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Abstract
Deep neural networks reach state-of-the-art
performance for wide range of natural lan-
guage processing, computer vision and speech
applications. Yet, one of the biggest chal-
lenges is running these complex networks
on devices such as mobile phones or smart
watches with tiny memory footprint and low
computational capacity. We propose on-device
Self-Governing Neural Networks (SGNNs),
which learn compact projection vectors with
local sensitive hashing. The key advantage of
SGNNs over existing work is that they sur-
mount the need for pre-trained word embed-
dings and complex networks with huge pa-
rameters. We conduct extensive evaluation
on dialog act classification and show signifi-
cant improvement over state-of-the-art results.
Our findings show that SGNNs are effective at
capturing low-dimensional semantic text rep-
resentations, while maintaining high accuracy.

1 Introduction

Deep neural networks are one of the most suc-
cessful machine learning methods outperforming
many state-of-the-art machine learning methods
in natural language processing (Sutskever et al.,
2014), speech (Hinton et al., 2012) and visual
recognition tasks (Krizhevsky et al., 2012). The
availability of high performance computing has
enabled research in deep learning to focus largely
on the development of deeper and more com-
plex network architectures for improved accuracy.
However, the increased complexity of the deep
neural networks has become one of the biggest
obstacles to deploy deep neural networks on-
device such as mobile phones, smart watches and
IoT (Iandola et al., 2016). The main challenges
with developing and deploying deep neural net-
work models on-device are (1) the tiny mem-
ory footprint, (2) inference latency and (3) sig-
nificantly low computational capacity compared

to high performance computing systems such as
CPUs, GPUs and TPUs on the cloud.

There are multiple strategies to build
lightweight text classification models for on-
device. One can create a small dictionary of
common input→ category mapping on the device
and use a naive look-up at inference time. How-
ever, such an approach does not scale to complex
natural language tasks involving rich vocabularies
and wide language variability. Another strategy is
to employ fast sampling techniques (Ahmed et al.,
2012; Ravi, 2013) or incorporate deep learning
models with graph learning like (Bui et al., 2017,
2018), which result in large models but have
proven to be extremely powerful for complex
language understanding tasks like response com-
pletion (Pang and Ravi, 2012) and Smart Reply
(Kannan et al., 2016).

In this paper, we propose Self-Governing Neu-
ral Networks (SGNNs) inspired by projection net-
works (Ravi, 2017). SGNNs are on-device deep
learning models learned via embedding-free pro-
jection operations. We employ a modified ver-
sion of the locality sensitive hashing (LSH) to
reduce input dimension from millions of unique
words/features to a short, fixed-length sequence
of bits. This allows us to compute a projection
for an incoming text very fast, on-the-fly, with a
small memory footprint on the device since we
do not need to store the incoming text and word
embeddings. We evaluate the performance of our
SGNNs on Dialogue Act classification, because
(1) it is an important step towards dialog interpre-
tation and conversational analysis aiming to under-
stand the intent of the speaker at every utterance
of the conversation and (2) deep learning meth-
ods reached state-of-the-art (Lee and Dernoncourt,
2016; Khanpour et al., 2016; Tran et al., 2017; Or-
tega and Vu, 2017).
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The main contributions of the paper are:

• Novel Self-Governing Neural Networks
(SGNNs) for on-device deep learning for
short text classification.

• Compression technique that effectively cap-
tures low-dimensional semantic text repre-
sentation and produces compact models that
save on storage and computational cost.

• On the fly computation of projection vectors
that eliminate the need for large pre-trained
word embeddings or vocabulary pruning.

• Exhaustive experimental evaluation on dia-
log act datasets, outperforming state-of-the-
art deep CNN (Lee and Dernoncourt, 2016)
and RNN variants (Khanpour et al., 2016; Or-
tega and Vu, 2017).

2 Self-Governing Neural Networks

We model the Self-Governing network using
a projection model architecture (Ravi, 2017).
The projection model is a simple network with
dynamically-computed layers that encodes a set
of efficient-to-compute operations which can be
performed directly on device for inference. The
model defines a set of efficient “projection” func-
tions P(~xi) that project each input instance ~xi to
a different space ΩP and then performs learning in
this space to map it to corresponding outputs ypi . A
very simple projection model comprises just few
operations where the inputs ~xi are transformed us-
ing a series of T projection functions P1, ...,PT

followed by a single layer of activations.

2.1 Model Architecture
In this work, we design a Self-Governing Neu-
ral Network (SGNN) using multi-layered locality-
sensitive projection model. Figure 1 shows the
model architecture of the on-device SGNN net-
work. The self-governing property of this network
stems from its ability to learn a model (e.g., a clas-
sifier) without having to initialize, load or store
any feature or vocabulary weight matrices. In this
sense, our method is a truly embedding-free ap-
proach unlike majority of the widely-used state-
of-the-art deep learning techniques in NLP whose
performance depends on embeddings pre-trained
on large corpora. Instead, we use the projection
functions to dynamically transform each input to a
low-dimensional representation. Furthermore, we

stack this with additional layers and non-linear ac-
tivations to achieve deep, non-linear combinations
of projections that permit the network to learn
complex mappings from inputs xi to outputs yi.
An SGNN network is shown below:

ip = [P1(xi), ...,PT (xi)] (1)

hp = σ(Wp · ip + bp) (2)

ht = σ(Wt · ht−1 + bt) (3)

yi = softmax(Wo · hk + bo) (4)

where, ip refers to the output of projection opera-
tion applied to input xi, hp is applied to projec-
tion output, ht is applied at intermediate layers
of the network with depth k followed by a final
softmax activation layer at the top. In a k-layer
SGNN, ht, where t = p, p + 1, ..., p + k − 1
refers to the k subsequent layers after the pro-
jection layer. Wp,Wt,Wo and bp, bt, bo represent
trainable weights and biases respectively.

The projection transformations use pre-
computed parameterized functions, i.e., they are
not trained during the learning process, and their
outputs are concatenated to form the hidden units
for subsequent operations. Each input text xi is
converted to an intermediate feature vector (via
raw text features such as skip-grams) followed by
projections.

xi
F−→ ~xi

P−→ [P1(xi), ...,PT (xi)] (5)

On-the-fly Computation. The transformation
step F dynamically extracts features from the raw
input. Text features (e.g., skip-grams) are con-
verted into feature-ids fj (via hashing) to gener-
ate a sparse feature representation ~xi of feature-id,
weight pairs (fj , wj) . This intermediate feature
representation is passed through projection func-
tions P to construct projection layer ip in SGNN.
For this last step, a projection vector Pk is first
constructed on-the-fly using a hash function with
feature ids fj in ~xi and fixed seed as input, then
dot product of the two vectors < ~xi,Pk > is com-
puted and transformed into binary representation
Pk(~xi) using sgn(.) of the dot product.

As shown in Figure 1, both F and P steps are
computed on-the-fly, i.e., no word-embedding or
vocabulary/feature matrices need to be stored and
looked up during training or inference. Instead
feature-ids and projection vectors are dynamically
computed via hash functions. For intermediate
feature weights wj , we use observed counts in
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Figure 1: Self-Governing Neural Network (SGNN) architecture.

each input text and do not use pre-computed statis-
tics like idf. Hence the method is embedding-free.

Model Optimization. The SGNN network is
trained from scratch on the task data using a su-
pervised loss defined wrt ground truth ŷi:

L(.) =
∑
i∈N

cross− entropy(yi, ŷi) (6)

During training, the network learns to choose
and apply specific projection operations Pj (via
activations) that are more predictive for a given
task. The choice of the type of projection ma-
trix P as well as representation of the projected
space ΩP has a direct effect on computation cost
and model size. We leverage an efficient random-
ized projection method and use a binary represen-
tation {0, 1}d for ΩP. This yields a drastically
lower memory footprint both in terms of number
and size of parameters.

Computing Projections. We employ an effi-
cient randomized projection method for the pro-
jection step. We use locality sensitive hashing
(LSH) (Charikar, 2002) to model the underly-
ing projection operations in SGNN. LSH is typi-
cally used as a dimensionality reduction technique
for clustering (Manning et al., 2008). LSH al-
lows us to project similar inputs ~xi or interme-

diate network layers into hidden unit vectors that
are nearby in metric space. We use repeated bi-
nary hashing for P and apply the projection vec-
tors to transform the input ~xi to a binary hash rep-
resentation denoted by Pk(~xi) ∈ {0, 1}, where
[Pk(~xi)] := sgn[〈~xi,Pk〉]. This results in a d-
bit vector representation, one bit corresponding to
each projection row Pk=1...d.

The same projection matrix P is used for train-
ing and inference. We never need to explicitly
store the random projection vector Pk since we
can compute them on the fly using hash functions
over feature indices with a fixed row seed rather
than invoking a random number generator. This
also permits us to perform projection operations
that are linear in the observed feature size rather
than the overall feature or vocabulary size which
can be prohibitively large for high-dimensional
data, thereby saving both memory and computa-
tion cost. Thus, SGNN can efficiently model high-
dimensional sparse inputs and large vocabulary
sizes common for text applications instead of re-
lying on feature pruning or other pre-processing
heuristics employed to restrict input sizes in stan-
dard neural networks for feasible training. The bi-
nary representation is significant since this results
in a significantly compact representation for the
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projection network parameters that in turn consid-
erably reduces the model size.

SGNN Parameters. In practice, we employ T dif-
ferent projection functions Pj=1...T , each result-
ing in d-bit vector that is concatenated to form
the projected vector ip in Equation 5. T and d
vary depending on the projection network param-
eter configuration specified for P and can be tuned
to trade-off between prediction quality and model
size. Note that the choice of whether to use a sin-
gle projection matrix of size T · d or T separate
matrices of d columns depends on the type of pro-
jection employed (dense or sparse). For the in-
termediate feature step F in Equation 5, we use
skip-gram features (3-grams with skip-size=2) ex-
tracted from raw text.

2.2 Training and Inference

We use the compact bit units to represent the pro-
jection in SGNN. During training, the network
learns to move the gradients for points that are
nearby to each other in the projected bit space
ΩP in the same direction. SGNN network is
trained end-to-end using backpropagation. Train-
ing can progress efficiently with stochastic gradi-
ent descent with distributed computing on high-
performance CPUs or GPUs.

Complexity. The overall complexity for SGNN
inference, governed by the projection layer, is
O(n · T · d), where n is the observed feature size
(*not* overall vocabulary size) which is linear in
input size, d is the number of LSH bits specified
for each projection vector Pk, and T is the number
of projection functions used in P. The model size
(in terms of number of parameters) and memory
storage required for the projection inference step
is O(T · d · C), where C is the number of hidden
units in hp in the multi-layer projection network
and typically smaller than T · d.

3 Datasets and Experimental Setup

3.1 Data Description

We conduct our experimental evaluation on two
dialog act benchmark datasets.

• SWDA: Switchboard Dialog Act Corpus
(Godfrey et al., 1992; Jurafsky et al., 1997)
is a popular open domain dialogs corpus be-
tween two speakers with 42 dialogs acts.

• MRDA: ICSI Meeting Recorder Dialog Act
Corpus (Adam et al., 2003; Shriberg et al.,
2004) is a dialog corpus of multiparty meet-
ings with 5 tags of dialog acts.

Datasets Class Vocab. Train Validation Test
SwDA 42 20K 193K 23K 5K
MRDA 5 12K 78K 16K 15K

Table 1: Dialog Act Datasets Statistics

Table 1 summarizes dataset statistics. We use the
train, validation and test splits as defined in (Lee
and Dernoncourt, 2016; Ortega and Vu, 2017).

3.2 Experimental Setup

We setup our experimental evaluation, as follows:
given a classification task and a dataset, we gen-
erate an on-device model. The size of the model
can be configured (by adjusting the projection ma-
trix P) to fit in the memory footprint of the de-
vice, i.e. a phone has more memory compared to
a smart watch. For each classification task, we re-
port Accuracy on the test set.

3.3 Hyperparameter and Training

For both datasets we used the following: 2-
layer SGNN (PT=80,d=14 × FullyConnected256
× FullyConnected256), mini-batch size of 100,
dropout rate of 0.25, learning rate was initialized
to 0.025 with cosine annealing decay (Loshchilov
and Hutter, 2016). Unlike prior approaches (Lee
and Dernoncourt, 2016; Ortega and Vu, 2017) that
rely on pre-trained word embeddings, we learn the
projection weights on the fly during training, i.e
word embeddings (or vocabularies) do not need to
be stored. Instead, features are computed on the
fly and are dynamically compressed via the pro-
jection matrices into projection vectors. These val-
ues were chosen via a grid search on development
sets, we do not perform any other dataset-specific
tuning. Training is performed through stochastic
gradient descent over shuffled mini-batches with
Nesterov momentum optimizer (Sutskever et al.,
2013), run for 1M steps.

4 Results

Tables 2 and 3 show results on the SwDA and
MRDA dialog act datasets. Overall, our SGNN
model consistently outperforms the baselines and
prior state-of-the-art deep learning models.
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4.1 Baselines

We compare our model against a majority class
baseline and Naive Bayes classifier (Lee and Der-
noncourt, 2016). Our model significantly outper-
forms both baselines by 12 to 35% absolute.

4.2 Comparison against State-of-art Methods

We also compare our performance against prior
work using HMMs (Stolcke et al., 2000) and re-
cent deep learning methods like CNN (Lee and
Dernoncourt, 2016), RNN (Khanpour et al., 2016)
and RNN with gated attention (Tran et al., 2017).

To the best of our knowledge, (Lee and Der-
noncourt, 2016; Ortega and Vu, 2017; Tran et al.,
2017) are the latest approaches in dialog act clas-
sification, which also reported on the same data
splits. Therefore, we compare our research against
these works. According to (Ortega and Vu, 2017),
prior work by (Ji and Bilmes, 2006) achieved
promising results on the MRDA dataset, but since
the evaluation was conducted on a different data
split, it is hard to compare them directly.

For both SwDA and MRDA datasets, our
SGNNs obtains the best result of 83.1 and 86.7 ac-
curacy outperforming prior state-of-the-art work.
This is very impressive given that we work with
very small memory footprint and we do not rely
on pre-trained word embeddings. Our study also
shows that the proposed method is very effective
for such natural language tasks compared to more
complex neural network architectures such as deep
CNN (Lee and Dernoncourt, 2016) and RNN vari-
ants (Khanpour et al., 2016; Ortega and Vu, 2017).
We believe that the compression techniques like
locality sensitive projections jointly coupled with
non-linear functions are effective at capturing low-
dimensional semantic text representations that are
useful for text classification applications.

4.3 Discussion on Model Size and Inference

LSTMs have millions of parameters, while our
on-device architecture has just 300K parameters
(order of magnitude lower). Most deep learning
methods also use large vocabulary size of 10K or
higher. Each word embedding is represented as
100-dimensional vector leading to a storage re-
quirement of 10, 000×100 parameter weights just
in the first layer of the deep network. In con-
trast, SGNNs in all our experiments use a fixed
1120-dimensional vector regardless of the vocab-
ulary or feature size, dynamic computation results

Method Acc.
Majority Class (baseline) (Ortega and Vu, 2017) 33.7
Naive Bayes (baseline) (Khanpour et al., 2016) 47.3
HMM (Stolcke et al., 2000) 71.0
DRLM-conditional training (Ji and Bilmes, 2006) 77.0
DRLM-joint training (Ji and Bilmes, 2006) 74.0
LSTM (Lee and Dernoncourt, 2016) 69.9
CNN (Lee and Dernoncourt, 2016) 73.1
Gated-Attention&HMM (Tran et al., 2017) 74.2
RNN+Attention (Ortega and Vu, 2017) 73.8
RNN (Khanpour et al., 2016) 80.1
SGNN: Self-Governing Neural Network (ours) 83.1

Table 2: SwDA Dataset Results

Method Acc.
Majority Class (baseline)(Ortega and Vu, 2017) 59.1
Naive Bayes (baseline) (Khanpour et al., 2016) 74.6
Graphical Model (Ji and Bilmes, 2006) 81.3
CNN (Lee and Dernoncourt, 2016) 84.6
RNN+Attention(Ortega and Vu, 2017) 84.3
RNN (Khanpour et al., 2016) 86.8
SGNN: Self-Governing Neural Network (ours) 86.7

Table 3: MRDA Dataset Results

in further speed up for high-dimensional feature
spaces. This amounts to a huge savings in storage
and computation cost wrt FLOPs (floating point
operations per second).

5 Conclusion

We proposed Self-Governing Neural Networks for
on-device short text classification. Experiments
on multiple dialog act datasets showed that our
model outperforms state-of-the-art deep leaning
methods (Lee and Dernoncourt, 2016; Khanpour
et al., 2016; Ortega and Vu, 2017). We introduced
a compression technique that effectively captures
low-dimensional semantic representation and pro-
duces compact models that significantly save on
storage and computational cost. Our approach
does not rely on pre-trained embeddings and ef-
ficiently computes the projection vectors on the
fly. In the future, we are interested in extend-
ing this approach to more natural language tasks.
For instance, we built a multilingual SGNN model
for customer feedback classification (Liu et al.,
2017) and obtained 73% on Japanese, close to
best performing system on the challenge (Plank,
2017). Unlike their method, we did not use any
pre-processing, tagging, parsing, pre-trained em-
beddings or other resources.
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