
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 587–593
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

587

Quantifying Context Overlap for Training Word Embeddings

Yimeng Zhuang, Jinghui Xie, Yinhe Zheng and Xuan Zhu
Samsung Research Institute China - Beijing (SRC-B)

{ym.zhuang, jh.xie, yh.zheng, xuan.zhu}@samsung.com

Abstract

Most models for learning word embeddings
are trained based on the context informa-
tion of words, more precisely first order co-
occurrence relations. In this paper, a met-
ric is designed to estimate second order co-
occurrence relations based on context over-
lap. The estimated values are further used as
the augmented data to enhance the learning of
word embeddings by joint training with exist-
ing neural word embedding models. Experi-
mental results show that better word vectors
can be obtained for word similarity tasks and
some downstream NLP tasks by the enhanced
approach.

1 Introduction

In the last decade, the distributed word representa-
tion (a.k.a word embedding) has attracted tremen-
dous attention in the field of natural language pro-
cessing (NLP). Instead of large vectors, such as the
one-hot representation, the distributed word rep-
resentation embeds semantic and syntactic char-
acteristics of words into a low-dimensional space,
which makes it popular in NLP applications.

The main idea of most word embedding mod-
els follows the distributional hypothesis (Harris,
1954), i.e., the embedding of each word may be in-
ferred using its context. An important model fam-
ily for distributional word representation learning
is built based on the global matrix factorization
approach (Deerwester et al., 1990; Lee and Se-
ung, 2001; Srebro et al., 2005; Mnih and Hinton,
2007; Li et al., 2015; Wang and Cohen, 2016),
in which a dimensionality reduction over a sparse
matrix is performed to capture the statistical in-
formation about a corpus in low-dimensional vec-
tors. Another model family is neural word em-
beddings (Levy and Goldberg, 2014b), some at-
tempts include the famous Neural Probabilistic
Language Model (Bengio et al., 2003), SGNS and

CBOW (Mikolov et al., 2013a,b), GloVe (Pen-
nington et al., 2014) and their variants (Shazeer
et al., 2016; Kenter et al., 2016; Ling et al., 2017;
Patel et al., 2017).

Most of these models capture the context in-
formation of each word using the co-occurrence
matrix. However, the co-occurrence matrix only
represents relatively local information, i.e., it de-
scribes context associations based on word pairs’
co-occurrence counts without considering global
context perspective. Besides, the co-occurrence
matrix is only an estimation of a corpus, which
is only a sample of a language. A mass of re-
lated word pairs may not be observed in the cor-
pus, and the latent relations between unobserved
word pairs may not be modeled well due to the
missing knowledge.

Few attempts are carried out to indirectly
deal with unobserved co-occurrence for dense
neural word embeddings. SGNS (Mikolov
et al., 2013a,b) indirectly addresses this prob-
lem through negative sampling. Swivel (Shazeer
et al., 2016) improves GloVe by using a “soft
hinge” loss to prevent from over-estimating zero
co-occurrences. However, the latent relations be-
tween unobserved word pairs are not explicitly
represented. There are also some works around
semantic composition and distributional inference
(Mitchell and Lapata, 2008; Erk and Padó, 2008,
2010; Reisinger and Mooney, 2010; Thater et al.,
2011; Kartsaklis et al., 2013; Kober et al., 2016)
that are explored to address the sparseness prob-
lem, but they are not designed for training neural
word embeddings.

In this paper, we explore an approach that uti-
lizes context overlap information to dig up more
effective co-occurrence relations and propose ex-
tensions for GloVe and Swivel to validate the pos-
itive impact of introducing context overlap.
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2 Quantify Context Overlap

In this work, we explore quantifying context over-
lap based on the observation that to a certain ex-
tent the overlap of Point-wise Mutual Information
(PMI) (Church and Hanks, 1990) reflects context
overlap.

As shown in Figure 1, two separate words may
exhibit a particular aspect of interest or be seman-
tically related when the overlap area between their
PMI is relatively large.

The calculation of complete PMI-weighted con-
text overlap may be time-consuming when the
number of words is large. To make the time com-
plexity affordable, only the context words that
have strong lexical association with a target word
i are considered:

Si = {k ∈ V |PMI(i, k) > hPMI} (1)

in which V is the vocabulary, hPMI is a thresh-
old which acts as a magnitude to shift PMI, and Si
denotes the set that consists of the context words
that have enough large PMI values with the target
word i. It is expected that most context informa-
tion associated with the word i can be captured by
its PMI values over Si. Then, we measure the de-
gree of context overlap (CO) between two target
words i, j as a function of their PMI values over
the intersection of Si and Sj , i.e.,

CO(i, j) =
∑

k∈Si∩Sj

min(f(PMI(i, k)), f(PMI(j, k)))

(2)
where f is a monotonic mapping function to rec-
tify the data characteristics for certain objective
function in word embedding training.

Compared to identity function f(x) = x, we
find exponential function f(x) = exp(x) works
much better in our experiments. For the quantized
context overlap, the exponential mapping func-
tion results in a similar data distribution as the co-
occurrence counts, i.e., few word pairs have ex-
tremely large values while most word pairs’ values
are distributed in a relatively small range.

3 Extend to Existing Models

We consider the original co-occurrence matrix as
a description of first order co-occurrence rela-
tions, while the quantized context overlap as a de-
scription of second order co-occurrence relations
(Schütze, 1998), i.e., co-co-occurrences, which
is represented by “non-logarithmic PMI-weighted

Figure 1: PMI of different words. The x-axis repre-
sents a series of context words in a subset of the whole
vocabulary, the y-axis denotes PMI values between the
target word and context words. (a) The upper part of
this figure illustrates the large overlap between seman-
tics related words. (b) The lower part, on the con-
trary, is an example of relatively unrelated word pair,
in which the overlap is relatively small.

context overlap” in this work. The context overlap
between two words can be inferred even when they
never co-occur in the corpus. According to our
statistics, more than 84% word pairs in the second
order co-occurrence matrix are not included in the
first order co-occurrence matrix. We expect intro-
ducing second order co-occurrence relations may
enhance the quality of the word embedding that is
originally trained on first order co-occurrence rela-
tions. GloVe (Pennington et al., 2014) and Swivel
(Shazeer et al., 2016) are extended by joint train-
ing with context overlap information in this paper.

GloVe The logarithmic co-occurrence matrix
is factorized in GloVe with bias terms, and a
weighted least squares loss function is optimized:

JGloV e =
∑
i,j

λij(w
T
i w̃j+bi+b̃j−logXij)

2 (3)

where Xij denotes the word-context co-
occurrence count between a target word i
and a context word j. The model parameters
to be learned include wi ∈ Rd, w̃j ∈ Rd, bi
and b̃j , which correspond to target word vector,
context word vector, bias terms associated with
the target word and the context word, respec-
tively. λij is a weight whose value equals to
(min(Xij , xmax)/xmax)

α.
To extend GloVe, two tasks are trained in par-

allel during the training process: One is the main
task that follows the original GloVe training pro-
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cess as above; Another one is an auxiliary task
that tunes word embeddings using context overlap.
The parameters of word embeddings are shared in
both tasks.

Following GloVe-style loss function, in the aux-
iliary task, the dot products of word vectors are
pushed to estimate logarithmic second order co-
occurrence.

J (2)
GloV e =

∑
i,j

λ
(2)
ij (AwTi wj+b

(2)
i +b

(2)
j −logX

(2)
ij )2

(4)
where the superscripts (2) are used to differenti-
ate with the terms in the original GloVe. X(2)

ij =
CO(i, j) represents context overlap, a word inde-
pendent learnable scale A is adopted to relieve the
potential inconformity between first order and sec-
ond order co-occurrences. The weight λ(2)ij is sim-
ilar to the original λij , but using a different hyper-
parameter x(2)max.

The multi-task (Ruder, 2017) loss function is
the weighted sum of the two tasks, i.e., J =

JGloV e+β ·J
(2)
GloV e, where the weight β is a hyper-

parameter.

Swivel As pointed out by (Levy et al., 2015) ,
if the bias terms in GloVe are fixed to the log-
arithmic count of the corresponding word, the
dot products of target word vectors and context
word vectors are almost equivalent to the approx-
imation of logarithmic PMI matrix with a shift
of log

∑
i,j Xij . Submatrix-wise Vector Embed-

ding Learner (Swivel) directly reconstructs the
PMI matrix by dot product between target vec-
tors and context vectors and deals with unobserved
co-occurrences using a “soft hinge” loss function.
(Shazeer et al., 2016) details its loss functions and
training process. In our extended version, we add a
supplementary loss function to handle second or-
der co-occurrences. When the second order co-
occurrence X(2)

ij is more than zero, the PMI of
context overlap is approximated.

1

2
λ
(2)
ij (AwTi wj +B − PMI(2)(i, j))2 (5)

in which A, B are word independent learnable
scale parameters, and PMI(2)(i, j) is the Point-
wise Mutual Information computed on the second
order co-occurrence matrix [X

(2)
ij ].

4 Experiments

4.1 Setup
Corpus The training dataset contains 6 billion

tokens collected from diversified corpora, includ-
ing the News Crawl corpus (Chelba et al., 2013),
the April 2010 Wikipedia dump (Shaoul, 2010;
Lee and Chen, 2017), and a year-2012 subset of
the Reddit comment datasets 1.

Preprocessing Following (Lee and Chen,
2017), the Stanford tokenizer is used to process
the training corpus, which are split into sentences
with characters converted to lower cases. Punctu-
ations are removed.

Parameter Configuration The vocabularies
are limited to the 200K most frequent words. Fol-
lowing (Pennington et al., 2014), a decreasing
weighting function is adopted to construct the co-
occurrence matrix. We use symmetric context
window of five words to the left and five words
to the right.

For GloVe, recommended parameters in (Pen-
nington et al., 2014) are used. Specifically, we set
α = 3

4 , xmax = 100, initial learning rate as 0.05,
100 iterations. For Swivel, recommended parame-
ters in (Shazeer et al., 2016) are used. The weight-
ing function is 0.1 + 0.25x0.5ij , each shard is sam-
pled about 100 times. But we set the block size
as 4000 so that the vocabulary size can be divided
exactly.

For the auxiliary tasks, we tune the hyper-
parameters on the small News Crawl corpus. And
we find that in an appropriate range, the threshold
hPMI is not sensitive to the performance. In this
paper, hPMI , x

(2)
max and β are set to log 100, 10000

and 0.2 respectively. Since there is no difference
between target vectors and context vectors (except
random initialization), in order to keep symmetry,
we not only approximate context overlap between
target vectors, but also approximate context over-
lap between context vectors simultaneously. Final
vectors are the sum of w and w̃ in both GloVe and
Swivel.

4.2 Intrinsic Evaluation
Table 1 shows the evaluation results of word sim-
ilarity tasks and word analogy tasks. Word sim-
ilarity is measured as the Spearman’s rank corre-
lation ρ between human-judged similarity and co-
sine distance of word vectors. In word analogy

1Available at https://files.pushshift.io/
reddit/comments/

https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/
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Method WS353 SL999 SCWS RW MEN MT771
Analogy

Sem Syn
GloVe 66.8 35.0 59.3 44.1 74.7 69.9 76.0 75.3

GloVe + CO 69.7 38.0 63.8 45.1 77.6 71.3 78.6 75.0
SGNS 71.1 40.7 67.1 52.8 78.1 70.4 67.2 77.3
Swivel 73.1 39.9 66.4 53.4 79.1 71.7 78.6 78.0

Swivel + CO 74.0 41.2 66.3 53.6 79.8 72.5 79.4 78.1

Table 1: Word similarity and analogy results (ρ×100 and analogy accuracy). We denote context overlap enhanced
method with “+ CO”. 300-dimensional embeddings are used. The datasets used include WS353 (Finkelstein et al.,
2001), SL999 (Hill et al., 2016), SCWS (Huang et al., 2012), RW (Luong et al., 2013), MEN (Bruni et al., 2014),
MT771 (Halawi et al., 2012), and Mikolov’s analogy dataset (Mikolov et al., 2013a).

task, the questions are answered over the whole
vocabulary through 3CosMul (Levy and Goldberg,
2014a). In addition to GloVe and Swivel, the
evaluations of SGNS are also reported for refer-
ence. We train SGNS with the word2vec tool, us-
ing symmetric context window of five words to the
left and five words to the right, and 5 negative sam-
ples.

As can be seen from the table, the context over-
lap information enhanced word embeddings per-
form better in most word similarity tasks and get
higher analogy accuracy in semantic aspect at the
cost of syntactic score. The improved semantics
performance, to a certain extent, reflects second
order co-occurrence relations are more semantic.

4.3 Text Classification
Text classification tasks are conducted on five
shared benchmark datasets from (Kim, 2014) in-
cluding binary classification tasks CR (Hu and
Liu, 2004), MR (Pang and Lee, 2005), Subj (Pang
and Lee, 2004) and multiple classification tasks
TREC (Li and Roth, 2002), SST1 (Socher et al.,
2013). Texts are preprocessed following the de-
scription of Section 4.1. We train Convolutional
Neural Networks (CNN) on top of our static pre-
trained word vectors following (Kim, 2014). To
avoid the high-risk of single-run estimate being
false (Melis et al., 2017; Reimers and Gurevych,
2017), average classification accuracies of 20 runs
are reported as the final scores. The results are
shown in Table 2. As can be seen from the re-
sults that the enhanced word embeddings outper-
form the baselines.

5 Model Analysis

As it is known to all, word frequency plays an
important role in the computation of word em-
beddings (Gittens et al., 2017). Inspired from

Method CR MR SST1 Subj TREC
GloVe 80.9 76.5 46.9 90.9 89.7
+ CO 81.7† 76.4 47.6† 91.4† 90.2†

Swivel 81.7 76.7 47.9 91.4 90.4
+ CO 82.4† 76.7 48.3† 91.7† 90.5

CBOW 80.6 75.3 46.5 89.8 89.6
SGNS 81.6 77.0 48.0 91.2 90.6

Table 2: Text classification results (Acc.%). Pre-
trained word vectors with 300 dimensions are reported
here. Enhanced runs statistically significantly (t-test,
p-value < 0.05) different from the GloVe/Swivel base-
line runs are marked with a †. The results of CBOW
and SGNS are also given for reference.

the graph in (Shazeer et al., 2016), relations be-
tween word analogy accuracy and the log mean
frequency of the words in analogy questions and
answers are plotted on Figure 2. The word em-
beddings trained by GloVe with or without context
overlap information are used here.

An obvious semantic performance improve-
ment is observed in the range of low frequency.
Our observation of second order co-occurrences
may explain this fact. We randomly sample 1 mil-
lion word pairs, and rank these word pairs in de-
scending order by their quantized context overlap.
In all the word pairs, average word frequency is
13934.4. However, it is only 1676.1 in the top
0.1% word pairs, it is 3984.8 in the top 1%, and
it is 7904.9 in the top 10%. This may be caused
by PMI’s bias towards infrequent words, but it il-
lustrates infrequent words carry more information
in second order co-occurrence relations.

6 Conclusion

In this paper, we propose an empirical metric to
enhance the word embeddings through estimating
second order co-occurrence relations using con-
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Figure 2: Relations between word analogy accuracy
and the log mean frequency.

text overlap. Instead of only local statistical infor-
mation, context overlap leverages global associa-
tion distribution to measure word pairs correlation.

The proposed method is easy to extend to ex-
isting models, such as GloVe and Swivel, by an
auxiliary objective function. The improvement in
experimental results helps to validate the positive
impact of introducing quantized context overlap.

We have considered the feasibility of enriching
SGNS and CBOW with information from context-
overlap. However, because of their training mode,
we can’t remake them in a straightforward way
following their “original spirit”. When training
SGNS and CBOW, the program scans the training
text. The target and context words are chosen us-
ing a slide window and negative sampling is used.
In this process, no co-occurrence matrix is explic-
itly computed, and we fail to extend it in a united
form as we extend GloVe and Swivel. The exten-
sions for GloVe and Swivel can also be used for
reference for extending other word embedding ap-
proaches that are trained on co-occurrence matrix.
The exploration for second order co-occurrence
can be traced back to 1990s. We think it is help-
ful to revive the classical method in a modern,
embedding driven way. How to integrate second
order co-occurrence information for approaches
like SGNS, CBOW should be an interesting future
work.

As future works, we suggest further investigat-
ing the characteristics of context overlap in diver-
sified ways.
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