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Abstract

Deep neural networks have been displaying
superior performance over traditional super-
vised classifiers in text classification. They
learn to extract useful features automatically
when sufficient amount of data is presented.
However, along with the growth in the num-
ber of documents comes the increase in the
number of categories, which often results in
poor performance of the multiclass classifiers.
In this work, we use external knowledge in
the form of topic category taxonomies to aide
the classification by introducing a deep hier-
archical neural attention-based classifier. Our
model performs better than or comparable to
state-of-the-art hierarchical models at signifi-
cantly lower computational cost while main-
taining high interpretability.

1 Introduction

A large number of documents are being generated
all over the world everyday, and as a result auto-
matic text classification has become an essential
tool for searching, retrieving, and managing the
text (Allahyari et al., 2017). There has been an
increasing trend in developing data-driven neural
text classifiers (Collobert et al., 2011; Lai et al.,
2015; Zhang et al., 2015; Yogatama et al., 2017;
Conneau et al., 2017), due to their ability to han-
dle large-scale corpora and their robustness in au-
tomatic feature extraction.

However, text classification has become in-
creasingly challenging as the number of categories
grows with continually expanding corpus. To alle-
viate this problem, one form of the external knowl-
edge – class taxonomy – has been introduced
to aid the classification in a hierarchical fashion
(Koller and Sahami, 1997). In general, hierarchi-
cal classifiers can be categorized into two broad
approaches: local (top-down and bottom-up) and
global (or big-bang) (Silla and Freitas, 2011). The

local approaches create a unique classifier for each
parent node in the taxonomy (Liu et al., 2001;
Quinn and Laier, 2006; Vens et al., 2008; Kowsari
et al., 2017), while global approaches create a sin-
gle classifier for the entire taxonomy (Silla Jr and
Freitas, 2009).

Kowsari et al. (2017) recently proposed a hierar-
chical neural-based model called HDLTex, which
displayed superior performance over traditional
non-neural-based models with a top-down struc-
ture. However, HDLTex suffers the inherited dis-
advantage of the top-down approach: the number
of sub-models grows exponentially with respect to
the number of sub-trees. This is especially prob-
lematic in HDLTex, as it uses deep networks with
a large number of parameters for the sub-models,
and the combined model itself grows exponen-
tially with the depth of taxonomy.

In contrast, we propose a unified global deep
neural-based classifier that overcomes the prob-
lem of exploding models. The backbone of our
approach is one encoder-decoder structure that se-
quentially predicts the class label of the next level,
conditioned on a dynamic document representa-
tion obtained based on a variant of an attention
mechanism (Bahdanau et al., 2015). The contri-
bution of our paper is as follows:

1. We propose an end-to-end global neural
attention-based model for hierarchical clas-
sification, which performs better than the
state-of-the-art hierarchical classifier at lower
computation cost.

2. We empirically show that the use of hierar-
chical taxonomy provides a robust classifier,
by comparing with state-of-the-art flat classi-
fiers.
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2 Literature Review

Traditional text classification methods focus on se-
lecting a good set of features (for example,TF-IDF
(Salton and Buckley, 1987)) to represent the doc-
uments and employing non-linear classifiers such
as SVM (Dumais et al., 1998; Joachims, 1999;
Tong and Koller, 2001), decision trees (Apté et al.,
1994), or Naive Bayes (McCallum et al., 1998;
Kim et al., 2006) methods for text classification.
More recent work has employed deep neural net-
works to merge feature extraction and classifica-
tion into one joint process, where the model pa-
rameters can be learned through back-propagation
(Xue et al., 2008; Lai et al., 2015; Zhang et al.,
2015). A common theme in these convolutional
neural networks (CNN)-based or recurrent neural
network (RNN)-based approaches is to create a
document representation from either the last hid-
den state of the RNN or via some pooling opera-
tions on all hidden states.

Furthermore, the attention mechanism (Bah-
danau et al., 2015; Sutskever et al., 2014) has been
adapted for these CNN/RNN structures for text
classification (Lin et al., 2017), providing high
interpretability and allowing us to inspect which
parts of the text are discriminative for a particular
sample.

In addition, external knowledge has been exam-
ined as a way to boost the performance of text clas-
sifiers (Collobert and Weston, 2008a; Ngiam et al.,
2011; Howard and Ruder, 2018). One form of ex-
ternal knowledge is built on top of the hierarchical
relations of the classes (Koller and Sahami, 1997),
where a class taxonomy is used to improve the per-
formance of the end-level classification1. Most of
the hierarchical classifiers2 perform classification
by navigating through the hierarchy in top-down
approaches (Liu et al., 2001; Quinn and Laier,
2006; Vens et al., 2008), where a local classifier
is constructed at each parent node. The state-of-
the-art hierarchical classifier HDLTex is proposed
by Kowsari et al. (2017). It combines deep neural
networks in the top-down fashion where a sepa-

1Classifiers that do not take into account the hierarchy and
are only concerned with predicting the leaf nodes are termed
flat classifiers in this work.

2We use the term “hierarchical classifiers” to refer the
models that follow the external taxonomy of class labels,
which is substantially different from hierarchical attention
networks (Yang et al., 2016). In Yang et al. (2016), hierar-
chical attention networks refer to the hierarchical nature of
their attention mechanism; the model attends to the sentences
first and then attends to the words.

rate neural network (either CNN or RNN) is built
at each parent node to classify its children.

3 Model
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Figure 1: Proposed model architecture

Our proposed model (Figure 1) consists of three
parts: 1) a bidirectional LSTM encoder (Hochre-
iter and Schmidhuber, 1997) that transforms each
word into vector representations based on their
context. 2) an attention module that helps to gener-
ate dynamic document representations across dif-
ferent level of classification, 3) multi-layer percep-
tron (MLP) classifiers at each level that makes the
prediction of classes at that level based on the dy-
namically generated document representation and
the level masking.

Our hierarchical classification model can be
viewed as a sequence-to-sequence model, where
a sequence of word embeddings is used to gen-
erate a sequence of hierarchical class labels. In
addition, we employ a modified attention module
from the traditional attention mechanism used in
sequential generation tasks (Bahdanau et al., 2015;
Sutskever et al., 2014). Instead of computing at-
tention weights conditioned on the hidden state of
the decoder at time step i, we condition on the par-
ent category embedding ck−1. This is intuitive in
our setting as the document representation should
depend on the parent class predicted by the model.

Formally, suppose we are given a document
with n tokens D = (w1, w2, ..., wn) and its cat-
egory labels of m levels C = (c1, . . . , cm), ck ∈
{clk1 , . . . , clksk} where lk indicates the k-th level of
the class taxonomy and sk represents the number
of classes in level k 3. A bidirectional LSTM is

3We suppose wi and ci are word embeddings and class
embedding respectively.
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first used to extract features of the document:

−→
ht =

−−−−→
LSTM(wt,

−−−→
ht−1),

←−
ht =

←−−−−
LSTM(wt,

←−−−
ht+1).

(1)

The encoder’s hidden states H = (h1, . . . , hn) are
constructed by the concatenation of (

−→
ht) and (

←−
ht)

as hi = [
−→
ht ,
←−
ht ].

When classifying the class label at level k, we
first form contextual word features H̄k by concate-
nating the previously predicted category embed-
ding ck−1 (parent) with each of the encoder’s out-
puts H = (h1, . . . , hn):

H̄k = H ⊕ ck−1. (2)

Then, we transform these n vectors in H̄k into n
attention scores (scalars) through a series of linear
and non-linear transformations:

ak = softmax(ws2tanh(Ws1H̄
T
k )). (3)

As one single attention distribution might only fo-
cus on a specific component of the semantics in
the document, we follow Lin et al. (2017)’s work
to perform m hops of attention and form the multi-
head attention matrix Ak (m × n). To encour-
age diversity over the multiple hops of the atten-
tion distributions, we employ the Frobenius norm

penalty (Lin et al., 2017) P =
∥∥∥AkA

>
k − I

∥∥∥2
F

to
force the attention hops to focus on different as-
pects of the semantics.

The document representation for level k is ob-
tained by multiplying the multi-head attention ma-
trix and the contextual word features:

Dk = Ws3AkH̄k. (4)

Finally, a two layered multi-layer perceptron
(MLP) is employed to classify the category at level
k:

dk = RELU(WD[Dk, dk − 1]),

yk = softmax(Wkdk)
(5)

Normally, the softmax in Equation 5 is computed
over all class labels across the entire taxonomy
levels. This is not desirable when the taxonomy
is deep and the number of classes is large. We
solve this by employing a level masking technique
where we mask out all the classes that are not in
the current classification level k. The loss is then
calculated as the joint cross entropy loss among all
levels of the taxonomy: l =

∑m
i=1 li.

DBpedia WOS
Level 1 Categories 9 7
Level 2 Categories 70 134
Level 3 Categories 219 NA
Number of documents 381,025 46,985
Mean document length 106.9 200.7

Table 1: Dataset Comparison

4 Experimental Setup

Dataset Two datasets are used for our experi-
ments: Web of Science (WOS) and DBpedia. Web
of Science (WOS) is a hierarchical two-level tax-
onomy dataset that contains 46,985 documents
collected from Web of Science (Reuters, 2012) by
Kowsari et al. (2017). Despite its small size, WOS
is used as a benchmark dataset for hierarchical
classification as it provides the raw text for deep
neural models to train on4.

As deep learning models usually contain a large
number of parameters that need to be learned, to
prevent over-fitting (Lawrence et al., 1997; Srivas-
tava et al., 2014) we usually need a large dataset
to train upon. Thus, we curated a bigger dataset
with hierarchical labels from Wikipedia meta in-
formation provider DBpedia5. Compared to WOS,
our DBpedia dataset is larger in two aspects: the
number of data instances and the number of hier-
archical levels (Table 1). The DBpedia ontology
was first used in Zhang et al. (2015) for flat text
classification. We instead use the DBpedia ontol-
ogy to construct a dataset with a three-level taxon-
omy of classes. In order to ensure enough docu-
ments per-class, we only extract leaf-classes with
more than 200 documents. We also randomly sub-
sample 3,000 documents per category to balance
the number of leaf-level categories. This results
in 381,025 documents in total, which we split into
90% for training (from which 10% were kept aside
for validation) and 10% on testing, on which we
report our classification metrics6.

Baselines State-of-the-art flat classifiers such
as FastText (Joulin et al., 2017), Bi-directional

4The LSHTC dataset (Partalas et al., 2015) has been
widely used as a benchmark for hierarchical text classifica-
tion. However, the raw texts are not available which makes
it difficult to extract features for modern neural approaches.
Instead, only the tf-idf vectors are provided as inputs with no
option to retrieve the original text (even after consulting with
the original authors we were unable to procure it).

5http://wiki.dbpedia.org/
6Our code and data will be released at https://

github.com/koustuvsinha/hier-class

http://wiki.dbpedia.org/
https://github.com/koustuvsinha/hier-class
https://github.com/koustuvsinha/hier-class
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DBpedia WOS
Flat Baselines Overall Overall
FastText 86.2 61.3
BiLSTM + MLP + Maxpool 94.20 77.69
BiLSTM + MLP + Meanpool 94.68 73.08
Structured Self Attention (m=1) 94.04 77.40
Hierarchical Models l1 l2 l3 Overall l1 l2 Overall
HDLTex (5B params) 99.26 97.18 95.5 92.10 90.45 84.66 76.58
Our model (34M params) 99.21 96.03 95.32 93.72 89.32 82.42 77.46

Table 2: Test accuracy on the WOS and DBpedia datasets. The flat baseline models are trained without the hierarchical
taxonomy of classes and therefore only have results on the leaf-node classification.

LSTM with max/mean pooling (Collobert and We-
ston, 2008b; Lee and Dernoncourt, 2016) and
the Structured Self-attentive classifier (Lin et al.,
2017) are used for the comparison. We no-
ticed that using the default hyperparameters of the
Structured Self-attentive classifier with high atten-
tion hops (m >= 8) performed poorly compared
to use just one attention hop (m = 1). There-
fore, we reported the results of using one attention
hop (m = 1) as our baselines for fair comparison.
We also compare our classifier to the state-of-the-
art hierarchical classifier HDLTex (Kowsari et al.,
2017).

Hyperparameters We use 300-dimensional word
embeddings which are randomly initialized and
fine-tuned during training. Two-layer Bidirec-
tional LSTM with 300 hidden units in each layer
are employed. In the multi-head attention mech-
anism, we use 4 heads (hops) with 0.1 Frobe-
nius norm penalty because it gives the best valida-
tion performance. The final fully-connected MLP
layer WD has 1200 hidden units. In addition, we
add 0.4 dropout on BiLSTM layers and MLP lay-
ers to prevent over-fitting.

For optimization, we use the standard Adam
optimizer (Kingma and Ba, 2014) with the learn-
ing rate of 0.001, weight decay of 10−4 and 10−6

for WOS and DBpedia, respectively. The gra-
dients are clipped to 0.5 in order to prevent ex-
ploding gradients. All the results are obtained af-
ter 25 epochs of training. After every 10 epochs,
we reduce the learning rate by half if the valida-
tion accuracy is not improving. We employ early-
stopping to select the best model. In addition, a
weighted loss function is utilized to balance the
performance on under-represented classes.

Hierarchical Evaluation For evaluating hierar-
chical models, we present the teacher-forcing re-

sult on each level, such as l1, l2 and l3. This
indicates the per-level classification performance
when we provide the true parent class to the classi-
fier while predicting the next class. However, this
is not desirable as during inference we should not
have access to the correct parent class. Hence we
also present the Overall score in Table 2, where
the classifier uses its own prediction as the parent
class.

5 Results

Our model is significantly better than the existing
state-of-the-art hierarchical baseline (Table 2). Al-
though, we also see that both hierarchical classi-
fiers (ours and HDLTex) perform comparably with
or slightly worse than the state-of-the-art flat clas-
sifiers in terms of accuracy. However, the robust-
ness analysis we performed in Table 3 indicates
that hierarchical models are more robust in their
errors since most of the errors generated by hierar-
chical classifiers remain within the correct tree of
the parent class, while flat classifiers do worse. For
example, on WOS, 88.57% of all classified data by
our hierarchical model is within the correct subtree
compared to 85.56% for the flat classifier.

Classifier Correct parent Predicted parent
Flat classifier - BiLSTM Max Pooling 90.74 85.56
Hierarchical approach - Our model 93.03 88.57

Table 3: Robustness analysis of taxonomy on the WOS
dataset. We compare the success rate of our model and the
BiLSTM flat classifier. The success rate is defined as the
number of times the predicted class is within the same sub-
tree as the correct parent. We calculate this in two scenar-
ios: 1. when the true parent class is manually provided, or
teacher-forced (Correct parent), and 2. when the true parent
class is predicted by our model (Predicted parent)

Interestingly, the class taxonomy seems to be
more beneficial in boosting the performance of
hierarchical classifiers on WOS than DBpedia.
The hierarchical classifiers perform better on the
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(a) Level 1 - correct class : Medical (b) Level 2 - correct class : Crohn’s disease

Figure 2: WOS dataset attention rereading per level. Highlighted words indicate the attented words. Stronger color denote
higher focus of attention. We note that the attention spread becomes much more focused in Level 2 compared to its parent
Level 1.

leaf-node level classification of WOS than that
on DBpedia. We observe this behaviour due to
the dataset of DBpedia being shorter in average
length making it easier to classify for flat classi-
fiers, hence hierarchical classifiers overfit on the
training data.

In addition to the performance improvement on
both datasets over HDLTex, our model takes sig-
nificantly less time and resources to train, espe-
cially when the dataset is large in terms of the in-
termediate non-leaf nodes in the output taxonomy.
As HDLTex needs to build one sub-classifier for
each parent nodes, the number of sub-classifiers
grows quickly. For example, there are 80 parent
nodes in the taxonomy of the DBpedia dataset and
HDLTex needs to build 80 RNNs, where each sub-
classifier contains around 67 million parameters.
As a consequence, we can barely fit the whole
model of HDLTex on our CPU 7 because it re-
quires 60 GB RAM to build these 80 deep neural
networks.

6 Discussion

Analysis of Attention The intuition behind build-
ing dynamic document representations, using mul-
tiple attentions across different hierarchical levels,
is to have a re-reading effect over the taxonomy.
When we first encounter an article as humans, we
tend to read it carefully, but on subsequent reads
we can easily identify the key aspects of the ar-
ticle. We find in our exploratory experiments the
attention vectors behave exactly the same. For the

7It is not possible to fit the entire model in one GPU as
our best GPU has the RAM capacity of 12GB, one needs to
have multiple GPU’s and parallel execution for this task.

first level, the attention values are more spread out
to help our classifier pick various important as-
pects of the article, but on the subsequent levels,
the attention is more focused towards specific key-
words for that subclass, as the example shown in
Figure 2 8. We perform additional qualitative anal-
ysis of attention spread which is provided in Ap-
pendix.

7 Conclusion

In this work, we propose a light-weight neural-
based hierarchical classifier that performs better
than or comparable to the state-of-the-art hier-
archical model at lower computation cost. Our
model employs an adapted version of attention to
represent documents dynamically through the hi-
erarchy, which provides additional interpretability
of the dynamic document representations. In ad-
dition, we demonstrate that the robustness of flat
text classification can be improved by using ex-
ternal knowledge such as a hierarchical taxonomy.
As a future direction, we will advance our model
to automatically construct the hierarchical taxon-
omy in order to improve text classification with a
large number of classes.
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