq as initial word embed-
dings. The resulted word embeddings and non-
terminal node embeddings (from TreeLSTMs) are
then fed into a sequence decoder.

We can see that our model significantly outper-
forms the BASELINE. One possible reason is that
our graph encoder jointly extracts these features
in a unified model by propagating the dependency
and constituency information to all nodes in the
syntactic graph. However, BASELINE separately
models these features using two distinct TreeL-
STMs. As a result, the non-terminal tree nodes
only retain only one type of syntactic information
propagated from their descendants in the tree.

Ablation Study. In Table 1, we also report the
results of three ablation variants of our model,
i.e., without word order features/dependency
features/constituency features. We find that
Graph2Seq is superior to Seq2Seq (Dong and Lap-
ata, 2016) which is expected since Graph2Seq ex-
ploits more syntactic information. Among these
features, the word order feature have more impact
on the performance than other two syntactic fea-
tures. By incorporating either the dependency or
the constituency features, the model could gain
further performance improvement, which under-
lines the importance of utilizing more aspects of
syntactic information. Finally, removing both syn-
tactic features (w/ ONLY word order) performs
slightly worse compared to the Seq2Seq baseline.
This shows that using K=10 hops is good enough
for memorizing the sentences in our benchmarks,
although still weaker compared to a bidirectional
LSTM encoder.

A natural question here is on which type of
queries our model could benefit from incorporat-
ing these parse features. By analyzing the queries
and our predicted logical forms, we find that the
parse features mainly improve the prediction ac-
curacy for the queries with complex logical forms.
Table 2 gives some running examples of com-
plicated queries in three datasets. We find that
the model that exploits three syntactic information

could correctly predict these logical forms while
the model that only uses word order features may
fail.

Complicated Query & Predicted Logical Forms
Jobs Q: what are the jobs for programmer that has salary

50000 that uses c++ and not related with AI
Pred: answer(J,(job(J),-((area(J,R),const(R,’ai’))),

language(J,L),const(L,’c++’), title(J,P),
const(P,’Programmer’),salary greater than(J,
50000,year)))).

Geo Q: which is the density of the state that the largest
river in the united states run through

Pred: answer(A,(density(B,A),state(B),
longest(C,(river(C),loc(C,D),const(D,id(usa)))),
traverse(C,B))))

ATIS Q: please find a flight round trip from los angeles
to tacoma washington with a stopover in san
francisco not exceeding the price of 300 dollars
for june tenth 1993

Pred: (lambda $0 e (and (flight $0) (round trip $0)
(from $0 los angeles) (to $0 tacoma washington)
(stop $0 san francisco) (< (cost $0) 300)
(day number $0 tenth) (month $0 june)
(year $0 1993)))

Table 2: Examples of complicated query and predicted logi-
cal forms.

Robustness Study. Different from previous
works, we evaluate the robustness of our model by
creating adversarial examples with the hope to in-
vestigate the impact of introducing more syntactic
information on robustness. Specifically, we cre-
ate two types of adversarial examples and con-
duct experiments on the ATIS dataset. Follow-
ing Belinkov and Bisk (2017), we first experiment
with the synthetic noise, SWAP, which swaps
two letters (e.g. noise→nosie). It is common to
see such noisy information when typing quickly.
Given a text, we randomly perform swap on m
∈ {1, 2, 3, 4, 5} words that not correspond to the
operators or arguments in logical forms, ensuring
the meaning of the text is not changed. We train
Graph2Seq on the training data and first evaluate
it on the original development data, Devori. Then
we use the same model but evaluate it on a vari-
ant of Devori, whose queries contain m swapped
words.

Figure 2 summarizes the results of our model
on the first type of adversarial examples, i.e., the
ATIS development set with the SWAP noise. From
Figure 2, we can see that (1) the performance
of our model on all combinations of features de-
grade significantly when increasing the number of
swapped words; (2) the model that uses three syn-
tactic features (our default model) always achieves
the best performance, and the performance gap
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Figure 2: The logical form accuracy on the development set
of ATIS with various swapped words number.

compared to others increases when rising the num-
ber of swapped words; (3) word order features are
the most sensitive to the word sequence while the
dependency and constituency features seem more
robust to such noisy information; (4) thanks to
the robustness of the dependency and constituency
features, the default model performs significantly
better than the one that only uses word order
features on the noisy sentences. These findings
demonstrate that incorporating more aspects of
syntactic information could enhance the robust-
ness of the model.

We also experiment with the paraphrase of the
input text as the second type of adversarial exam-
ples. More specifically, we collect the paraphrase
of a text by first translating it to the other language
such as Chinese and then translating it back to
English, using the Google Translate service. We
use this method to collect a new variant of Devori
whose queries are the paraphrases of the original
ones. By manually reading these queries, we find
94% queries convey the same meaning as original
ones. Similar to the first experiment, we still train
the model on Devori and evaluate it on the newly
created dataset.

Feature Accori Accpara Diff.
Word Order 84.8 78.7 -6.1
Dep 83.5 80.1 -3.4
Cons 82.9 77.3 -5.6
Dep + Cons 84.0 80.7 -3.3
Word Order + Dep 85.2 82.3 -2.9
Word Order + Cons 84.9 79.9 -5.0
Word Order + Dep + Cons 86.0 83.5 -2.5

Table 3: Evaluation results on ATIS where Accori and
Accpara denote the accuracy on the original and paraphrased
development set of ATIS, respectively.

Table 3 shows the results of our model on the
second type of adversarial examples, i.e., the para-
phrased ATIS development set. We also report the

result of our model on the original ATIS devel-
opment set. We can see that (1) no matter which
feature our model uses, the performance degrades
at least 2.5% on the paraphrased dataset; (2) the
model that only uses word order features achieves
the worst robustness to the paraphrased queries
while the dependency feature seems more robust
than other two features. (3) simultaneously utiliz-
ing three syntactic features could greatly enhance
the robustness of our model. These results again
demonstrate that our model could benefit from in-
corporating more aspects of syntactic information.

5 Related Work

Existing works of generating text representation
has evolved into two main streams. The first one is
based on the word order, that is, either generating
general purpose and domain independent embed-
dings of word sequences (Wu et al., 2018a; Arora
et al., 2017), or building Bi-directional LSTMs
over the text (Zhang et al., 2018). These methods
neglect other syntactic information, which, how-
ever, has been proved to be useful in shallow se-
mantic parsing, e.g., semantic role labeling (Pun-
yakanok et al., 2008). To address this, recent
works attempt to incorporate these syntactic infor-
mation into the text representation. For example,
Xu et al. (2016) builds separated neural networks
for different types of syntactic annotation. Gorm-
ley et al. (2015); Wu et al. (2018b) decompose a
graph to simpler sub-graphs and embed these sub-
graphs independently. Our approach, compared
to the above methods, provided a unified solution
to arbitrary combinations of syntactic graphs. In
parallel to syntactic features, other works leverage
additional information such as dialogue and para-
phrasing for semantic parsing (Su and Yan, 2017;
Gur et al., 2018).

6 Conclusions

Existing neural semantic parsers mainly leverage
word order features while neglecting other valu-
able syntactic information. To address this, we
propose to build a syntactic graph which repre-
sents three types of syntactic information, and fur-
ther apply a novel graph-to-sequence model to
map the syntactic graph to a logical form. Ex-
perimental results show that the robustness of our
model is improved due to the incorporating more
aspects of syntactic information, and our model
outperforms previous semantic parsing systems.
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